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Abstract. In this paper, we study the chemical graph for an important polyalcoholic compound
with the molecular formula C3HgO3 by using 0 or 1 to label the elements of its molecular structure
graph and formulating the corresponding fractional boundary value problem on each edge of the
graph. Under the sense of Caputo’s fractional derivatives, the existence of solutions of the fractional
boundary value problem on the glycerol graph is investigated by introducing some suitable growth
conditions and combing with some fixed point theorems. A specific example is given to verify our
results.

Keywords: fractional boundary problem, glycerol graph, fixed point theorem, Caputo fractional
derivative.

1 Introduction

Glycerol is an important polyalcoholic compound with the molecular formula C3HgOs,
which has extensive application in medical, pharmaceutical, and personal care prepa-
rations for improving smoothness and providing lubrication or humectant. In addition,
it has been shown that adding glycerol to the probiotic Lactobacillus reuteri can in-
crease its production of antimicrobial substances in the human gut [23]. Glycerol has
also been incorporated as a component of bioink formulations in the field of bioprinting,
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Figure 1. Spatial molecular structure analysis of glycerol.

which can add viscosity to the bioink without adding large protein, saccharide, or glyco-
protein molecules [3]. From spatial molecular structure analysis of glycerol, it has three
hydroxy groups (see Fig. 1) such that glycerol is miscible with water and is hygroscopic
in nature [7]. The water solubility makes triglycerides have many uses in life. Chemical
graph theory [4,21] is the best tool to study compound morphology, which can represent
any actual or abstract chemical system and becomes an important research area to achieve
the consequences of connectivity in chemical networks. The Nobel prize winner Prelog
believed that fewer concepts in the natural sciences are more closely related to the notion
of graphs than the molecular structural formulae of compounds [19]. Lumer [15] first
applied the theory of differential equations to graphs and employed specific local oper-
ators to study extended evolution equations on branching spaces. In recent years, some
progress has been made in the study of fractional boundary value problems on graphs.
For example, in [10], by using some techniques from fixed point theory, Graef et al.
established the existence of solutions for a class of fractional boundary value problems on
star graphs (see Fig. 2(a))

—Dgvi(t) = gi(t)hi(t,vi(t)), te (0,r),i=1,2,
v1(0) =v2(0) =0,  wvi(r1) = va(r2), (1)
Dyvi(r1) + Dyva(rz) = 0,

where @ € (1,2), 8 € (0,a), g; : [0,75] — R is a continuous function on [0, r,],
gi(t) # 0, and h; : [0,7;] x R — R is continuous. Define the notion of three-point-star
graphs (see Fig. 2(a)), namely, define V' = {vg, v1,v2} and E = {e1, ez} as the node set,
and define the edge set such that v is a junction node and e; = v;v( is a vertex connecting
the nodes v; to vy with an edge of length r;, ¢ = 1,2. Let G = V U E and establish
a local coordinate system in ¢ € (0,r;) on each edge with vertices e; and v, as the
origin, then Graef constructed a nonlinear fractional differential equation (1) and further
considered the existence of solutions for Eq. (1) using Banach’s contraction principle
and Schauder’s fixed point theorem. Based on Graef’s work, Mehandiratta et al. [16]
generalized the three-vertex-star graph to star graphs with n edges (Fig. 2(b)) for a study
of the fractional boundary value problem under the Caputo fractional-order derivatives
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(a) 2 edges (b) n edges
Figure 2. A sketch of the star graph G.

sense. A transformation of the translate problems on (0, ;) to intervals [0, 1] was adopted,
and then the study was carried out on the interval [0, 1]. Some other works were carried
out on networks. For example, Pokornyi [18] studied the second-order scalar ordinary
differential equations on a spatial network using geometric graph and the distribution of
zeros of solutions of differential inequalities, and an analogue of the Sturm-Liouville
oscillation spectral theory was established. The authors in [15, 18] considered differential
equations on graphs and used computational and numerical methods to obtain solutions
of these equations.

Recently, some researchers investigated the fractional boundary value problems on the
molecular graphs of chemical organic matter by utilizing either 0 or 1 to label the elements
of a molecule such as ethane graph [1,9] and cyclohexane graph [2]. This is due to the
fact that many new concepts of fractional derivatives and integral operators have been
proposed to model natural phenomena, where the existing fractional integral or derivative
operators are not sufficient, which leads to that many advanced fractional modelling and
analysis techniques have been discussed in the literature, such as in the study of dynamic
system model for bioprocess [5,6,32], eco-economical processes [20], fractional Kelvin—
Voigt model [12], fractional Fourier transforms [8], fractional Brownian motion [14],
fractional optimal control problems [26], mathematic properties for fractional problems
[11,25], and so on. Many scholars have continuously promoted the development of non-
linear science by constructing new theoretical frameworks and proposing new research
methods such as iterative techniques [28-31], upper-lower solution methods [27,33,34],
and critical point theory [24] to achieve a series of important results.

Inspired by the above work and a wide range of applications of glycerol in real life
[13], in this paper, we are interested in chemical diagrams of glycerol based on chemical
graph theory. By observing the spatial molecular structure of glycerol in Fig. 1, we find
that the molecular structure of glycerol is a chain structure consisting of three carbon
atoms and eight hydrogen atoms, three oxygen atoms and each carbon atom is attached

Nonlinear Anal. Model. Control, 30(Online First):1-27, 2025
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Figure 3. A sketch of the graph representation of Figure 4. A sketch of the graph representation of
glycerol. glycerol with labeled vertices by O or 1.

to a hydroxy group. For the convenience of labelling, we use the carbon atoms, the
hydrogen atoms, and the hydroxyl group as the vertices of the graph, while the chemical
bonds existing between the atoms are used as the edges of the graph, and we transform
spatial molecular structure shown in Fig. 1 into a ichnography as shown in Fig. 3.

