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Abstract. The paper investigates new estimation techniques for repeated surveys, focusing
on improving the precision of finite population parameter estimates at the current time t by
incorporating auxiliary time series and calibration methods. Repeated surveys generate temporally
correlated estimates, which time series models capture effectively. Calibration further enhances
estimation by adjusting estimators with auxiliary data, reducing variance, and improving precision.
Several new estimators of a time-dependent finite population characteristic (usually the mean, which
is used in various statistical analyses) at time t are developed and evaluated under diverse scenarios,
considering factors such as the correlation between the errors of the target and auxiliary time series,
sampling variance, number of surveys, and model complexity. Numerical results demonstrate that
calibrated estimators, particularly those incorporating time series adjustments, achieve superior
accuracy in high-correlation settings. Regression-based estimator also shows robust performance
across varying conditions, while traditional estimators relying solely on survey data are less precise.

Keywords: auxiliary information, calibration estimators, repeated surveys, time series models.

1 Introduction

Time series analysis in repeated surveys has emerged as a key methodology for capturing
dynamic finite population changes, optimizing survey designs, and achieving more pre-
cise parameter estimation. Jessen [8] integrated sampling methods for farm surveys, em-
phasizing the efficiency and bias reduction achievable through geographical stratification
and repeated sampling techniques. This foundational work set the stage for the develop-
ment of rotational and repeated sampling frameworks. Patterson [11] extended this by for-
malizing methods for sampling on successive occasions, introducing partial replacement
of units, and examining efficiency under varying correlations across time, a concept later
generalized and elaborated by Eckler [5] in the context of rotation sampling for minimiz-
ing variance in population mean estimates. Yates [18] expanded on these methodologies,
offering comprehensive guidelines for implementing time series in large-scale censuses
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and surveys. These early contributions provided the basis for designing survey method-
ologies that minimize variance and bias of estimators across successive survey waves.
Our study builds on these principles by focusing on time series estimation techniques that
further enhance precision of estimators in repeated surveys.

Further advancements were driven by Blight and Scott [1], who introduced stochastic
models for finite population means evolving as linear Markov processes, and Scott and
Smith [14], who applied standard time series methods to repeated surveys, exploring
overlapping and nonoverlapping survey designs. These contributions evolved into com-
prehensive signal extraction methodologies under possibly nonstationary conditions with
real-data examples illustrating their application (see Scott et al. [15]). Theoretical and
empirical efficiency comparisons, such as those by Jones [9], revealed the superiority of
time series estimators under specific conditions. Tam [17] extended the dynamic mod-
eling framework to finite populations, demonstrating its adaptability through maximum
likelihood estimation techniques.

Steel and McLaren [16] explored the interplay between survey design and estimation
methods, particularly focusing on rotation patterns and their impact on trend and seasonal
estimates. Ismail et al. [7] employed simulations to validate the superiority of time series
estimators under specific survey and model conditions. Additionally, they used Egyptian
annual unemployment rate data in a numerical comparison of standard and time series
estimators to illustrate their practical performance. The estimation techniques developed
in our paper build upon these methodological foundations, particularly in utilizing time
series models to improve the precision of repeated survey estimators. The incorporation
of auxiliary series in the proposed estimators aligns with a modeling framework that
enhances the efficient utilization of survey data over time.

Additionally, regression-based and calibration methods have been explored to refine
estimation. Särndal et al. [13] considered regression estimators that improve finite pop-
ulation mean estimation by incorporating auxiliary data. Deville and Särndal [4] formal-
ized calibration estimators, demonstrating their ability to adjust survey design weights
to match known auxiliary totals. Our study leverages these concepts to propose new
estimators that combine regression and calibration techniques with time series models,
thereby achieving greater efficiency and reduced estimation variance.

More recently, Merkouris [10] proposed a novel composite estimation method for
repeated surveys with rotating panels, improving precision through the simultaneous cal-
ibration of overlapping samples. This approach enhances efficiency without requiring
micromatching, making it more practical than existing methods. Pfeffermann [12] ex-
amines key theoretical and applied advancements in time series analysis of repeated
survey data over the past 40 years. It concludes with insights into future challenges and
potential developments in the field. Our paper contributes to this ongoing discussion by
introducing and evaluating novel estimators designed to integrate auxiliary information
for better precision.

