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Abstract. In the present paper, symmetry and soliton solutions of the Q(L,m, n) equation are
investigated. The infinitesimal operator of this equation is obtained by virtue of Lie group analysis.
Taking different values of the parameters for the coefficients, the corresponding vector fields are
obtained. Subsequently, soliton solutions of this equation are obtained for different parameters
relying on the solitary wave ansatz method. According to different parameters, new soliton solutions
are obtained. Also, conservation laws are also derived. Reciprocal Bäcklund transformations of
conservation laws presented from the known conservation laws.
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1 Introduction

Nonlinear evolution equations (NLEEs) play a central role in many fields, such as mathe-
matics, physics, engineering, and so on because these equations can better describe natural
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phenomena. In the last few decades, a great many of nonlinear evolution equations have
been investigated extensively by various methods, which include, for example, the Hirota
bilinear method [8, 11], the inverse scattering transformation method [1], the Darboux
transform method [9], the Bäcklund transformations method [20], the Hamiltonian system
method [12–14], exponential function method [10], the Lie symmetry method [5, 6, 17,
29–35, 37], and so on. Using these methods, many nonlinear evolution equations are
solved. Solitons are known to play an important role in nonlinear science. Switching,
explosion, and chaos of multiwavelength soliton states are presented in [28]. The authors
of [27] studied dynamic modeling and coded information storage of vector soliton using
deep learning method. Solitons and their biperiodic pulsation in ultrafast fiber lasers
are investigated in [15]. The authors of [18] proposed a novel physics-informed GAN
with gradient penalty (PIGAN-GP) to predict solutions of the 2-coupled mixed deriva-
tive nonlinear Schrödinger equation. Nonlinear Schrödinger–Maxwell–Bloch equation
[36] is studied via the phPINN. Data-driven vector degenerate and nondegenerate soli-
tons of coupled nonlocal nonlinear Schrödinger equation are investigated via improved
PINN algorithm [19]. The stability of solitary traveling wave solutions of the (3 + 1)-
dimensional mKdV–ZK equation is investigated in paper [22]. A lot of soliton solutions
of the fractional Wazwaz–Benjamin–Bona–Mahony equations obtained in [23]. Some
new exact solutions of two kinds of nonlinear Schrödinger equation are derived through
the variational principle method and amplitude ansatz method [24]. In [25], variational
principle and optical soliton solutions of some types of nonlinear Schrödinger dynamical
systems are investigated. In paper [26], two types of nonlinear Schrödinger equations
are studied via variational principle method, some soliton solutions also presented. In [7],
some new soliton solutions of a coupled generalized nonlinear Schrödinger system are
reported using Darboux transformation.

The Q(L,m, n) equation, which will be investigated in the present paper, is given
by [21]

ut + bux + a
(
um+1

)
x

+ ω
[
u
(
un
)
xx

]
x

+ δ
[
u
(
uL
)
4x

]
x

= 0. (1)

Here in (1) a, b, ω, and δ are constants. This equation contains fifth-order nonlinear
dispersion term. It also includes some important nonlinear evolution equations, such as
fifth-order KdV equation, generalized KdV equation, and so on. Because this equation
contains many important nonlinear evolution equations, it is necessary for us to study this
equation. To the best of our knowledge, a systematic study of this equation from a group
perspective and the study of the conservation law of this equation have not been reported
in the literature so far. The main contribution of this paper: (i) The corresponding infinites-
imal transformations of this equation are obtained for different parameters. (ii) Some new
soliton solutions were obtained. (iii) Conservation laws and Bäcklund transformations of
conservation laws were obtained.

In the next section, for different parameters, we derive the corresponding infinitesimal
operator. In Section 3, solitons are described using the solitary wave ansatz method.
Conservation laws are derived in Section 4. Based on the obtained conservation laws,
reciprocal Bäcklund transformations of conservation laws are displayed in Section 5.
Conclusions are presented in Section 6.
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2 Symmetry analysis

For the Lie group of point transformation [5, 6, 17, 29],

V = ξt(x, t, u)
∂

∂t
+ ξx(x, t, u)

∂

∂x
+ ηu(x, t, u)

∂

∂u
,

where
t∗ = t+ εξt(x, t, u) +O

(
ε2
)
,

x∗ = x+ εξx(x, t, u) +O
(
ε2
)
,

u∗ = u+ εηu(x, t, u) +O
(
ε2
)
.

