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Abstract. In this paper, we consider the leaderless and leader-following practical scaled con-
sensus problems of multiagent systems (MASs). To achieve leaderless practical scaled consensus,
a distributed control protocol is introduced that incorporates with an innovative time-based
generator (TBG). Under this protocol, all agents achieve practical scaled consensus within the
prescribed-time frame while providing a precise estimation of the practical error. To fulfill
practical requirements, we devise two leader-following scaled consensus protocols for both directed
detail-balanced graphs and general directed networks. Furthermore, a comprehensive analysis
for the convergence of MASs is given by employing the Lyapunov stability theory. Finally, the
effectiveness and feasibility of the proposed theoretical results are verified.

Keywords: prescribed-time practical scaled consensus, time-based generator, directed network,
multiagent systems.

1 Introduction

With the development of society, more and more complex tasks need to be addressed.
The advantages of collaboration among multiple agents in complex tasks have attracted
widespread attention from researchers. Cooperative control of MASs has been widely
used in many fields, including traffic flow control [26], electrical power grids [21], au-
tonomous underwater vehicles [5], and so on. Consensus is a fundamental issue in co-
operative control of MASs in which the main purpose is to design some distributed
controllers such that all agents can converge to a common value through local information
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exchange in the network. Compared to single agent systems, MASs have some advantages
including increased feasibility and robustness [24].

In recent years, researches were extremely concerned about the traditional consensus
of MASs [14, 16, 19, 20], which means that the states of all agents converge to the same
value under the control protocol. However, in many practical problems, all agents’ states
may converge to a prescribed ratio rather than the same value. To solve this problem,
a new consensus called the “scaled consensus” was introduced in [13]. Different from
traditional consensus, the scaled consensus refers that the ratios of all agents’ states
converge to some predetermined values. Because scaled consensus can be transformed
into traditional consensus, bipartite consensus, and cluster consensus by selecting the
appropriate scaled factors, it can be seen as a general form of consensus behaviour. In
addition, scaled consensus has received much attention due to its great applications in
water distribution systems [11], transcale coordination control of space vehicles [15],
etc. In [9], the scaled consensus problem was extended to switching topology, and some
sufficient conditions were established to guarantee the exponential convergence of MASs.
In [18], the scaled consensus of MASs with communication time-delay was investigated.

The convergence rate is one of the important indexes for controlling system per-
formance. In [1], the finite-time consensus was studied by using nonsmooth gradient
flows method. In [3, 17], some continuous state feedbacks and aperiodically intermittent
control protocols were proposed to study the finite-time consensus of MASs. In these
studies [3,17], the estimation of the settling time was derived relying on initial conditions
of systems, which impedes their practical applications. To solve this issue, some fixed-
time consensus protocols were proposed [7,8] in which the estimation of the settling time
is independent of the initial values of the system. However, the settling time cannot be
preset arbitrarily because it depends on the control parameters of the system.

With in that mind, the prescribed-time consensus problems were studied by utiliz-
ing time-varying function-based controllers in [2, 12]. In [2], by proposing a distributed
prescribed-time observer, the prescribed-time consensus was discussed for high-order
integrator MASs with both time-invariant and time-varying directed topologies. In [12],
the prescribed-time leader-following consensus was investigated for nonlinear MASs in
which the nonlinear term satisfies the Lipschitz condition with a time-varying growth rate.
In above studies [2,12], the control gain will be unbounded when the time approaches the
predetermined specified instant. To improve this deficiency, the practical prescribed-time
consensus was proposed. In [4], the practical prescribed-time consensus was considered
for one-order MASs. At present, there are few studies on the prescribed-time practical
scaled consensus of MASs.

Motivated by the above discussion, this paper aims to investigate the prescribed-time
practical scaled consensus of MASs by using a new time-based generator protocol. Our
main contributions are summarized as follow:

(i) A novel TBG with a time-varying gain has been developed, which differs from the
ones presented in [4, 10]. Utilizing this newly proposed TBG, a set of innovative
prescribed-time practical scaled consensus protocols are designed. In these proto-
cols, the control inputs of the MASs can be effectively regulated by adjusting both
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the TBG gain and the control parameters, ensuring improved system performance
and stability.

(ii) In contrast to fixed-time consensus schemes [7,8], some prescribed-time consen-
sus protocols are proposed in this paper. By using the proposed control protocols,
the settling time for achieving practical scaled consensus is independent of the
system parameters and can be preset arbitrarily.