In this article, we address the problem of improving time series estimation in repeated
surveys by developing and analyzing new estimators that efficiently incorporate past sur-
vey data and auxiliary time series. These estimators, derived from time series forecasting
principles, leverage regression and calibration techniques to enhance estimation precision
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and reduce variance of the estimators. Section 2 introduces the mathematical derivations
for these estimators with a focus on incorporating auxiliary series. Section 3 presents
a numerical comparison of the estimators under various simulation settings, exploring
the impact of correlation, the number of surveys, sampling variance, and complexities of
time series models. The results of numerical modeling form the basis for the conclusions
presented in Section 4. Additional details regarding the specifications of the simulation
models are provided in the Appendix.

It is important to note that this study does not focus on individual sampling units but
rather on aggregated survey estimates over time. Instead of analyzing microlevel data,
the methodology relies on the sampling variance to capture the uncertainty in survey
estimates. The estimators are derived using time series models that treat survey estimates
as stochastic processes rather than collections of individual responses. This approach
aligns with the study’s objective of improving estimation precision while optimizing the
use of available recent and past aggregated data.

2 Estimation

At each time point i ∈ T , where T = {1, 2, . . . , t}, we consider a finite population
denoted by Ui = {1, 2, . . . , Ni}, whereNi is the population size at time i. The population
may change over time due to the addition or removal of units. Let zi be the study variable
defined onUi, representing the characteristic of interest, and let xi be an auxiliary variable
available for all units in Ui.

The finite population parameter of interest at time i, denoted by θi, is a function of the
study variable over Ui such as a mean. A probability sampling design is applied at each
time point i ∈ T to select a sample from Ui, and a design-based estimator θ̂i is used to
estimate θi. The samples at each time point are obtained from nonoverlapping surveys,
meaning that sampled units differ across time periods.

In this context, the sequence θi, i ∈ T , can be viewed as a realization of a stationary
time series defined on Z, where each θi represents a finite population parameter (such
as a mean) at time i. Similarly, we consider a corresponding auxiliary time series γi for
i ∈ T , where each γi is derived from the auxiliary variable xi over Ui, for example, the
population mean of xi at time i. Given that the auxiliary variables xi are known for all
i ∈ T , the associated values γi are available as well.

We consider that the time series follow the ARMA (autoregressive moving average)
model, which is a fundamental approach in time series analysis, combining autoregressive
(AR) and moving average (MA) components. The ARMA(p, q) model is expressed as [2]

θi = c+

p∑
j=1

λθ, jθi−j +

q∑
j=1

ψθ, jεθ, i−j + εθ, i. (1)

In the equation for the model, θi is the value at time i, c is a constant, λθ, j , for j =
1, . . . , p, are the autoregressive coefficients, ψθ, j , for j = 1, . . . , q, are the moving
average coefficients, and εθ, i is white noise, a random error term with zero mean, con-
stant variance, and no autocorrelation. The autoregressive term of the model captures the
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relationship between the current value of the time series and its past values, while the
moving average term models the relationship between the current value and past errors.

By setting p = 0 or q = 0 in model (1), we obtain the moving average MA(q) or
autoregressive AR(p) model, respectively.

We consider here only stationary ARMA(p, q) time series for which the roots of the
characteristic equation

1−
p∑
j=1

λθ, jg
j = 0

must lie outside the unit circle. Stationarity of a stochastic process means that its uncondi-
tional joint probability distribution does not change when shifted in time. Consequently,
parameters such as the mean and variance do not change over time.

Residuals, defined as ε̂∗θ, i = θi − ̂̂θi, for i ∈ T , are the differences between the ob-
served values θi and the predicted values ̂̂θi obtained from the fitted ARMA(p, q) model.
These predicted values are generated by applying the estimated ARMA(p, q) model to
the sequence θi, i ∈ T , providing one-step-ahead forecasts based on past observations
and errors. A good model produces residuals resembling white noise, indicating that all
patterns in the data have been captured. The AR component captures dependencies from
past values, while the MA component models dependencies from past errors.