That is to say, for (1), we need consider fifth-order prolongations formula

Pr (6)V = V + ηtu
∂

∂ut
+ ηxu

∂

∂ux
+ ηxxu

∂

∂uxx
+ ηxxv

∂

∂vxx

+ ηxxxu

∂

∂uxxx
+ ηxxxxu

∂

∂uxxxx
+ ηxxxxxu

∂

∂uxxxxx
,

where ηtu, ηxu, ηxxu , ηxxxu , ηxxxxu , and ηxxxxxu are functions to be fixed. For invariance
conditions Pr (5)V (∆) = 0, where ∆ = 0 in Eq. (1). As this equation contains several
arbitrary constants, so we need to consider several cases.

Case 1. For the general case,(
δ 6= 0, (−1 +m)m(1 +m)(−2 + 3m)(5m− 3L)L 6= 0, ω 6= 0, a 6= 0

)
,(

L(−5 + 3L) 6= 0, δ 6= 0, ω 6= 0, a 6= 0, m = 1
)
,(

L(−10 + 9L) 6= 0, δ 6= 0, ω 6= 0, a 6= 0, m =
2

3

)
,(

δ 6= 0, u 6= 0, m(1 +m) 6= 0, ω 6= 0, a 6= 0, L =
5m

3

)
,

and one can get
ηu = 0, ξx = c2, ξt = c1.

Thus, for the general case, the Lie algebra is spanned by the following vector
fields:

V1 =
∂

∂x
, V2 =

∂

∂t
.

It is easily get the one-parameter Lie symmetry group

G1 : (x, t, u, v)→ (x− ε1, t, u, v),

G2 : (x, t, u, v)→ (x, t− ε2, u, v).

The corresponding vector fields can be obtained in these next cases, and they
will not be listed one by one.
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Case 2. If we let δ 6= 0, m(1 +m)(5m− L)L 6= 0, a 6= 0, ω = 0, one can get

ξt = c1 + tc2, ξx = −4bmtc2
L−5m

+
(L−m)xc2
L−5m

+ c3, ηu =
4uc2
−5m+L

.

Case 3. If δ 6= 0, L+ L2 6= 0, a 6= 0, m = L/5, ω = 0, one has

ξt = c2, ξx = −btc1 + xc1 + c3, ηu =
uc1
m

.

Case 4. When δ 6= 0, L(1 + 3L)(3L− 5m)(−1 +m)m(−2 + 3m) 6= 0, ω 6= 0, a = 0,
one can have

ξt = c1 + tc2, ξx =
2b(L−2m)tc2 + Lxc2 −mxc2 + 3Lc3 − 5mc3

3L−5m
,

ηu =
2uc2

3L−5m
.

Case 5. Considering δ 6= 0, L(1+3L)(−10+9L) 6= 0, ω 6= 0, a = 0, m = 2/3, yields

ξt = c1 + tc2, ξx =
2b(−4+3L)tc2 + (−2+3L)xc2 + (−10+9L)c3

−10+9L
,

ηu =
6uc2
−10+9L

.

Case 6. While δ 6= 0, L+ 3L2 6= 0, ω 6= 0, a = 0, m = 3L/5, one can obtain

ξt = c2, ξx = −btc1 + xc1 + c3, ηu =
3uc1
m

.

Case 7. Let us consider δ 6= 0, L(−5 + 3L)(1 + 3L) 6= 0, ω 6= 0, a = 0, m = 1, we get

ξt = c1 + tc2, ξx =
2b(−2+L)tc2 + (−1+L)xc2 + (−5+3L)c3

−5+3L
,

ηu =
2uc2
−5+3L

.

Case 8. If δ 6= 0, L(1 + 3L)(5 + 3L) 6= 0, ω 6= 0, a 6= 0, m = −1, one can obtain

ξt = c1 + tc2, ξx =
2b(2+L)tc2 + (1+L)xc2 + (5 + 3L)c3

5+3L
,

ηu =
2uc2
5+3L

.

Case 9. When δ 6= 0, ω 6= 0, a 6= 0, L = −5/3, m = −1, one can have

ξt = c2, ξx = −btc1 + xc1 + c3, ηu = −3uc1.

Case 10. While δ 6= 0, ω 6= 0, a = 0, L = −1/3, m = −1/5, one can derive

ξt = c2, ξx = −btc1 + xc1 + c3, ηu = −15uc1.
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Case 11. If δ 6= 0, ω 6= 0, a 6= 0, L = −1/3, m = −1, we have

ξt = c1 + tc2, ξx =
5

6
btc2 +

xc2
6

+ c3, ηu =
uc2
2
.