Now we label the vertices of the glycerol graph with either 0 or 1 and consider
the length of each edge as a unit length (see Fig. 4). In this case, we construct a local
coordinate system on the glycerol graph, and therefore treat each edge of this graph as an
interval of unit length. To achieve this goal, we assign two labels 0 or 1 to each vertex
of the graph. When we move along any edge, the start vertex is 0, and the end vertex
is 1. Each vertex is only used as either the start or the end point, and according to this
rule, we likewise do not need to normalize the length of each edge through the use of
a specific transformation. The labeled graph is shown in Fig. 4. Labeling of the glycerol
graph using the above labeling method is followed by testing the existence of solutions
for the following fractional boundary value problem on the graph of glycerol:

Dui(t) = hi(t, ui(t), Doui(t), u; (t)),
1

)\1/ i(s )ds—i—)\g/lu( )ds = Du;(1),
0

0

(2)
1

M (0) 4 Aoul(1) = /Dgui(s) ds
0

with nonzero real constants A;, j = 1,2, where Df and Dg are the derivatives of a-
and (-order Caputo fractional derivatives, respectively, « € (1,2),8 € (0,1), h;:
0,]] x RxRxR = R,7 =1,2,...,10, is a continuously differentiable function,
1 represents the number of edges of the glycerol graph, and each edge has a length of
le;] = 1. In a chemical reaction, the change in the concentration of glycerol is often
affected by a variety of factors, which can be described by the fractional differential
equations (2).

In order to establish the existence of solutions for fractional boundary value prob-
lem (2) in this graph, we need to seek for the suitable conditions that can allow problem (2)
to have the solution in this graph. To do this, some growth conditions will be introduced

https://www.journals.vu.lt/nonlinear-analysis
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to establish the existence of solutions for the boundary value problem (2) in the chemical
graph of glycerol shown in Fig. 4. Our results generalize the fractional boundary value
problem to more general chemical graphs. Finally, an example is given to illustrate the
significance of our results in this research area.

2 Preliminaries and lemmas

In this section, we first review the definitions and lemmas that will be used later in the
paper.

Definition 1. (See [17].) Suppose that i : [0,1] — R is a continuous function, then the
a-order Riemann—Lioville fractional right integral is defined as

t o]
I*h(t) = ﬁ /(t —5)%"!h(s)ds, where T'(« /t“fle*t dt.
0 0

Definition 2. (See [17].) Let h € AC™[0, 1], the a-order Caputo fractional derivative of
function h is defined as
t

t— n—a—1

where [ is the integer part of cv.
Lemma 1. (See [17].) Let p € L'(0,1) and o, 3 > 0, then
(i) DHIp(t) = ¢(t);

(i) I°TP(t) = I*Thp(t);

(i) ZoDg¢(t) = p(t) + by + byt + bat® + -+ + b, _1t" "1 where n = [a] + 1.
Remark 1. It follows from Lemma 1 that for o > 0, the general solution of the fractional
differential equation D§p(t) = 0 is given by

(p(t) = bo + blt + thz + 4 bn_ltnil,
where by, e R, k=0,1,2,...,n—1,n=[a] + 1.

Lemma 2. Let o € (1,2) and the real-valued functions @;, i = 1,2, ...,10, be continu-
ous on C[0, 1], then u is a solution of the boundary value problem

Dgui(t) = ¢i(t), te€]0,1],

1 1
)\1/ ds—l—)\g/u )ds = Ouz(l)
0 0 3)
1
)\1Ui(0)+>\2u /D()Uz 1= 1,2,.‘.,10,

Nonlinear Anal. Model. Control, 30(Online First):1-27, 2025
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if and only if it is a solution of the following fractional integral equation:

t
_ oa—1 A A=\ a B—1
uf(t):/u%(s)ds—i— °+A01Al 1t // 0s(€) dE ds
0

I'(a)
Mi—Ay [ (1—s)a—6-1 LA )\ [
1t—A4y —s)*” 1— At
T Aon / Ma—p) 7898 // r () deds
0
Aido— A Aot
+ oM // (&) deds
1
/\1)\2t—A1/\2—A0)\2 1 S a 2
Aoh; /F (s)ds, “4)
0
where
A:A1P(3—B)+2B—2 A:)\QF(B—ﬂ)—l
’ oA(B3-p) ' NER)

Proof. Let u(t) be a solution of problem (3). It follows from Lemma 1 and « € (1,2)
that there are constants b\, b\”) € R such that

wi(t) = I§ (D§ s (1)) + b5 + b1t

ie.,
[ (=)
t—s)"" i i
w (b) :/W%(s) ds + 0% + b0t (5)
0
Consequently,
t
P (k) )
Uy (t) _/ F(Oz— 1) 1(8)d8+b1 ’
0
[ (=)0 s
t—s)* P t
'Dﬁuz‘t:/ A(s)ds + b{"
and

1
[uiras= [ BT g acas o) + 5,
0 0
1
” _ (3—5)%2 0}

https://www.journals.vu.lt/nonlinear-analysis
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1 1 s
5 . B (s—&rt @ _ 1
/Doui(s)ds—//W%(f)dfdkﬂ'lh T3—5)
0 00

By using the boundary conditions and the equations above, we obtain

@ _ (1 5*“51
b _( A(m)// 2i(€) de ds

0
Aidy A 1@ ye—2 11 p-1
12 2 —5)® *Sa
— — —; i(s)d
(Ao)\1+)\1>/ F(Oz—l) SD( AQ)\l/ F SD(S) 5
0 0

+Z<ZZ“R§A (%@+—//5_ -®M®>
bgﬂzi)o/lm s)ds — 2L //S‘ pi(€) de ds

Mlu—wﬂ
+A70/7F(a—1) @i(s) ds.