(iii) Unlike traditional consensus approaches [8, 17], this paper investigates practi-
cal scaled consensus for MASs by incorporating scaling factors into the control
protocols. Both for MASs with and without a leader, sufficient conditions are
provided to guarantee the achievement of practical scaled consensus. These con-
ditions can improve the flexibility and applicability of the consensus protocol
under different scaling factors.

The remaining sections are organised as follows. First, some preliminaries and the
problem statement are given in Section 2. The prescribed-time leaderless and leader-
following practical scaled consensus of MASs are studied in Section 3. Some examples
are presented to illustrate the effectiveness of the results in Section 4. Finally, conclusions
are drawn in Section 5.

Notations. Let R and RN be the one-dimensional real space and the N -dimensional
real vector space, respectively. Denote x = [x1, x2, . . . , xN ]T ∈ RN and sign(x) =
[sign(x1), sign(x2), . . . , sign(xN )]T, where sign is the signum function. The p-norm is
defined as ‖x‖p = (|x1|p + |x2|p + · · · + |xN |p)1/p, where p > 0. C2 refers to twice
continuously differentiable. ∆ = {1, 2, . . . , N}. For a vector q = [q1, q2, . . . , qN ]T with
qi > 0, qmax = maxi∈∆ qi and qmin = mini∈∆ qi.

2 Preliminaries

2.1 Algebraic graph theory

Consider a MAS consisting of N agents. The communication topology is described by
G=(V, E , A), where V={v1, v2, . . . , vN} is the vertex set, and E={(vi, vj) | vi, vj ∈V}
is the edge set. Note that direct edge (vi, vj) denotes that node vj can obtain information
from vi, but not necessarily vice versa. The weighted adjacency matrix is A = [aij ]N×N ,
where (vj , vi) ∈ E ⇔ aij > 0, otherwise, aij = 0. Then the Laplacian matrix is
L = [lij ]N×N with lij = −aij for i 6= j and lii =

∑N
j=1 aij . Assuming that there is

no self-loop, thus aii = 0. Let Ni = {vj ∈ V | (vj , vi) ∈ E} be the neighbor set of
node vi, while |Ni| represents the number of elements in the set Ni. If G is an undirected
graph, then aij = aji. Specifically, if G is undirected and connected, the second smallest
eigenvalue of L, denoted as λ2(L), is a positive real number. A directed graph G is said
to be detail-balanced if there exists a vector q = [q1, q2, . . . , qN ]T with qi > 0 such
that qjaji = qiaij for i, j ∈ ∆. A directed path from node vi to vj is a sequence of
edges of form (vi, vi1), (vi1 , vi2), . . . , (vik , vj) in the digraph with distinct node vil ∈ V
for l = 1, 2, . . . , k. A node is called root if it has a directed path to every other node.
A directed graph G is said to contain a directed spanning tree if it has at least one root.
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2.2 The time-based generator

Let ϕ(t) be the TBG function if it has the following properties:

(i) ϕ(t) is at least C2 on (0,+∞);
(ii) ϕ(t) is a continuous and nondecreasing function with ϕ(0) = 0 and ϕ(tf ) = 1

in which tf < +∞ is a prescribed time instant;
(iii) ϕ̇(0)=ϕ̇(tf ) = 0, where the derivative of ϕ(t) at t = 0 is its right derivative;
(iv) ϕ(t) = 1 for t > tf .

Consider a dynamical system, which is described as

ġ(t) = h(t), g(0) = g0, (1)

where g(t) ∈ R is the system state. h(t) ∈ R is a TBG-based protocol, which is given by

h(t) = −αk(t)g(t), (2)

where α > 0, k(t) is a TBG gain, which is constructed as

k(t) =
ϕ̇(t)

1− θϕ(t)
, (3)

where θ ∈ (0, 1) is a positive parameter.

Lemma 1. For system (1) with TBG-based protocols (2)–(3), the solution has the follow-
ing property:

lim
t→tf

g(t) = g0(1− θ)α/θ.

Proof. Consider the following differential equation:

ġ(t) = −αk(t)g(t), g(0) = g0, (4)

where k(t) is designed in (3). The solution for (4) is easily calculated as

g(t) = g0
(
1− θϕ(t)

)α/θ
.