Case 12. Let L 6= 0, δ 6= 0, a 6= 0, m = 0, one gets

ξt = c1 + tc2, ξx = xc2 + c3, ηu =
4uc2
L

.

Case 13. For m(1 + 5m) 6= 0, δ 6= 0, ω 6= 0, a = 0, L = −1/3, one can present

ξt = c1 + tc2, ξx =
2b(1 + 6m)tc2 + (1 + 3m)xc2 + 3(1 + 5m)c3

3+15m
,

ηu = − 2uc2
1+5m

.

Case 14. When (a = 0, m = 0, Lδ + 3L2δ 6= 0), (a = 0, ω = 0, Lmδ + 3L2mδ 6= 0),
(m = −1, ω = 0, aLδ + 3aL2δ 6= 0), we obtain

ξt = c2 + tc3, ξx = xc1 + bt(−c1 + c3) + c4, ηu =
u(5c1 − c3)

L
.

Case 15. If (a = 0, L = −1/3, m = 0, δ 6= 0), (a = 0, L = −1/3, ω = 0, mδ 6= 0),
(L = −1/3, m = −1, ω = 0, aδ 6= 0), one derives

ξt = c2 + tc3, ξx = xc1 + bt(−c1 + c3) + c4, ηu = 3u(−5c1 + c3).

Case 16. While (L = 0, m = −1/2, aω 6= 0), (m = −1/2, δ = 0, aLω 6= 0), one can
give

ξt = c1 + tc2, ξx = btc2 + c3, ηu = 2uc2.

Case 17. When (L = 0, amω + 3am2ω + 2am3ω 6= 0), (δ = 0, aLmω + 3aLm2ω +
2aLm3ω 6= 0), one derives

ξt = c1 + tc2, ξx = btc2 + c3, ηu = −uc2
m

.

Case 18. If (L = 0, m = −1, aω 6= 0), (m = −1, δ = 0, aLω 6= 0), one can obtain

ξt = c2 + tc3, ξx = xc1 + bt(−c1 + c3) + c4, ηu = u(−3c1 + c3).

Case 19. While (a= 0, L= 0, m=−1/2, ω 6= 0), (a= 0, m=−12, δ= 0, Lω 6= 0),
one can derive

ξt = c2 + tc3, ξx = xc1 + bt(−c1 + c3) + c4, ηu = 2u(−3c1 + c3).

Case 20. For (a = 0, L = 0, mω+ 2m2ω 6= 0), (a = 0, δ = 0, Lmω+ 2Lm2ω 6= 0),
one can derive

ξt = c2 + tc3, ξx = xc1 + bt(−c1 + c3) + c4, ηu =
u(3c1−c3)

m
.
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3 Soliton solutions

In this section, we will focus on the solitary wave solution of (1). In general, it is difficult
to find Lax pairs. Thus, without any loss of generality, we looking for the solitary wave
solution to (1) as follows [2–4]:

u(x, t) = A
1

coshpτ
and τ = B(x− vt),

whereAmeans the amplitude of the soliton solution, whileB represents the inverse width
of the soliton solutions. v means the soliton velocity. The unknown exponent p will be
determined by L, m, and n. One can get

0 = ABvp
1

coshpτ
tanh τ −ABbp 1

coshpτ
tanh τ

− aAm+1Bp(m+ 1)
1

coshpm+p τ
tanh τ

− ωAn+1B3p3n2(n+ 1)
1

coshpn+p τ
tanh τ

+ ωAn+1B3pn(pn+ 1)(pn+ p+ 2)
1

coshpn+p+2 τ
tanh τ

− δAL+1B5p5L4(L+ 1)
1

coshpL+p τ
tanh τ

+ 2δAL+1B5pL(pL+ 1)(pL+ p+ 2)
(
p2L2 + 2pL+ 2

) 1

coshpL+p+2 τ
tanh τ

− δAL+1B5pL(pL+ 1)(pL+ 2)(pL+ 3)(pL+ p+ 4)
1

coshpL+p+4 τ
tanh τ. (2)

As this equation contains some constants, we will consider THE following cases:

Case I. L = m, m 6= n.
From (2), letting the exponents pn+ p equal pL+ p+ 2, one can get

pn+ p = pL+ p+ 2 =⇒ p =
2

n− L
.