Now, by substituting the values bV , b  into Eq. (5), one derive that u is a solution for
integral equation (4). Conversely, if u] is a solution of integral equation (4), by using
some direct calculations and the same method, it is easy to prove that «; is also a solution
for the fractional problem (3). The proof is completed. O

Our main tools are the following fixed point theorems.

Lemma 3. (See [22].) Let X be a Banach space and F' : X — X be a completely
continuous operator. Then the set {x € X: v = pFx,u € (0,1)} is unbounded, or the
operator F' has at least one fixed point in X.

Lemma 4. (See [22].) Let A be a bounded nonempty closed convex subset of a Banach
space X. Suppose 1 is compact and continuous and - is a contraction mapping such
that y1u + yov € A for u,v € A. Then there exists w € A such that w = yyw + Yaw.

3 Main results

Before the claim of the existence results of the fractional boundary value problem (2) on
the glycerol graph Fig. 4, we firstly define our work space and give some constants for the
convenience in presenting our results.

Nonlinear Anal. Model. Control, 30(Online First):1-27, 2025
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Let M; = {u;: uy, Dgui, u} € C[0,1]}, which are Banach spaces with the norm

luillag, = sup Jui(t)] + sup [Dgu;()] + sup |ui(t)],
te[0,1] t€0,1] te(0,1]

where i = 1,2, ..., 10. It is clear that the product space M = M; x My x --- X Mjg is
also a Banach space with the norm

||u||M = H(u17u27' .. aulO)HM = Z ||'U/ZHML

Next, from Lemma 2 we introduce an operator 1" : M — M defined by

T(u1,us, ..., ui0)(t)
= (T1(u1,ua, - .. u10)(t), To(ur, uz, . . ., u10)(£), - ., Tho(ur, us, - ., u10)(t)),

where

ﬂ(u17u27 e 7u10)(t)
t

— Msus ﬂu»s u/.s S
_! Tray s (), Puils), wi(9) d

1 s
Ao+ A1 — M\t Yo B-1
* AO)\I 0/ / ]_" (f’ Ui (g) 0 ul (E) (§)> d§ dS

1
At — Al (1 — S)Q*ﬂfl 5 /
Aoy 0/ (o —B) hi(s,ui(s), Dyu;(s), uj(s)) ds
1
t// i (€, us(€), Dfus (€), w4 (€) d¢ ds
Ao — Aot

8. /
Ao // a—l &Uz(ﬁ),’DouZ(é‘),ui(f))dgds
1

(s,ui(s ),Dgui(s),ug(s)) ds

)\1)\2t—A1)\2—A0)\2/ 1—Sa 2

A()Al ) FOL*l

forallt € [0,1], u; € M;,i=1,2,...,10.
For computational convenience, we define the following notations:

L1 [Ao| + [A1| + [Ad] |A1| + A |AL] + A
O D(a+1)  [AoD(a—B+2)  [Ag[]MIT(a—B+1) " |Ag|D(a+2)
|A1[[A2] + [A1]]A2] n | Ax]|A2] + [Aol|Aa| + [A1]|Az]

[Ao[[Ar[T(a + 1) [Aol[AT (@) ’

(6)

https://www.journals.vu.lt/nonlinear-analysis
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o S ( L
U D(a—B41) ' |AT(2—-B8) \I'(a—B+1) ' T(a+2) ' T'(a+1)
1 A2 >
+ + : 7
Mla—B+2) " T(a) ™
1 1 1 i Az 1 Az )
Ff = —+—— + + + + @8
27 I(a) ' A (P(a—5+1) [(a+2) T(a+1l) T(a—pB+2) T(a) ®
Theorem 1. Assume that hy,ha,...,h1g : [0,1] Xx R x R x R — R are continuous
functions and there exist constants L; > 0, i = 1,2,...,10, such that |h;(t,z,y, z)| <

L;, where (t,z,y,z) € [0,1]x RxRXR, i =1,2,...,10. Then the fractional boundary
value problem (2) has a solution on each edge of the graph of glycerol shown in Fig. 4.

Proof. In order to derive the solution of problem (2) on the graph of glycerol shown in
Fig. 4, we shall seek for the fixed point of 7" in M. To do this, we first show that T’
is a completely continuous operator. Since hy, ha, ..., hig are continuous in [0, 1] x R3,
the operator 7" is also continuous. Let {2 € M be a bounded set, for any © = (uq, us, . . .,
u10) € §2, one has

|(Tiw)(t)|
g/t(t_r(‘j;_l|hi(s,uz( ), Dyuils), ui(s))| ds
!
e [t i
Aﬂfl/ 2 ). D). o) s

A _ a 1
‘ 1||;1|—0|)\1t// s (6%(5) Oul(f )|d§ds

AqlI\ Al Aot —
+\ 1] A2] + [A1][ A2 // s |h (&, us(e), Dﬁu,(ﬁ ()] de ds
| Aol[A1]
\A1|\)\2|t+|A1\|/\2\+|A0||)\2|/ (1-5)72
Aol Tla—1) ‘h (s u; (8), DOul( ‘ds
o ( 1 \Ao|+|A1|+\>\1| |A1| + [M] |A1| + [M]
I ) AT (a=B+2)  |Agl[MT(a@—B+1)  [Ao|T(a+2)
|A1|[A2] + [A1][ A2 n A1||)\2|+|A0||/\2|+>\1||)\2|>
| Ao|[A1]T (o + 1) | Ag|[A1|T(c)
= L,F{,