The applied time series models reflect key properties of repeated surveys by capturing
temporal dependence, accounting for sampling errors, integrating auxiliary information,
and enabling forecasting. Since repeated surveys produce correlated estimates over time,
ARMA(p, q) models accommodate this structure through autoregressive and moving
average components. Measurement noise and sampling variability are explicitly modeled
to improve precision. The stationarity assumption ensures stability in estimation, while
the models also adapt to survey designs, making them well-suited for repeated survey
analysis.

In this article, we focus on repeated surveys conducted at regular time intervals from
a finite population to estimate the current value θt, assuming that γt is known. Scott and
Smith [14] and Scott et al. [15] analyzed the last survey and time series estimators

θ̂t = θt + et, et ∼ N
(
0, S2

θ

)
, (2)

θ̂TS, t =

(
1− S2

θ

ν2θ

)
θ̂t +

S2
θ

ν2θ
̂̂θt, (3)

where ̂̂θt is the best linear forecast of θ̂t based on a fitted ARMA(p, q) model to the
sequence of past estimates {θ̂i}i∈T , utilizing past observed values and residuals. The
sampling variance S2

θ reflects the variability of the design-based estimator θ̂t due to
sampling and is defined as the variance of the sampling errors et, i.e., S2

θ = Var(et),
where the errors ei, i ∈ T , are assumed to be independent. ν2θ is the variance of the
mentioned linear forecast based on previous repeated surveys.

Estimators (2) and (3) were later studied by Ismail et al. [7].
Estimates from repeated surveys contain autocorrelated errors and sampling variabil-

ity, making traditional approaches like the last survey estimator (2) inefficient. Time series
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models, particularly ARMA-based approaches, provide a structured way to incorporate
past estimates and improve precision by reducing variance and filtering noise.

The need for alternative estimators arises because classical time series estimators,
such as estimator (3), do not utilize auxiliary information that can further enhance accu-
racy. The proposed estimators extend time series methods by integrating auxiliary series
through regression-type and calibration-based techniques. While calibration is used to
optimize the estimation process, the issue remains one of time series estimation – specifi-
cally, how to best use past and auxiliary data to obtain more accurate and stable estimates
over time.

Estimating θt with high accuracy is essential in repeated surveys, yet direct estimators
often suffer from high variance due to sampling errors. While the last survey estimator (2)
provides an unbiased but highly variable estimate, the time series estimator (3) improves
efficiency by incorporating past survey data. However, it may still be suboptimal under
certain correlation structures or when auxiliary information is available but not explicitly
utilized. To address these limitations, our study proposes enhanced estimators that inte-
grate time series modeling with calibration and regression-based techniques, leading to
improved precision, as demonstrated in Sections 3.

The following subsections introduce four estimators for θt that include the use of
auxiliary series.

2.1 Regression-type estimator

In Särndal et al.’s book [13], a regression estimator is given for the finite population mean
of a variable, say z, and is expressed as

µ̂z = z̄ +
szx
s2x

(µx − x̄), (4)

where, under a simple random sample, z̄ and x̄ denote the sample means of the study
variable z and the auxiliary variable x, respectively; szx represents the sample covariance
between z and x; s2x corresponds to the sample variance of x; and µx refers to the finite
population mean of x.

By replacing z̄, szx, s2x, µx, and x̄ in (4) with yθ, t, Cov({yθ, i}i∈T , {yγ, i}i∈T ),
Var({yγ, i}i∈T ), γt, and yγ, t, respectively, we obtain the following regression-type es-
timator for θt:

θ̂R, t = yθ, t +
Cov g({yθ, i}i∈T , {yγ, i}i∈T )

Var({yγ, i}i∈T )
(γt − yγ, t), (5)

where the values {yθ, i}i∈T and {yγ, i}i∈T are the last survey estimates of {θi}i∈T and
{γi}i∈T , respectively. Both series {yθ, i}i∈T and {yγ, i}i∈T are based on the same re-
peated surveys.

2.2 Calibrated estimator

We employ the calibration approach (see Deville and Särndal [4]) to derive a calibrated
estimator of θt. Note that θt can be estimated simply by averaging the values {yθ, i}i∈T
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(see Box and Jenkins [2]):

θ̂t =
1

t

t∑
i=1

yθ, i. (6)

This approach is best suited for situations where θt, θt−1, . . . θ1 are assumed to be stable
and relatively unchanged over time.

Rewrite (6) as

θ̂t =

t∑
i=1

diyθ, i, di =
1

t
.