To guarantee the existence of soliton solutions, it also needs

pn+ p+ 2 = pL+ p+ 4.

In this way, the coefficient in front of each independent term should be zero. Therefore,
from the terms (1/ coshpτ) tanhpτ , (1/ coshpL+pτ) tanh τ , (1/ coshpL+p+2τ) tanhpτ ,
and (1/ coshpL+p+4τ) tanhpτ , setting their coefficients to zero, one can get

v = b, B =
n− L

2L
4

√
−a
δ
.
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To ensure the existence of the solution, we also require L = 2n+ 1, in this way,

A =

(
2

$n2(2n+ 1)

δ(15n3 + 17n2 + 7n+ 1)

1√
−aδ

)1/(n+1)

, B = −1

2

n+ 1

2n+ 1
4

√
−a
δ
,

p = − 2

n+ 1
,

and L = 3n,

A = exp

{
− 1

4n
ln

(
−400δa

9$2

)}
, B = −1

3
4

√
−a
δ
, p = − 1

n
,

for this case, it needs to have aδ < 0.
Therefore, the soliton solution of the Q(L,m, n) equation in the case L = 2n + 1 is

given by

u(x, t) =

(
2

$n2(2n+ 1)

δ(15n3 + 17n2 + 7n+ 1)

1√
−aδ

)1/(n+1)

× 1

cosh−2/(n+1)(− 1
2
n+1
2n+1

4
√
−aδ (x− bt))

,

also, for the case L = 3n, we get the soliton solution as follows:

u(x, t) = exp

{
− 1

4n
ln

(
−400δa

9$2

)}
1

cosh−1/n(− 1
3

4
√
−aδ (x− bt))

. (3)

Let n = 1, a = 1, δ = −1, $ = 20, b = 1, some figures are listed as follows.

Figure 1. Figure of solution (3).
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Figure 2. Contour plot of solution (3). Figure 3. Density plot of solution (3).

Case II. L = n, m 6= n.
In this case, considering the exponents pm+ p = pL+ p+ 4, one has

pm+ p = pL+ p+ 4 =⇒ p =
4

m− L
.

Therefore, for these functions, (1/ coshpτ) tanh τ , (1/ coshpn+p τ) tanh τ , and
(1/ coshpn+p+2 τ) tanh τ are linearly independent, their coefficients should be zero,

v = b, (4)

$ =
La(L2 + 2L+ 1)

B2(eln(A)L)2A2(L+ 3)(L− 1)
,

δ = −1

4

a(L2 + 2L+ 1)2

B4L(eln(A)L)2A2(L+ 3)(L− 1)
, m = −(L+ 2),

(5)

so, we have

A =

(
La(L+ 1)2

$B2(L+ 3)(L− 1)

)1/(2(L+1))

(6)

or

A = exp

{
− 1

2(L+ 1)

(
2 ln 2− ln

(
− a(L+ 1)4

B4Lδ(L+ 3)(L− 1)

))}
(7)

and

p = − 2

L+ 1
.

In this case, the velocity of the soliton is decided by (4), the soliton width is given by (6)
or (7), and the amplitude of the soliton is shown by (5).

Case III. L 6= n 6= m.
For this case, it can be said that solitons do not exist since m = 0, L = 0.
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4 Conservation laws

The conservation law is, in general, written in the following form:

T t + T x = 0.

We still discuss it in several cases.

Case I. For the general case, we rewrite (1) and get

ut +
(
bu+ a

(
um+1

)
+ ω

[
u
(
un
)
xx

]
+ δ
[
u
(
uL
)
4x

])
x

= 0,

therefore, we have the conservation laws

T t = u, T x = bu+ a
(
um+1

)
+ ω

[
u
(
un
)
xx

]
+ δ
[
u
(
uL
)
4x

]
. (8)

Case II. For the case n = 1, L = 1, using the multiplier method [5], we can obtain
that the multiplier is c1 + c2 lnu. Therefore, the conservation laws are

T t = u, T x = bu+ a(um+1) + ω
[
u(u)xx

]
+ δ
[
u(u)4x

]
and

T t = u lnu− u,

T x = um+1a lnu− 1

m+ 1
um+1a+ uuxxω lnu+ uuxxxxδ lnu

− 1

2
u2xω − uxxxuxδ +

1

2
uδxx + lnuub− ub.