Nonlinear Anal. Model. Control, 30(Online First):1-27, 2025
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!(DgTi:L)(tH
S / (tp_(i)a_;)_l | i (s, ui(s), Dyui(s )| ds
* |A0tr1(2ﬁ_ 3) 0/1 up_(;)iﬁﬁ)l i (s, ui(s), Dy ui(s), uj(s))| ds
|A0Af|(t21_ﬁg)o/lo/s(s ;8;_1| i (& i), DGwi(€), uj(€)) | dE ds
+mﬁgfmjjﬁm?3wwéw09%& ()] d¢ds
" |Aotrl<zﬁ_ 5 0/1 0/ (s{(i)j ;)llhz-(f,ui(s) Diui(€), u)(€)) | dé ds
e / o o) Do) () ds

<L-( 1 n 1 ( 1 L | A1
S\ D(e=B+1)  [AP2-\T(a-F+1)  T(a+2)

Az 1 A
o+ Ta-pt2) r(a)>)

_LFr
| (T} u)( |</t;a_1)2|h(suz()puz( () ds
d
"] 1o| jw\hi(w@ Dgui(s), uj(s))| ds
! Myl O/ 0/ . }2; s 0(€), P (€)1 (6)) | dé s
i Mj / / (?J_)alf i (€, i (€), D us(€), 4(€)) | de ds
" 1ol 0/10/5(Sr_(j)j;)l|hi(5’Ui(&)ﬂﬁﬂi(&)ﬂé(&))!dﬁds

https://www.journals.vu.lt/nonlinear-analysis
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_ S Oz 2 5
=1 |hi(s,ui(s) Doui(s),u

1
/ (1
0

T
( ( 1 n | A1
|A0| FNa—pg+1) T(a+2)
" |)\2 1 |>\2|>>
MNa+1) Tla-8+2) IN(a)
— L,F;

forallt € [0,1],i=1,2,...,
respectively. It follows from the above calculation that
[ Tiullar, < Li(FG + FY + F3),

which implies that

)|ds

10, where Fy, FY, and Fy are defined in (6), (7), and (8),

10
1Tl = Tl < Li(Fg + Fy + F3) < o0
=1 =1

that is, 7" is uniformly bounded.

Next, we prove that 7" is equicontinuous. Let u = (u1, ua,. ..,

any t1,ts € [0,1] and t; < t2, we have

(T (t2) — (Tyu)(t)]
+/ (¢ F(j)“l | i (s, ui(s), Dy ui(s), wi(s))| ds
) | R ot
. (tmm 0/1 <1F—(;>f;)1 (s (s), Do),
L M ﬁd*“ 0/1 0/ i€, w€), D),
|)\2 |tjo_ t1) 0/1/ = |h (&,ui(€), Dhui(€),u

Nonlinear Anal. Model. Control, 30(Online First):1-27, 2025
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1

o|(ta —t1) [ (1 —s)>2
|2|jo| : / I‘as_l ‘hi(svui(s) Dguz(s )‘ds

0
— 0, t;1 —to.

By the same method, we also have

tlli_rgzl(l)gTiu)(tg)— (D§Tiu)(t1)] =0 and Jim (Tlu)(tz) — (T{u)(t1)| = 0,

—ta

which yield that
‘(T’u)(tg) — (TU)(tl)’ — 0, tl — tg.

This also proves that 7" is equicontinuous on M = M; X My X --- X Myg. It follows
from the Arzela—Ascoli theorem that the operator 7" is completely continuous.
Now we define a subset N of M as follows:

N =: {(u17u27~--;u10) € M: (u17u2,"'au10) :a'T(u17u2,"'au10)7 ac (071)}

We assert that NV is bounded for any (u1, us, ..., u19) € M. In fact, since
(u1,ug,...,uip) = al'(u1,usz, ..., ui),
we have
ui:aTi(ul,u27...,u10)
forallt € [0,1],4 =1,2,...,10. Thus
o) t
:a’(Tiu)(t)| <a /(t_s)a_l|h(s u;(s), Doul( (s))]ds
[(a)
Ao|+|Ax |+t —&oht
+\0| | Ax ]+ |\ //s ’ (67%(5)1)0% Al )|d§ds
| Ao|[Ad]
‘)\1|t+|A1‘/ 1—Sa p-1 B
h; (s, ui(s), Dhu;(s ds
Aal\] y Ao (o). Dous). ()]

A _ a 1
L 1||ZO||M// s hi (€ wi(€), Dy wi(€),uj(§))] dg ds

Aql|A Arl|A —
+\ 1|||124|;F||)\11| 2|t// 5 ‘h (§,u7(§)D ui(€),ui(€))| déds

|h (s u; (8), DB o wi(s) )|ds

\)\1||)\2|t+|A1\|>\2|+|A0|\>\2|/ (1—s)2
[ Aol A1] I(a—1)

https://www.journals.vu.lt/nonlinear-analysis
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<aL-( 1 |[Ao| + A1 + A1 |A1| + A1 |A1| + [M]
S\ D(a+1)  [AoD(e=B+2)  [Ag[]MIT(a—B+1) |4l (a+2)
[Axl[A2] + [Mal[A2] | [Ad]|A2] + [Aol[A2] + |>\1||)\2>
[ Ao|[A1[T (e + 1) | Ao|[A1[T(e)
=alL;Fj.