The weights di = 1/t, i = 1, . . . , t, can be modified using auxiliary time series to
obtain an estimator with a smaller variance. We define here the calibrated estimator of θt
of the following shape:

θ̂C, t =

t∑
i=1

wiyθ, i, (7)

where the new (calibrated) weights wi

• minimize the distance measure

D(w,d) =

t∑
i=1

(wi − di)2

di
; (8)

• satisfy the calibration equation

t∑
i=1

wiyγ, i = γt. (9)

The calibration equation (9) is treated as the requirement to use the new weights in
order to obtain the exact estimate of the known value γt. That is, using the new calibrated
weights to estimate the auxiliary known value γt, it would be estimated without error.
Thus, in the case of quite a high correlation between the study and auxiliary time series,
it is natural to expect that the estimate of θt will be more accurate when the calibrated
weights wi, i = 1, . . . , t, are applied in (7).

The weights wi, i = 1, . . . , t, of estimator (7) are given by the following lemma.

Lemma 1. The weights wi, i = 1, . . . , t, of estimator (7), which minimize the distance
measure (8) and satisfy Eq. (9), are given by

wi =
1

t

(
1 + yγ, i

(
tγt −

t∑
j=1

yγ, j

)(
t∑

j=1

y2γ, j

)−1)
.

Proof. The derivation of the weights wi, for i = 1, . . . , t, follows a similar approach to
that of the calibrated estimator of the finite population total (see Deville and Särndal [4]),
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beginning with the definition of the Lagrange function

Λ = Λ(w, η) =

t∑
i=1

(wi − di)2

di
− η

(
t∑
i=1

wiyγ, i − γt

)
.

Equating the partial derivatives ∂Λ/∂wi, i = 1, . . . , t, to zero leads us to the expressions

wi = di

(
1 +

1

2
ηyγ, i

)
, i = 1, . . . , t. (10)

After inserting them into calibration equation (9), we find the solution

η = 2

(
γt −

t∑
i=1

diyγ, i

)(
t∑
i=1

diy
2
γ, i

)−1
.

The insertion of this expression into (10) yields the result stated in the lemma.

2.3 Calibrated last survey estimator

According to the Wold decomposition (see Brockwell and Davis [3]), every stationary
ARMA time series can be represented as an infinite moving average (MA) model. Taking
the main t components from this decomposition, the last survey estimator (2) for θt can
be approximated by

θ̂
(WD)
t =

t−1∑
i=0

βiε
∗
θ, t−i, (11)

where β0, β1, . . . , βt−1 are the weights in a moving average process, β0 = 1, ε∗θ, t, ε
∗
θ, t−1,

. . . , ε∗θ, 1, are the residuals derived from a time series model that best fits the set {yθ, i}i∈T
according to the Box–Jenkins methodology (see Box and Jenkins [2]).

As defined in (11), this form of the estimator suggests the following shape and defini-
tion of a new calibrated estimator:

θ̂CLS, t =

t−1∑
i=0

wC ,iε
∗
θ, t−i, (12)

where the calibrated weights wC ,i

• minimize the distance measure

DC (w,β) =

t−1∑
i=0

(wC ,i − βi)2

βi
; (13)

• satisfy the calibration equation
t−1∑
i=0

wC ,iε
∗
γ, t−i = γt, (14)

where ε∗γ, t, ε
∗
γ, t−1, . . . , ε

∗
γ, 1 are the residuals derived from a time series model that

best fits the set {yγ, i}i∈T .

Nonlinear Anal. Model. Control, 30(3):551–572, 2025

https://doi.org/10.15388/namc.2025.30.41781


558 D. Pumputis

The solution to this problem is presented in the following corollary, which follows
from Lemma 1 by observing that the weights βi, for i = 0, . . . , t − 1, and the residuals
ε∗γ, i, for i = t, . . . , 1, correspond to the weights di and the estimates yγ, i, respectively,
for i = 1, . . . , t.

Corollary 1. The weights wC ,i, i = 0, . . . , t − 1, of estimator (12), which minimize the
distance measure (13) and satisfy Eq. (14), are given by

wC ,i = βi

(
1 + ε∗γ, t−i

(
γt −

t−1∑
j=0

βjε
∗
γ, t−j

)(
t−1∑
j=0

βj(ε
∗
γ, t−j)

2

)−1)
.