Since ϕ(tf ) = 1, we can obtain that limt→tf g(t) = g0(1− θ)α/θ, which can be reduced
to a desire level by choosing an appropriate θ.

2.3 Problem formulation

In this paper, a MAS consisting of N agents is considered. The dynamics of the ith agent
is described by

ẋi(t) = ui(t), i ∈ ∆, (5)

where xi(t) represents the state of the ith agent, and ui(t) ∈ Rn denotes the control input.
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Definition 1. (See [26].) The MAS (5) is considered to reach scaled consensus with the
scaled factors βi, where βi are nonzero constants if for any initial conditions xi(0),

lim
t→∞

∥∥βixi(t)− βjxj(t)∥∥ = 0

for i, j = 1, 2, . . . , N .

Definition 2. For MAS (5), the prescribed-time leaderless practical scaled consensus is
said to be achieved if for any initial states,

lim
t→tf

∥∥βixi(t)− βjxj(t)∥∥ 6 d;∥∥βixi(t)− βjxj(t)∥∥ 6 d ∀t > tf ;

lim
t→+∞

∥∥βixi(t)− βjxj(t)∥∥ = 0,

where βi and βj are scaled factors for i, j ∈ ∆. tf > 0 is a preset time, which is
independent of initial states. d is a positive constant, which represents the desired level.

For a MAS with one leader and N followers agents, the dynamics of leader is de-
scribed by

ẋ0(t) = u0(t), (6)

where x0(t) ∈ Rn and u0(t) ∈ Rn denote the state and the control input of the leader,
respectively. The follower’s dynamics is given in (5). The communication topology be-
tween the leader and N follower agents is represented by the Ḡ. If the ith agent can able
to access the leader’s information, then ai0 > 0; ai0 = 0 otherwise.

Definition 3. For MASs (5)–(6), the prescribed-time leader-following practical scaled
consensus is said to be achieved if for any initial states,

lim
t→tf

∥∥βixi(t)− x0(t)
∥∥ 6 d;∥∥βixi(t)− x0(t)

∥∥ 6 d ∀t > tf ;

lim
t→+∞

∥∥βixi(t)− x0(t)
∥∥ = 0,

where βi and βj are scaled factors for i, j ∈ ∆. tf > 0 is a preset time, which is
independent of initial states. d is a positive constant, which represents the desired level.

Assumption 1. The digraph G is strongly connected and detail-balanced.

Assumption 2. The leader’s input is bounded, i.e., there exists a positive constant umax

such that ‖u0(t)‖ < umax.

Assumption 3. The graph G contains a directed spanning tree with leader as the root.

Lemma 2. (See [25].) Suppose that the digraph G is strongly connected and detail-
balanced with positive scalars q1, q2, . . . , qN , then the matrix MQ is positive definite
in which Q = diag(q1, q2, . . . , qN ), M = L + diag(a10, a20, . . . , aN0), and L is the
Laplacian matrix of digraph G.

Nonlinear Anal. Model. Control, 30(3):533–550, 2025

https://doi.org/10.15388/namc.2025.30.40011


538 C. Zhu et al.

Lemma 3. (See [6].) If the graph G contains a directed spanning tree, there exists a posi-
tive diagonal matrixW such thatU = WM+MTW > 0, whereW = diag(w1, w2, . . . ,
wN ) and w = [w1, w2, . . . , wN ]T = (MT)−11N .

3 Main results

In this section, three TBG-based protocols are proposed to address the prescribed-time
leaderless and leader-following practical scaled consensus issues.

3.1 Prescribed-time leaderless practical scaled consensus

To achieve the prescribed-time leaderless practical scaled consensus, a new TBG-based
protocol for the ith agent is proposed as follows:

ui(t) = −
(
ξ1(t) + 1

) N∑
j=1

1

βi
âij
(
βixi(t)− βjxj(t)

)
, (7)

where ξ1(t) = ϕ̇1(t)/(1 − θ1ϕ1(t)), ϕ1(t) is a TBG function, θ1 ∈ (0, 1). βi is the
nonzero scaled factor. âij = qiaij , where qi is the positive detail-balanced scalar for
i ∈ ∆.

Substituting (7) into (5), we can get

ẋi(t) = −
(
ξ1(t) + 1

) N∑
j=1

1

βi
âij
(
βixi(t)− βjxj(t)

)
. (8)

The compact vector form of (8) is written as

ẋ(t) = −
(
ξ1(t) + 1

)(
Λ−1L̂Λ⊗ In

)
x(t),

where Λ = diag(β1, β2, . . . , βN ), and L̂ is the Laplacian matrix of the graph with
adjacency matrix element âij .