By the same strategy, one gets

|Doui(t)| < aLiFy,  |ul(t)] < aL;Fy.
Therefore,
10 10
lullar = Nluillar, <@ Li(Fy + Fy + Fy) < oc.
i=1 i=1

Thus N is a bounded set, it then follows from Lemma 3 that 7" has a fixed point in M,
which guarantees that the fractional boundary value problem (2) has a solution on the
graph of glycerol Fig. 4. O

Now we use the Krasnoselskii fixed point theorem to study the existence result for
the fractional boundary value problem (2) on the graph of glycerol Fig. 4. Again, for
convenience, the following notations Ej, EY, E5 are defined:

g - Ao+ A+ A [Ax] + [Ad] [Ax] + [Ad]
O AT(@—B+2)  [Ao[MIT(e—B+1) " [AoT(a+2)
[A1|[A2] + [A1]| A2 i [A1|[Az| + [Ao|[Az] + [A1]| Az ©)
| Ao[A1|T(ar + 1) |Ao[[A1 [T () ’
. 1 1 A1 | A2
E =
LT AT 2= B) (F(aﬁJrl) T Tat2) T TarD)
1 | Az )
+ , 10
Fla—p+2) T T(a) (10)

1 1 A A 1 A
E;<F( AVt N T +|2|>. (11)

|Ao) \T(a—p+1) ' T(a+2) ' T(a+1)  T(a—p+2)  T(a)
Theorem 2. Suppose that hy, ha,... hip : [0,1] x R x R x R — R are continuous
functions and there exist continuous functions S1,Sa, ..., S10 : [0,1] = R such that

|hi(t, ur, ug, us) — hi(t, U1, T2, Us)|

< Si(t) (lur — @] + Jug — W2 + Jug —us|), i=1,2,3,...,10. (12)

In addition, assume that there exist continuous maps Wi, Wa, ..., Wi : [0,1] — R and
continuous nondecreasing functions V1, Va, ..., Vig : [0, +00) — [0, 00) such that

|hi(t, ur, ug,us)| < Wilt)V; (Ju| + [ug] + Jus]), =1,2,3,...,10. (13
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Then the fractional boundary value problem (2) has a solution on each edge of the graph
of glycerol shown in Fig. 4, provided that

10
F:=(Ej+ Ef + E3) Z I1S:]] <1, where ||S;|| = sup |Si|. (14)
=1 te0,1]
Proof. Denote ||W;|| = sup,¢o 1) |[Wi| and take an appropriate real constant such that
10
Y Villlwilla) IWill{Fg + Ff + F5} < p
i=1

Define a set
N, = {u=(u1,us,...,u10) € M: ||ul;r < p}.

It is clear that N, is a nonempty bounded convex subset of M. Now, for all ¢ € [0, 1],
define two operators 17, T5 on N,:

Tl(ul,ug, e 7’1,L10)(t) = (Tl(l)(ul,UQ, .. .,ulo)(t), e 7T1(10)(u1,U,27. .. ,U10)(t)),
TQ(ulaUQv s 7u10)(t) = (T2(1)(U1,U2, s aulo)(t)v s 7T2(10)(u17u27' o 7u10)(t))?

where

T(Z / F(SO); (s,ui(s), Duy(s), uj(s)) ds,
0

J—

. s— &Pt
<T§”u><t>=‘4°+£31 =/ / i (& us(€), Dyui(€), wi(€)) dé ds
0

Mt —A 1—s)o—f-1
+ 112;10/\1 1 /( F(a)— 3) hi(&uz‘(S),Dgui(s),u;(s)) ds

1 s
0

Aida — A A
2R Qt// 6 ), P (). 1(9) de s

1
)\1)\2t—A1)\2—A0)\2/ 1—Sa 2

AO)\I Fa—l

hi(s,ui(s), Dyui(s), ul(s)) ds.
0

Let

Vi= sup Vi(lluillas,),
'u.,;GJWi

https://www.journals.vu.lt/nonlinear-analysis
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then for any @ = (U1, Ug, ..., U10), u = (U1, U2, ..., u10) € N,, we have
(T u)(#) + (T3 u) (1)
t
< [ o) Do) () ds
0
_|_|A0|‘*|‘A;4|1)|\1+|)\1t// s— &b 1 (6, a9, Dlus(e),u ()] de ds
MllXOﬁA'f”/ (s (s), Dlus(s), () s

A A _ a 1
| 1||:1‘0 1|t// s e (€, usE), DBus(E), ul( &) e ds

[ Ax][Aa] + [Ar][Ao]t s—¢ ,
T AN // W&%@Dwﬁ (€))| deds

|>\1||>\2|t+|A1|\>\2|+|A0\|>\2\/ (1-s)~
| Ao|[M]

2
=1 |hi (s, ui(s), Dguz(s (s))]ds

t
(=)™t Aol + [ s |+ Ao
<! L WVi([(o)| -+ [ (o) + o)) ds + 2

1 Sw Villu; B ’
Xo/o/ I'a—B) WiVi(| z(§)|+‘D0U(§)|+|ui(§)‘)d§ds

Mt + A 1—a61
LA |n/ D Wii((ui(s)] + [Dfu(s)] + [ul(s)]) ds

| Aol| A1l

Ay| + |\ s_¢
| 1||XO| 1|t// Wiv"(|ui(f)|+|Dgu(€)|+|u;(§)|)d§d5

|A1]|A2] + \A1||>\2|t
| Aol| A1l

1 Sw RVARLYY B’U/ u/ s
XO/O/ a1 Vel + [Pgu(©)] + [ui(e)]) ded

Al A2t + [Aq]|A2] 4 [Ao] [ A2
| Aol| A1l
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1
x/ WV (Jui(s)] + | Dguls)| + |ui(s)]) ds
0
= 1 [Ao| + [A1] + [A1] |A1| + [M]
< Wz Vi +
Il <r< 1) T A= p+2) | Aol lla— 5+ 1)
|A1| + [M] n |[A1|[A2] + [M[Aa] | [A1][Az| + [Aol[A2] + |)\1||)\2|>
|[Ao[T(a+2)  [Ag|[M|T(a+ 1) | Ao|[A1]T ()
= |Wi|ViFy,