Case III. For the case m = 1, n = 2, L = 2, considering the multiplier method [5],
one can get the fourth-order multiplier

Λ1 =
2(δuxxxx + ωuxx + a

2 )C1u
2 + 2C3δ

2δ

+
(((8uxuxxx + 6u2xx)C1 + 2C2)δ + 2ωu2xC1)u

2δ
.

Thus, one can get the conservation laws as follows.
For the multiplier 1, one has

T t = u,

T x = 2u2uxxω + 2u2uxxxxδ + 2uu2xω

+ 8uuxuxxxδ + 6uu2xxδ + u2a+ ub.

If the multiplier is u, one has

T t =
1

2
u2,

T x = u2u2xω + 7u2u2xxδ +
1

2
u2b+ 6uxδu

2uxxx − 4uu2xuxxδ

+
2

3
u3a+ 2δu3uxxxx + 2ωu3uxx + u4xδ.
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While the multiplier is

Λ1 =
u(2δuuxxxx + 8δuxuxxx + 6δu2xx + 2ωuuxx + 2ωu2x + au)

2δ
,

one can get

T t =
u2(3δuuxxxx + 12δuxuxxx + 9δu2xx + 3ωuuxx + 3ωu2x + 2au)

12δ
,

T x =
1

12δ

(
12δ2u4u2xxxx + 96δ2u3uxuxxxuxxxx + 72δ2u3u2xxuxxxx

+ 192δ2u2u2xu
2
xxx + 288δ2u2uxu

2
xxuxxx + 108δ2u2u4xx + 24δωu4uxxuxxxx

+ 24δωu3u2xuxxxx + 96δωu3uxuxxuxxx + 72δωu3u3xx + 96δωu2u3xuxxx

+ 72δωu2u2xu
2
xx + 12ω2u4u2xx + 24ω2u3u2xuxx + 12ω2u2u4x + 12aδu4uxxxx

+ 48aδu3uxuxxx + 36aδu3u2xx + 12aωu4uxx + 12aωu3u2x + 3a2u4

+ 12bδu2uxuxxx − 6bδu2u2xx + 24bδuu2xuxx − 6bδu4x + 6bωu2u2x + 2abu3

− 3δu3utxxx + 3δu2utuxxx − 15δu2utxuxx − 3δu2utxxux + 18δuutuxuxx

+ 6δuutxu
2
x − 6δutu

3
x − 3ωu3utx + 3ωu2utux

)
.

Case IV. If m = 2, n = 2, L = 2, using the same idea, one can obtain the multiplier

Λ1 = C1u
2uxxxx + 4C1uuxuxxx +

C1u
2ωuxx
δ

+ 3u2xxC1u

+
C1uωu

2
x

δ
+

1

2

C1au
3

δ
+ C2u+ C3.

In this way, the conservation laws are given as follows.
For the multiplier 1, one has

T t = u,

T x = au3 + 2δu2uxxxx + 8δuuxuxxx + 6δuu2xx + 2ωu2uxx + 2ωuu2x + bu.

If the multiplier is u, one has

T t =
1

2
u2,

T x = u2u2xω + 7u2u2xxδ +
1

2
u2b+ 6uxδu

2uxxx − 4uu2xuxxδ +
3

4
u4a

+ 2δu3uxxxx + 2ωu3uxx + u4xδ.

When the multiplier is

Λ1 =
u(2δuuxxxx + 8δuxuxxx + 6δu2xx + 2ωuuxx + 2ωu2x + au2)

2δ
,
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one has

T t =
u2(2δuuxxxx + 8δuxuxxx + 6δu2xx + 2ωuuxx + 2ωu2x + au2)

8δ
,

T x =
1

8δ
(2a2u6 + 8aδu5uxxxx + 32aδu4uxuxxx + 24aδu4u2xx + 8aωu5uxx

+ 8aωu4u2x + 8δ2u4u2xxxx + 64δ2u3uxuxxxuxxxx + 48δ2u3u2xxuxxxx

+ 128δ2u2u2xu
2
xxx + 192δ2u2uxu

2
xxuxxx + 72δ2u2u4xx + 16δωu4uxxuxxxx

+ 16δωu3u2xuxxxx + 64δωu3uxuxxuxxx + 48δωu3u3xx + 64δωu2u3xuxxx

+ 48δωu2u2xu
2
xx + 8ω2u4u2xx + 16ω2u3u2xuxx + 8ω2u2u4x + abu4

+ 8bδu2uxuxxx4bδu2u2xx + 16bδuu2xuxx − 4bδu4x + 4bωu2u2x − 2δu3utxxx

+ 2δu2utuxxx − 10δu2utxuxx − 2δu2utxxux + 12δuutuxuxx + 4δuutxu
2
x

− 4δutu
3
x − 2ωu3utx + 2ωu2utux

)
.