Remark 1. In the scaled consensus, the scale parameters βi can be adjusted as needed.
If the βi are the same value, it degenerates to complete consensus. If the βi are 1 or −1,
one can get bipartite consensus. If the values with the same βi are divided into a group
and the scaled parameters are at least two different, the cluster consensus can be achieved.
Hence, scaled consensus is a more generalized and comprehensive concept.

Remark 2. In protocol (7), the term of−ϕ̇1(t)/(1−θ1ϕ1(t))
∑N
j=1(1/βi)âij(βixi(t)−

βjxj(t)) is TBG-based, which is used to ensure that the state disagreement is smaller
than a desired level at a prescribed-time. The consensus term of

∑N
j=1(1/βi)âij(βixi(t)−

βjxj(t)) is given to guarantee that the state disagreement converges to zero when t→+∞.
Moreover, the initial control input with protocol (7) is relatively small when the initial
state divergence is large. This is due to the TBG attribute of ϕ̇1(0) = 0.
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Theorem 1. If Assumption 1 is satisfied, then the MAS (5) with protocol (7) can achieve
prescribed-time leaderless practical scaled consensus. Furthermore, the control input is
bounded, and the consensus error satisfies

lim
t→tf1

∥∥βixi(t)− βjxj(t)∥∥ 6 (N − 1)

√
2N

α1
(1− θ1)α1/θ1V1(0);

∥∥βixi(t)− βjxj(t)∥∥ 6 (N − 1)

√
2N

α1
(1− θ1)α1/θ1V1(0) ∀t > tf1 ;

lim
t→+∞

∥∥βixi(t)− βjxj(t)∥∥ = 0,

where tf1 is a designated time instant, α1 = 2λ2(L̂), V1(0) = x(0)T(ΛL̂Λ⊗ In)x(0)/2.

Proof. Choose the Lyapunov function as

V1(t) =
1

2
x(t)T(ΛL̂Λ⊗ In)x(t).

The derivative of V1(t) is given by

V̇1(t) = −1

2

(
ξ1(t) + 1

)
x(t)T

(
ΛL̂TΛ−1ΛL̂Λ⊗ In

)
x(t)

+ x(t)T
(
ΛL̂ΛΛ−1L̂Λ⊗ In

)
x(t)

= −
(
ξ1(t) + 1

)
x(t)T

(
ΛL̂L̂Λ⊗ In

)
x(t)

6 −2λ2(L̂)ξ1(t)V1(t) = − α1ϕ̇1

1− θ1ϕ1
V1(t).

Using Lemma 1 and the comparison principle, one can get that V1(t) satisfies
limt→tf1 V1(t) 6 (1− θ1)α1/θ1V1(0).

Since
1

2
x(t)T(ΛL̂Λ⊗ In)x(t) >

1

2
λ2(L̂)x(t)T(ΛΛ⊗ In)x(t)

=
1

2
λ2(L̂)

N∑
i=1

β2
i

∥∥xi(t)∥∥2,
then it has

1

2

N∑
i=1

β2
i

∥∥xi(t)∥∥2 6
1

λ2(L̂)
(1− θ1)α1/θ1V1(0).

Furthermore, due to

1

2

N∑
i=1

β2
i

∥∥xi(t)∥∥2 =
1

2

1

N

N∑
i=1

N∑
j=1

β2
i

∥∥xi(t)∥∥2,
then

lim
t→tf1

∥∥βixi(t)− βjxj(t)∥∥ 6 (N − 1)

√
2N

α1
(1− θ1)α1/θ1V1(0).
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This means that the state deviation can be reduced to the desired level as long as the
appropriate θ1 is given in protocol (7).

For t > tf1 , ξ1(t) = 0, so V̇1(t) 6 −α1V1(t), which implies that V1(t) is monotoni-
cally decreasing. In addition, it has∥∥βixi(t)− βjxj(t)∥∥ 6 (N − 1)

√
2N

α1
(1− θ1)α1/θ1V1(0) ∀t > tf1 , (9)

and limt→+∞ ‖βixi(t) − βjxj(t)‖ = 0. Thus, the prescribed-time leaderless practical
scaled consensus problem is solved.