DT u(t) + DY TS u(t))|

T(a—p)
- |A0|tF1(_26 3) 0/1 “F_(j)f_i_lm(s,m( ), Dyjui(s), ul(s))| ds
mo/lj(sr "R (€, 0a(6), Diu(€), i (©)) | de s
+|A|0>|\12“|(t21—ﬂ6) 0/ 0/ %J_)“ )2! i(€,ui(€), Dui(€),ui(€)) | de ds
*mzzww(&ui(&) DYus(€), u}())| de ds
- IALT;E_ﬁﬂ) 0/1 (;(;s)al_;’hi(saUi(s)’DgUi(S)»UQ(S))!ds

+

|Ao|T'(2 — B)

1
!
+|A0|F(2—5)0/0/ Ta) WaVillus(©f + Pou( O]+ [uf9)) dcd
0
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1
1-8 s 1
|AoltF2 5) / F Vi(Jui(©)| + | DGu(©)] + [ui(€)]) de ds
0 0
1
Ao|t1—B 1 /
|A|0|12‘|(2_ )/(p( 2 )WV(|“1 )| +[Duls)| + [uf(s)]) ds
0
1

- 1 1 A
< WzIIVz(r( “B+1) AT - B) <F(a—/3+1) T Ta+2)

n | A2 n 1 n || ))
MNa+1) T(a—-p+2) I'(a)
= Wil Vi FY,

(1) (1) + (T3 ) (¢)|

<j(;@83a;)2’hi(s (), DBTs(s), T (5)) | ds

:

+10|0/1 (1F(;)j;>1}h (5, ui(s), Dfus(s), ul(s))| ds
+'A2'|0/10/5(8}8;_1| (€ ui(€), D i), w}(€))| de ds

+ / / B (6 ©). D)) de s
Foo 0/1 0/ (Sr(j)j;1| (6. u:(€). Difus(€). ul(©)) | dé ds
+IA?)I'O/1 (;(—as_)al_ﬁhz(s wi(s), Dfui(s), ul(s))| ds

< / 8w ()| + )] + o) s

!

+10|0/1(1P_(084)j;) WiVi (|ui(s)] + [Dui(s)| + |ul(s)]) ds
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1 s
11 | T V@) + D@ + i) ) dgas
0 0
I
] 0|// o gy Vi) + Do) + i ©)]) de ds
0 0
Dol [ (=3)
2 —8)* 5 /
A 7WV ui(s)| + |Dyui(s)| + [uz(s)|) ds
0|0/p(a ) (Jui(s)] + | ()| + |ui(s)])
— 1 1 1 A1 Mol
WiV [ —— + ——
W7 (s + o (s + Ty * rea
- ! 1 el >)
Fla—B+2) T(a)
= |[Wi||V:F5,
which implies that
10 , - B
733+ Toul ]|, = S T0+ T3 ul[l,, < IWillVi(Fy + Fy + F5) <p
i=1

Consequently,
Tivu+Tou € Np.

Noticing that 7} is continuous from the continuity of functions h;, in what follows,
we further show the uniform boundedness of the operator T;. For any v € M, it follows
from (13) that

/ t—s = (s,ui(s) Dgul(s ’ds
0
< ﬁumnww)\ [ DBu(t)] + [l ).
. ‘ 5 a—pB-1
DT u(t)] < /(tF(a)ﬂ)Mi(s,ul( ), Dui(s), ui(s))| ds
< g WV (0] + [futo)] + i)
. ’ ! —3)™ 2
|(T11)u) )] < /(;(azl]h (s,ui(s), Dyui(s), uj(s))| ds
0
< ﬁIIWillwﬂui(m + [Dyu(t)] + [uf(1)]).

https://www.journals.vu.lt/nonlinear-analysis
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Consequently, for any u € IV, by the monotonicity of V;, one derives

10
ITrullar = > |7l
1=1

1 1 1 10 -
s (F(a “B+1) " Ta+n © F(a)> ; IWallVs (Nl az )

10

1 a—+1
<(r(a—,@ﬂ) a+1>ZHW”V

which implies that the operator T} is uniformly bounded on N,.
Next, we show that T is compact on N,. Letu € N, and t1,t3 € [0,1], t1 < ta,
then we have

|(Ty" ) (Tf)) )

—s) = (t; —s)! !
/<t2 ) . Ua = 9% b (s ua(s), Dfus(s), () di

M,SU,S B (s) u'(s)) ds
/ I'(a) hi (s, ui(s), Dyua(s), wi(s)) d

_Sa_l_ 1_Sa—l
« [ o). D)

0
to

_Sa—l
+/(tzl“(a))|hi(s,uz( ) Dyui(s), ui(s)) | ds
tg —tf —(ta —t))* | (ta—t2)"
S ( ) 1£(a+21) o F2(a+11)

)nWiuv;»(p).

Obviously, . .
’(Tl(l)u) (tg) - (Tl(z)u) (tl)‘ — 0, t1 — t2.

By the similar strategy, we also have

lim DT u(ts) — DET u(ty)| = 0, lim [(T\) (t2) — (T0) (11)] = 0.

t1—to t1—t2
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Thus
}(Tlu)(tg) — (Tlu)(t1)| — 0, t1 — tQ,

which indicates that T} is equicontinuous, and then 77 is a relatively compact operator
on N,. By the Arzela—Ascoli theorem, T’ is compact on NN,,.
Finally, we show that T5 is contractive. To do this, let %, w € N,, then we have

|(1573) (1) = (T5u) (¢ >!

| Aol A1+ |t yep-l .
S | Aol| A1l // Si ([E:(€) ()] + ’Douz —Dyu;(€)]
+|u -(@\)dgds

Aft+]Ar] [ (1—s)>P1 5

- | Ag | 1] / ﬂ) Si([i(s) —ui(s)| + |D0u, —Dyui(s)|
+\u ué(s)!)ds
|A1|+|)\1|t // ’ul ‘+ ’DOUZ D{fui(g)]
|AO| 00
+!u' — ‘<s)\)dsds

|A1|[Az] +[A1]| At .