2.4 Calibrated time series estimator

The time series estimator (3) may be approximated by expressing θ̂t and its forecast ̂̂θt in
terms of the residuals ε∗θ, t, ε

∗
θ, t−1, . . . , ε

∗
θ, 1. Thus, in the general case, ŷθ, t can be viewed

as a linear function f of ε∗θ’s. The approximation to (3) then becomes

θ̂
(WD)
TS, t =

(
1− S2

θ

ν2θ

)t−1∑
i=0

βiε
∗
θ, t−i +

S2
θ

ν2θ
f(ε∗θ, t, ε

∗
θ, t−1, . . . , ε

∗
θ, 1).

After some simplifications, θ̂(WD)
TS, t can be written in the linear form:

θ̂
(WD)
TS, t =

t−1∑
i=0

βTS, iε
∗
θ, t−i, (15)

where the weights βTS, i, i = 1, . . . , t−1, depend on the function f as well as the weights
βi, for i = 0, 1, . . . , t− 1, and the variances S2

θ and ν2θ .
Below are three examples of time series models for {θi}i∈Z, along with the corre-

sponding weights βTS, 0, βTS ,1, . . . , βTS, t−1, derived from each model.

Example 1. Consider the AR(1) model for the process {θi}:

θi = λθθi−1 + εθ, i, |λθ| < 1, εθ, i ∼ N
(
0, σ2

θ

)
, i ∈ Z.

Next, we analyze the model that governs the time series {yθ, i}, defined as

yθ, i = θi + ei, ei ∼ N
(
0, S2

θ

)
, i ∈ Z.

Using the backshift operator B, where Bθi = θi−1, the AR(1) model for {θi}i∈Z can
be expressed as

φ(B)θi = εθ, i, where φ(B) = 1− λθB.

Applying φ(B) to both sides of the equation for yθ, i, we obtain

φ(B)yθ, i = φ(B)θi + φ(B)ei.
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Since φ(B)θi = εθ, i, we have

φ(B)yθ, i = εθ, i + φ(B)ei. (16)

The right-hand side of Eq. (16), εθ, i + φ(B)ei, is a linear combination of white noise
processes, which is therefore a stationary process. According to the Wold decomposition
theorem (see Brockwell and Davis [3]), this process can be represented as an infinite mov-
ing average (MA) process. However, since φ(B) = 1 − λθB is a first-order polynomial,
the autocovariance function cuts of after lag 1. This implies that the process in the right-
hand side of Eq. (16) is an MA(1) process, say (1 + ψyθB)ui, where ψyθ is the moving
average coefficient, and ui is white noise with variance σ2

u.
Now we can write model (16) as

(1− λθB)yθ, i = (1 + ψyθB)ui. (17)

This proves that yθ, i, for i ∈ Z, follows an ARMA(1, 1) model.
From the left-hand side of Eq. (17) it is clear that the autoregressive parameter for

this ARMA(1, 1) model matches that of {θi}i∈T , i.e., λyθ = λθ. The moving average
parameter ψyθ and the white noise variance σ2

u of this process can be determined by
equating the autocovariance function on the right-hand side of Eq. (16) with that of (1 +
ψyθB)ui for lags k = 0, 1 and solving the resulting system of two nonlinear equations

(1 + ψ2
yθ

)σ2
u = σ2

θ +
(
1 + λ2θ

)
S2
θ ,

−ψyθσ2
u = λθS

2
θ .

Since {yθ, i}i∈Z follows an ARMA(1, 1) model, the time series estimator (3) can be
written as

θ̂TS, t =

(
1− S2

θ

ν2θ

)
yθ, t +

S2
θ

ν2θ
(λyθyθ, t−1 + ψyθε

∗
θ, t−1)

≈
(

1− S2
θ

ν2θ

) t−1∑
i=0

βiε
∗
θ, t−i +

S2
θ

ν2θ
(λyθyθ, t−1 + ψyθε

∗
θ, t−1), (18)

where the symbol ≈ signifies that the second equation provides an approximation of the
first. The exact form includes yθ, t, while the approximation replaces it with a weighted
sum of past residuals,