Now, we prove that the control input (7) is bounded. By calculating the derivative of
ξ1(t), one can obtain the following equation:

ξ̇1(t) =
ϕ̈1(t)(1− θ1ϕ1(t)) + θ1ϕ̇1(t)

(1− θ1ϕ1(t))2
.

According to the generalized properties of TBG described in Section 2.2, one can
obtain that ϕ1(0) = ϕ̇1(0) = 0, ϕ1(tf1) = 1, and ϕ̇1(tf1) = 0. Furthermore, it can be
concluded that ξ1(t) is bounded for 0 6 t 6 tf1 . Denote ξ1 = max06t6tf1

ξ1(t).
Due to V̇1(t) 6 −α1ϕ̇1/(1 − θ1ϕ1)V1(t), one gets that V1(t) is nonincreasing, so

V1(t) 6 V1(0), which implies (9). Therefore, the upper bound of ui in (7), denoted as ui,
is calculated as

ui = a|Ni|(ξ1 + 1)
1

|βmin|
(N − 1)

√
2N

α1
(1− θ1)α1/θ1V1(0), (10)

where ā = maxi,j∈∆{âij} and |βmin| = min{|β1|, |β2|, . . . , |βN |}.

Remark 3. The state disagreement bound

(N − 1)

√
2N

α1
(1− θ1)α1/θ1V1(0)

depends on the initial states. However, it can be adjusted to the desired level by selecting
appropriate parameter θ1. It is worth noting that the settling time tf1 can be prescribed
without dependence on initial conditions. Thus, it can be fascinating and worthy to use
the TBG to deal with the practical scaled consensus of MASs.

3.2 Prescribed-time leader-following practical scaled consensus

3.2.1 The MAS with a static leader

In this part, we consider the leader-following MAS (5)–(6) in which the leader is static,
i.e., ẋ0(t) = 0. Thus, a new TBG-based protocol is proposed as follows:

ui(t) = −
(
ξ2(t) + 1

)
×

(
N∑
j=1

1

βi
aij
(
βixi(t)− βjxj(t)

)
+

1

βi
ai0
(
βixi(t)− x0(t)

))
, (11)

https://www.journals.vu.lt/nonlinear-analysis
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where ξ2(t) = λmax(W )ϕ̇2(t)/(1− θ2ϕ2(t)), ϕ2(t) is a TBG function, θ2 ∈ (0, 1), and
the matrix W is given in Lemma 3.

Let ei(t) = βixi(t) − x0(t), i ∈ ∆, and denote e(t) = [e1(t), e2(t), . . . , eN (t)]T.
Then the dynamics of the N followers is written in the compact vector form as follows:

ė(t) = −
(
ξ2(t) + 1

)
(M ⊗ In)e(t).

Theorem 2. If Assumption 3 holds, then the MAS (5)–(6) with protocol (11) can achieve
prescribed-time leader-following practical scaled consensus. Furthermore, the consensus
error satisfies

lim
t→tf2

∥∥βixi(t)− x0(t)
∥∥ 6

√
2

λmin(W )
(1− θ2)α2/θ2V2(0);

∥∥βixi(t)− x0(t)
∥∥ 6

√
2

λmin(W )
(1− θ2)α2/θ2V2(0) ∀t > tf2 ;

lim
t→+∞

∥∥βixi(t)− x0(t)
∥∥ = 0,

(12)

where tf2 is a designated time instant, α2 = λmin(U), and V2(0)=e(0)T(W⊗In)e(0)/2.

Proof. Choose the Lyapunov candidate function as

V2(t) =
1

2
eT(t)(W ⊗ In)e(t).

The derivative of V2(t) is given by

V̇2(t) = eT(t)(W ⊗ In)ė(t)

= −1

2
ξ2(t)eT(t)

((
WM +MTW

)
⊗ In

)
e(t)

− 1

2
eT(t)

((
WM +MTW

)
⊗ In

)
e(t)

= −1

2
ξ2(t)eT(t)(U ⊗ In)e(t)− 1

2
eT(t)(U ⊗ In)e(t)

6 −ξ2(t)

2
λmin(U)eT(t)e(t) = −α2

ϕ̇2(t)

1− θ2ϕ2(t)
V2(t),

where α2 = λmin(U). Similar to analysis of Theorem 1, V2(t) satisfies limt→tf2 V2(t) 6

(1−θ2)α2/θ2V2(0). Furthermore, since V2(t) = eT(t)(W⊗In)e(t)/2 andW is a positive
diagonal matrix, then

λmin(W )eT(t)e(t) 6 2(1− θ2)α2/θ2V2(0)

and ∥∥ei(t)∥∥2 6
2

λmin(W )
(1− θ2)α2/θ2V2(0).
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Thus,

lim
t→tf2

∥∥ei(t)∥∥ 6

√
2

λmin(W )
(1− θ2)α2/θ2V2(0).