* | Ao|[M] // (a— 1 Si([:(€) —us(€)| + [P (€) — Dy ui(€)]

+ | (§) —ui(€)]) dE ds

1
|/\1||>\2|t+|141|\)\2|+|A0\|/\2\/ (1- 8“ 2
| Aol| A1l

+ ‘Douz )—Djui( (s)] + |} (s)—uj(s)]) ds
| Ao|+[A1]+|A1] | A1 |+ M| | A1 |+ M|
|Ao|T(a—B+2)  |Ao||M|T(a—B+1)  |Ao|T(a+2)
[Ar|[A2]F] ALl A2l [AL]|[A2|4[Aol| Az |+ | A1 ]| A2

< |15l

’(71' — U4 B
ol T(at1) Ao T(@) It = willas
= |18l Eg |t — wsll ns,-
By a similar calculation, we have
S DT u(t) — DTS u(t)| < ISl By s — willar,
<0
i) N/ s~
sup |(T57%) (1) — (T57u) ()] < 1Sl B3 N[ — il ar,»
tel0,1]
10 ) ) 10
I Toit — Toullar = NS0 — Tsullar, < (B + By + E3) S 1Silllls — il
=1 =1
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i.e.,

ITow — Toul|amr < Flla— u|| -
Thus (14) guarantees that 75 is contractive on N,. By Lemma 4, T" has a fixed point in
N,, and, consequently, the fractional boundary value problem (2) has a solution on each
edge of the graph of glycerol shown in Fig. 4. O

4 Examples

In this section, we give an example to illustrate our results.
Consider the following system of fractional differential equations:

DLy (1) = 6e’|arcsin uy (t)] e!| DY %3uy (1)) 2et|arctan v (t)]
o M 24000 4000(1 + D93, (t)) 8000 ’
3et|arctan DY-%3uy (t)] et |ub ()]
D§P3ug(t) = 0.0003¢’ |sin us (¢ 0 2
0 ua () e'lsinuz(t)] + 10000 20000(1 + (1))’
2t|us(t)] ) 4t|arcsin uj(t)]
Dy Pus(t) = == +0.0002¢]sin DY Pus (t)| + ———~
0 uslt) = =000 sin Do ua(®)l + ——55000
153 _ 6tfua(t)| | Stlsin DY Pua(t)| | tui(t)]
DO U4(t) = )
54000 45000 9000
tDYBus ()| 2t[sinuk(t)]
D{%3us(t) = 0.000125¢tus (t 0 2
0 " us (1) us (t)] + 8000 16000 s
DL g (1) = el|arctan ug ()| 2e'| DY Bug(t)|  4et|ug(t)]
0 Uelt/ = 7500(1 + arctan ug(t)) 15000 30000 ’
Tt|sinuz(t)|  14t|arctan DY 3uy (t)]
D53 (t) = 0 0.00035t|arctan u (¢
o ur(t) 20000 T 40000 + Jarctan uz (£)]
Hus (1) 2¢' | Dy Pus(t)|
DL53,, (1) = e'us( 0 0.001et sin . (
0 s () = 150001 + us (D)) 2000 T O001esinus ()],
2t|arcsinug ()| tlarctan DY YBug(t)|
DEPBug(t) = 0 0.0004|ug (¢
DL (1) = 2¢|uo(t)| e'| DY P uio(t)| 3e’ |arcsin ujo(t)|
o 6000 3000(1 + DY Buy0(t)) 9000

subject to the boundary conditions

1 1
5 7
5 [uoas+ | [uin) = pgu(),
0

0
1

5., 7001 = 0.03,

3ul(0)+4ui(l)— Dy uy(s)ds.
0

From Theorem 2 the fractional boundary value problem (15) has a solution on each edge
of the graph of glycerol shown in Fig. 4.
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Proof. Leta = 1.53, B = 0.03, \; = 5/3, Ao = 7/4. Take

6e'|arcsin z| e'ly| 2¢t|arctan 2|
hl(t,l‘7y,2) = )
24000 ' 4000(1 + y) 8000
_ 3ef|arctan y| 6e’|z|
ho(t = 0.0003¢"
2(t, 2,y, 2) e'lsinz| + —5500 20000(1 + uh(t))’
2t|x| . 4t|arcsin z|
hs(t = 0.0002t|s _—
3( ,Z‘,y,Z) 10000 + |blny‘ + 20000 )
6tlx|  Stlsiny| = t|z]
halt -
4T 2) = 1566 T 45000 9000
tly|  2t|sinz|
hs(t, 2,1, 2) = 0.000125¢|z| + 2L ,
s(t,2.y,2) 1+ 3000 * 6000
el|arctan z| 2etly|  4et|z]
hﬁ(t,x,y,z) = )
7500(1 + arctanz) ~ 15000 30000
Ttlsinx|  14t|arctan y|
hr(t = . 574 t
7(t, @y, 2) 20000 40000 + 0.00035t|arctan z|,
dlal 2y
hs(t = .001e’|si
s(t,x,y,2) 1000(1—|—x)+ 2000 +0.001e’sin z|,
2t|arcsinz|  tlarctan y]
ho(t = 0.0004¢
o(t,,9,2) 5000 2500 2l
2¢t || ety 3et|arcsin 2|
hio(t =
w0t 29:2) = 505 300001 + 9) 9000