Case V. When m = 3, n = 3, L = 3, repeating the previous steps yields that

Λ1 = C2u
2 + C1.

Therefore, for the multiplier 1, one gets

T t = u,

T x = au4 + 3δu3uxxxx + 24δu2uxuxxx + 18δu2u2xx

+ 36δuu2xuxx + 3ωu3uxx + 6ωu2u2x + bu.

While the multiplier is u2, we have

T t =
1

3
u3,

T x = 18u4δuxxxux + 3ωu4u2x + 21δu4u2xx + 3ωu5uxx

+
1

3
u3b+

2

3
au6 + 3uxxxxu

5δ + 12δu3u2xuxx.

5 Reciprocal Bäcklund transformations of conservation laws

In this section, based on the paper [16], we will investigate the reciprocal Bäcklund
transformations of conservation laws for Eq. (1).

The authors of [16] derived the following results:(
T t
)′
t′

+
(
T x
)′
x′ = 0,

∂

∂t′
=
F

T

∂

∂x
+
∂

∂t
,
∂

∂x′
=

1

T

∂

∂x
. (9)

From this result, for given conservation laws, one can get reciprocal Bäcklund transfor-
mations of conservation laws.
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In this case, from (8) one has

T t = u, T x = bu+ a
(
um+1

)
+ ω

[
u
(
un
)
xx

]
+ δ
[
u
(
uL
)
4x

]
.

Therefore, from (9) one can get the reciprocal Bäcklund transformations of conservation
laws as follows:(

T t
)′

=
1

T
=

1

u
,(

T x
)′

= −F
T

= −bu+ a(um+1) + ω[u(un)xx] + δ[u(uL)4x]

u
.

(10)

Substituting (10) into (9), one has

bu+ a(um+1) + ω[u(un)xx] + δ[u(uL)4x]

u

−ux
u2

+
−ut
u2

+
1

u

(
−bu+ a(um+1) + ω[u(un)xx] + δ[u(uL)4x]

u

)
x

=
−(bu+ a(um+1) + ω[u(un)xx] + δ[u(uL)4x])ux − uut

u3

+
−(bu+ a(um+1) + ω[u(un)xx] + δ[u(uL)4x])xu

u3

+
ux(bu+ a(um+1) + ω[u(un)xx] + δ[u(uL)4x])

u3

=
−uut − (bu+ a(um+1) + ω[u(un)xx] + δ[u(uL)4x])xu

u3

=
−u(ut + (bu+ a(um+1) + ω[u(un)xx] + δ[u(uL)4x])x)

u3

=
(
T t
)′
t′

+
(
T x
)′
x′ = 0.

For other cases, we can get similar results. For the sake of simplicity, we will not list
them all.

6 Conclusions

In this paper, the integral of Q(L,m, n) equation is studied by means of the solitary wave
ansatz analysis. Firstly, using the Lie group analysis, the corresponding vector fields are
derived for different values of exponents and coefficients. According to the solitary wave
assumption method, new soliton solutions are obtained. Also, some conservation laws
also presented. The obtained results are of great importance for the study of this equation.
In this paper, we study only the case of constant coefficients of this equation, however,
for many complex physical phenomena, the case of constant coefficients often does not
satisfy our needs. For the case of its corresponding variable coefficients,

ut + f1(t)ux + f2(t)
(
um+1

)
x

+ f3(t)
[
u
(
un
)
xx

]
x

+ f4(t)
[
u
(
uL
)
4x

]
x

= 0,
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as well as the case of fractional order,

uαt + bux + a
(
um+1

)
x

+ ω
[
u
(
un
)
xx

]
x

+ δ
[
u
(
uL
)
4x

]
x

= 0,

etc. are worth studying.
In addition to the cases mentioned above, if we assume that u = vx, one can derive

the potential equation

vxt + bvxx + a
(
(vx)m+1

)
x

+ ω
[
vx
(
(vx)n

)
xx

]
x

+ δ
[
vx
(
t(vx)L

)
4x

]
x

= 0

and potential systems

vx = u, −vt = bu+ a
(
um+1

)
+ ω

[
u
(
un
)
xx

]
+ δ
[
u
(
uL
)
4x

]
.

All these issues will be reported in future papers.
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