For t > tf2 , ξ2(t) = 0, so V̇2(t) 6 −(α2/λmax(W ))V2(t), which implies that V2(t) is
monotonically decreasing. In addition, one can also obtain that

∥∥ei(t)∥∥ 6

√
2

λmin(W )
(1− θ2)α2/θ2V2(0) ∀t > tf2 ,

and limt→+∞ ‖ei(t)‖ = 0. Therefore, the consensus error satisfies (12). The proof is
completed.

3.2.2 The MAS with a dynamic leader

When the leader has a dynamic behavior, a new TBG-based protocol is proposed for each
follower as follows:

ui(t) = −
(
ξ3(t) + 1

)( N∑
j=1

1

βi
aij
(
βixi(t)− βjxj(t)

)
+

1

βi
ai0
(
βixi(t)− x0(t)

))

− µ 1

βi
sign

(
N∑
j=1

aij
(
βixi(t)− βjxj(t)

)
+ ai0

(
βixi(t)− x0(t)

))
, (13)

where ξ3(t) = ρϕ̇3(t)/(1−θ3ϕ3(t)), θ3 ∈ (0, 1), ρ and µ are parameters to be determined
later. ϕ3(t) is a TBG function.

Theorem 3. Suppose that Assumptions 1–2 are satisfied. The MAS (5)–(6) with pro-
tocol (13) can achieve prescribed-time leader-following practical scaled consensus if
ρ = qmax and µ > (qmax/qmin)umax. Furthermore, the consensus error satisfies

lim
t→tf3

∥∥βixi(t)− x0(t)
∥∥ 6

√
2

λmin(MTQ−1)
(1− θ3)α3/θ3V3(0);

∥∥βixi(t)− x0(t)
∥∥ 6

√
2

λmin(MTQ−1)
(1− θ3)α3/θ3V3(0) ∀t > tf3 ;

lim
t→+∞

∥∥βixi(t)− x0(t)
∥∥ = 0,

(14)

where tf3 is a designated time instant, α3(t) = 2/(λmax((MQ)−1)), the matrices M
and Q are given in Lemma 2, V3(0) = eT(0)(MTQ−1 ⊗ In)e(0)/2.

Proof. Let ei(t) = βixi(t)− x0(t), i ∈ ∆, and denote e(t) = [e1(t), e2(t), . . . , eN (t)]T.
Choose the Lyapunov candidate function as

V3(t) =
1

2

(
(M ⊗ In)e(t)

)T(
(MQ)−1 ⊗ In

)(
(M ⊗ In)e(t)

)
.
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Substituting ui(t) into (5) and combining with (6), the closed-loop network dynamics
is obtained as

ėi(t) = −βi
(
ξ3(t) + 1

)( N∑
j=1

1

βi
aij
(
ei(t)− ej(t)

)
+

1

βi
ai0ei(t)

)

− µ sign

(
N∑
j=1

aij
(
ei(t)− ej(t)

)
+ ai0ei(t)

)
− u0(t). (15)

The above formula is then written in a compact vector form

ė(t) = −
(
ξ3(t) + 1

)
(M ⊗ In)e(t)− µ sign

(
(M ⊗ In)e(t)

)
−
(
1N ⊗ u0(t)

)
. (16)

Since the right-hand side of (15) is discontinuous, (16) is understood in a Filippov
sense. Then one can get that

V̇3(t) = eT(t)
(
MTQ−1 ⊗ In

)
ė(t)

= eT(t)
(
MTQ−1 ⊗ In

)(
−
(
ξ3(t) + 1

)
(M ⊗ In)e(t)

− µ sign
(
(M ⊗ In)e(t)

)
−
(
1N ⊗ u0(t)

))
6 −ξ3(t)

qmax

∥∥(M ⊗ In)e(t)
∥∥2
2
− (γµ− η)

∥∥(M ⊗ In)e(t)
∥∥
1

6 −ξ3(t)

qmax

∥∥(M ⊗ In)e(t)
∥∥2
2
6 − 2ξ3(t)

qmaxλmax((MQ)−1)
V3(t)

= −α3
ϕ̇3(t)

1− θ3ϕ3(t)
V3(t)

for t ∈ [0, tf3) where γ = 1/qmax and η = umax/qmin. Using Lemma 1, one can get that
V3(t) satisfies limt→tf3 V3(t) 6 (1− θ3)α3/θ3V3(0).