In the following, we verify that conditions (12)—(14) are met, and we have for any
E?y7z7x7y’Z6R’

et

4000

+ |arctan z —arctan z|)

Ct

<
4000
3et
10000
3et

< = = =

‘hl(t,x,y,z)—hl(t,f, 7,7)| < (Jarcsin z —arcsinZ| + |y —7|

(|lo ==+ ly — gl + 12 — =),

|ho(t, @,y,2)—ha(t,7,7,2)| < (|sin z —sinZ| + |arctan y—arctany| + |z —Z])

|hs(t, 2, y, 2)—h3(t,7,7,%)| < (Jz—=| + |siny—siny| + |arcsin z—arcsin z|)

5000

< [z —2| + |ly—7| + |2—7]),

t
5000(
‘h4(tam7y7z)_h4<t7fay7z)’ < g(fm(lx_fl + |Siny_Sin?| + |Z_E|)
t
5000

< =7 + |y=7l + | —=]),

9000
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t
‘h5(t,x,y,z)—h5(t,f, 7,7)| < mﬂarcsinx—arcsinf\ + ly—y| + [sin z—sin z|)
<8000(|w T+ ly—g| + |2—2),
t
|h6(t7Ivyaz)ihﬁ(taf7yvz)|| < 7500 (|arctanx—arctanf| + |y7y| + |Z*§|)
et
< - -y —Z 9
(o= + g7 + 23]
_ Tt . . . .
|h7(t,z,y,z)7h7(t,x,y,z)| < m(\smxfsmﬂ + |arcsin y —arcsin g
+ |arctan z —arctan z|)
Tt
< o000 (== + ly=71 + |=—=1),
|h8(t,$,y72)*h8(t,(£ yvz)| < m(|1’*f| + |y7y| + |Sinz*SinE|)
et
< 1ogg (e + ly=7l + |===]),
t
|ho(t, @,y,2)—ho(t,Z,7,Z| < mﬂarcsinx—arcsinf\ + |arctan y —arctan |
+ |z—2[)
t
< g (= +lua+ =),
et . .
‘hlo(t,x,y, z2)—h1o(t, 7,7, Z )’ 3000(|m—f\—|—|y—@|—|—|arcs1nz—arcs1nz|)
< Ol -+ 7).
and then
et 3et t t t
"7 40000 7?7 100000 7?7 50000 T T 90007 TP T 8000
et Tt et t et
O R QL A S
6~ 7500" °7 7 200000 7 10000 7?7 25000 7' 3000
Thus
1 3 1 1 1
S|l = —, S| = ———, [IS3]|=—=, ||Si]]=—= Ss|| = ——
151 4000 121 10000 1951 = 55007 11941 = G50 151 = 3500°
1
_ Ssll = ——, 1]l = ——, [[S10] =
[|S6]l = 7500 [|S7]l = 20000 | Ss]| 000" [|So| 5500 IS0l 3000
Let V1, V5, ..., Vig = 1 be constant functions. Then we obtain
t
ot 2,9, 2)| < o (laresinal + Jy| + Jaretan =) < oo (1l + Iyl + |21)
hat, 2,9, 2)] < o (jsin] + farctany] + |2I) < —o(Jo] + ly] +|21),
T 10000 10000
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|hs(t, 2y, z)] 5 tOO (|| + |siny| + |arcsin z[) ——— 5000 (J=] + y| + [2]),

|ha(t, 2y, 2)| < 5000 (|:c| + |siny| + |z]) < 5000 (|x\ + [yl + |21),

halt, 2,,2)| < oo (laresine] + [y + [sin ) < oo (1ol + 1o + 1),
ho(t.2,1:.2)] € = (aretan] + o] + |2]) < o (1| + o] + |2]).
|h7(t,x,y,z)’ < 207()t00 (|sinz| + [siny| + |arctanz\) 20200 (|| + |yl + [2])
hs(t.9,2)] < oo (1 + Iy + sin=1) < < (1] + b+ )
|h9(t,x,y,z)’ < Ftooﬂarcsinﬂ + |arctany| + |z| ) 2500 (| |+ |y| + |z|)
|hao(t, 2y, 2)| < 3000(I 2| + |y| + |arcsin 2[) < 30;0« |+ [yl +[2]).

Define the continuous functions W7, Wa, ..., Wig : [0,1] — R as
t t
W1=4§W, WQ:I(?O%’ W3=50tW7 4:ﬁ, 5=80tW7
el Tt e t e

Wo=25000 "= 300000 " T 10000 T 25000 V0 T 3000
It follows from (9)—(11) that

Ep ~ 274893, Ef ~14.5112, Ej ~ 14.3324,
which results in
10
F = (Ej+ Ef + E3) ) ||Si] ~0.1804 < 1
=1

Therefore, conditions (12)—(14) all hold. According to Theorem 2, the fractional bound-
ary value problem (15) has a solution on each edge of the graph of glycerol shown in
Fig. 4. O

5 Conclusion

In the study of star graphs of boundary value problems, a common point for the graphs
with edges to other nodes and no edges between other nodes is required [10]. However,
the requirements for nodes are more extensive for complex compounds such as glycerol
with the molecular formula C3HgO3 in chemical graph theory. In this paper, we explore
the existence of solutions for fractional boundary value problems on glycerol graphs.
By labeling the glycerol graphs and combining various mathematical tools, a rigorous
theoretical framework for analyzing the existence of solutions to such problems was
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successfully constructed. This research provides an important method to define boundary
value problems on the edges of the nonstar structural graphs of the chemical compounds
of molecules, which can also be applied to a vast range of graph structures such as
digraphs of protein networks and some medical technologies. In our further study, we
shall focus on more nonlinear problems on graphs with different molecular structures by
using nonlinear analysis methods and some numerical techniques.
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