Furthermore, since V3(t) = eT(t)(MTQ−1 ⊗ In)e(t)/2, then

eT(t)
(
MTQ−1 ⊗ In

)
e(t) 6 2(1− θ3)α3/θ3V3(0)

and ∥∥ei(t)∥∥ 6

√
2

λmin(MTQ−1)
(1− θ3)α3/θ3V3(0) ∀t > tf3 .

One further obtains that

lim
t→tf3

∥∥βixi(t)− x0(t)
∥∥ 6

√
2

λmin(MTQ−1)
(1− θ3)α3/θ3V3(0)

and limt→+∞ ‖ei(t)‖ = 0.
For t > tf3 , ξ3(t) = 0. Similar to analysis of Theorem 1, one can prove that

inequality (14) holds. Therefore, the proof is completed.

Remark 4. It is noteworthy that the static leader is a special case of the dynamic leader.
Therefore, protocol (13) and Theorem 3 are also feasible for the case u0(t) = 0.
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Remark 5. The positive constant θ in (3) guarantees that k(t) is well-defined when t> tf .
Compared with [10], the form of the k(t) proposed in this paper is ϕ̇(t)/(1− θϕ(t)), and
the controller ui(t) does not need to use some properties of the eigenvalue of the Laplacian
matrix, which simplifies its design.

Remark 6. In this paper, some new TBG-based protocols are designed to solve pre-
scribed-time practical scaled consensus problems under detail-balanced directed graphs
and general directed networks. Moreover, unlike some existing fixed-time protocols, the
settling time can be prescribed more accurately by using the new TBG-based protocols.
Furthermore, similar to the derivation of formula (10), one can also derive the upper bound
of the control input for (11) and (13), respectively.

Remark 7. In [27], to overcome the difficulties caused by the asymmetry property of the
Laplacian matrix, the finite-time scaled consensus control scheme was developed by the
modified addition of a power integrator method. However, in this paper, we consider the
prescribed-time leaderless and leader-following practical scaled consensus problems by
designing some new TBG-based protocols in which an explicit bound for the leaderless
practical scaled consensus is derived.

Remark 8. In this paper, we propose several distributed protocols based on TBG to
address the issues of prescribed-time practical scaled consensus. It is important to note
that this work does not consider actuator failures or external disturbances. However, in
real-world applications, agents are susceptible to failures, which can lead to a decline
in system performance or even unstable. Designing a fault-tolerant control protocol to
ensure stable operation of the agents when failures occur is a challenging problem. In [22,
23], the discrete-time and finite-time protocols with fault-tolerant control were proposed
to achieve synchronization or consensus of complex networks. These studies provide
valuable insights, and we aim to develop some appropriate protocols with fault-tolerant
control to solve the scaled consensus problem in future work.

4 Simulation examples

In this section, two examples are given to verify the feasibility and the effectiveness of
the proposed leaderless and leader-following practical scaled consensus results. A typical
TBG function is set as follows:

ϕ(t) =

{
10
46 t

6 − 24
45 t

5 + 15
44 t

4, 0 6 t 6 tf ;

1, t > tf ,

where tf is prescribed-time instant.

Example 1 [Prescribed-time leaderless practical scaled consensus]. In this part, con-
sider a MAS with six agents and the dynamics described by (5). The communication
topology with connection weights is shown in Fig. 1. The detail-balanced factors q =
[1/24, 1/12, 1/8, 1/6, 1/4, 1/3]T.
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Figure 1. The communication topology of leaderless.

(a) β = (1, 1/2, 1/3, 1/4, 1/5, 1/6)T (b) β = (1, 1, 1, 1, 1, 1)T

(c) β = (−1,−1,−1, 1, 1, 1)T (d) β = (1, 1, 2, 2, 3, 3)T

Figure 2. The states with different β values.

Choose the initial conditions as x(0) = [−1,−2, 2, 1,−1, 1]T and θ = 0.99. Under
control protocol (7) with tf = 4s, the simulation results are shown in Figs. 2–3.

Figure 2 shows the state trajectories of system (5), which demonstrates good transient
performance. When we choose β = (1, 1, 1, 1, 1, 1)T, it can be seen that the state of each
of the agents can converge to a common value in Fig. 2(b). However, by choosing different
scale ratios, the consensus states of agents are different. When β = (1, 1/2, 1/3, 1/4, 1/5,
1/6)T, the state of all the agents did not tend to be of the same value in Fig. 2(a). Further-
more, in order to illustrate the fact that practical scaled consensus is a more general class
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(a) β = (1, 1/2, 1/3, 1/4, 1/5, 1/6)T (b) β = (1, 1, 1, 1, 1, 1)T

(c) β = (−1,−1,−1, 1, 1, 1)T (d) β = (1, 1, 2, 2, 3, 3)T

Figure 3. The errors with different β values.

of consensus, which can include bipartite consensus with β = (−1,−1,−1, 1, 1, 1)T in
Fig. 2(c) and cluster consensus β = (1, 1, 2, 2, 3, 3)T in Fig. 2(d).

Moreover, Fig. 3 gives the dynamic evolution of the consensus error under different
scaled factors βi. In Fig. 3(a), the upper bound of the error is h(tf ) = 0.0024. When
t > tf = 4s, the error gradually tends to 0. When the selected scaled factors are β =
(1, 1, 1, 1, 1, 1)T, β = (−1,−1,−1, 1, 1, 1)T, and β = (1, 1, 2, 2, 3, 3)T in Figs. 3(b)–
3(d), the upper bound of the errors are h(tf ) = 0.0596, h(tf ) = 0.0516, and h(tf ) =
0.1192, respectively. At the same time, when t > tf = 4 s, the errors gradually tend
to 0. The above description illustrates that the leaderless practical scaled consensus can
be achieved within the prescribed-time Tf = 4 s, which implies that the protocol (7) is
feasible.

Example 2 [Prescribed-time leader-following practical scaled consensus]. Consider
a MAS with one leader (indexed by 0) and six agents (indexed by 1, . . . , 6). The dynamics
is described by (5)–(6). The communication topology is shown in Fig. 4.

In the proposed control protocol (13), we choose θ = 0.99, µ = 1.6, tf = 1.2s,
and the scaled parameters β are same as the ones in Example 1. The control input of
the leader is u0(t) = [0.2 sin(5t), 0.2 sin(5t)]T. Set the initial states of followers and
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Figure 4. The communication topology of leader-following.

(a) β = (1, 1/2, 1/3, 1/4, 1/5, 1/6)T (b) β = (1, 1, 1, 1, 1, 1)T

(c) β = (−1,−1,−1, 1, 1, 1)T (d) β = (1, 1, 2, 2, 3, 3)T

Figure 5. The states with different β values.

leader as x1(0) = [−1, 1]T, x2(0) = [−3,−3]T, x3(0) = [2,−1]T, x4(0) = [3, 5]T,
x5(0) = [−3,−1]T, x6(0) = [2, 4]T, and x0(0) = [1.5, 1]T. The simulation result is
shown in Fig. 5.

Figure 6 gives the dynamic evolution of the consensus error under different scaled
factors βi. It is found that the upper bounds of the errors are different when the selected
scaled factors βi are different. The tracking errors converge to a neighborhood of zero
in the prescribed-time Tf = 1.2 s, which means that the practical scaled consensus is
achieved. Consequently, the proposed protocol (13) is effective.
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(a) β = (1, 1/2, 1/3, 1/4, 1/5, 1/6)T (b) β = (1, 1, 1, 1, 1, 1)T

(c) β = (−1,−1,−1, 1, 1, 1)T (d) β = (1, 1, 2, 2, 3, 3)T

Figure 6. The errors with different β values.

5 Conclusion

In this paper, the prescribed-time practical scaled consensus problems were solved for
MASs with a new TBG approach in the directed network. Firstly, according to the new
TBG method, some new distributed control protocols were proposed. Moreover, we proved
that the proposed protocols can ensure all agents achieving practical scaled consensus
within the prescribed-time frame while providing a precise estimation of the practical
errors. Finally, two examples were used to verify the feasibility of the theory and the
effectiveness of the designed control protocols. In our future work, the prescribed-time
scaled consensus for MASs with high-order nonlinear dynamics will be considered.
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