∑t−1
i=0 βiε

∗
θ, t−i. This substitution is useful to define the new cali-

brated estimator of θt.
After algebraic manipulations, formula (18) simplifies to

θ̂TS, t ≈ θ̂(WD)
TS, t =

t−1∑
i=0

βTS, iε
∗
θ, t−i,

where

βTS, 0 = 1− S2
θ

ν2θ
,

Nonlinear Anal. Model. Control, 30(3):551–572, 2025
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βTS, i =

(
1− S2

θ

ν2θ

)
βt−i +

S2
θ

ν2θ
λyθβt−i−1, i = 1, . . . , t− 2,

βTS, t−1 =

(
1− S2

θ

ν2θ

)
β1 +

S2
θ

ν2θ
(λyθ + ψyθ ).

Example 2. Similarly as in Example 1, yθ, i = θi + ei, ei ∼ N(0, S2
θ ), i ∈ Z, fol-

low ARMA(2, 2) model if {θi}i∈Z are from stationary AR(2) model. Denote the auto-
regressive and moving average coefficients of this process by λyθ,1, λyθ,2, ψyθ,1, ψyθ,2,
respectively. Then estimator (3) becomes

θ̂TS, t =

(
1− S2

θ

ν2θ

)
yθ, t

+
S2
θ

ν2θ
(λyθ,1yθ, t−1 + λyθ,2yθ, t−2 + ψyθ,1ε

∗
θ, t−1 + ψyθ,2ε

∗
θ, t−2)

≈
(

1− S2
θ

ν2θ

) t−1∑
i=0

βiε
∗
θ, t−i

+
S2
θ

ν2θ
(λyθ,1yθ, t−1 + λyθ,2yθ, t−2 + ψyθ,1ε

∗
θ, t−1 + ψyθ,2ε

∗
θ, t−2).

By combining similar terms, we obtain the expression

θ̂TS, t ≈ θ̂(WD)
TS, t =

t−1∑
i=0

βTS, iε
∗
θ, t−i,

where

βTS, 0 = 1− S2
θ

ν2θ
,

βTS, i =

(
1− S2

θ

ν2θ

)
βt−i +

S2
θ

ν2θ
(λyθ,1βt−i−1 + λyθ,2βt−i−2), i = 1, . . . , t− 3,

βTS, t−2 =

(
1− S2

θ

ν2θ

)
β2 +

S2
θ

ν2θ
(λyθ,1β1 + λyθ,2 + ψyθ,2),

βTS, t−1 =

(
1− S2

θ

ν2θ

)
β1 +

S2
θ

ν2θ
(λyθ,1 + ψyθ,1).

Example 3. If {θi}i∈Z follows MA(2) model, then yθ, i = θi + ei, ei ∼ N(0, S2
θ ), i ∈ Z,

are defined also by MA(2) model, but with different coefficients, specifically ψyθ,1 and
ψyθ,2. By substituting the forecast ̂̂θt = ψyθ,1ε

∗
θ, t−1 + ψyθ,2ε

∗
θ, t−2 into (3), we get

θ̂TS, t =

(
1− S2

θ

ν2θ

)
yθ, t +

S2
θ

ν2θ
(ψyθ,1ε

∗
θ, t−1 + ψyθ,2ε

∗
θ, t−2)

≈
(

1− S2
θ

ν2θ

)t−1∑
i=0

βiε
∗
θ, t−i +

S2
θ

ν2θ

(
ψyθ,1ε

∗
θ, t−1 + ψyθ,2ε

∗
θ, t−2).
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A few simplifications yield this formula:

θ̂TS, t ≈ θ̂(WD)
TS, t =

t−1∑
i=0

βTS, iε
∗
θ, t−i,

where

βTS, 0 = 1− S2
θ

ν2θ
, βTS, i = 0, i = 1, . . . , t− 3,

βTS, t−2 = ψyθ,2, βTS, t−1 = ψyθ,1.

Based on expression (15), the calibrated times series estimator is defined by the
formula

θ̂CTS, t =

t−1∑
i=0

wTS, iε
∗
θ, t−i, (19)

where the calibrated weights wTS, i

• minimize the distance measure

DTS (w,β) =

t−1∑
i=0

(wTS, i − βTS, i)
2

βTS, i
; (20)

• satisfy the calibration equation

t−1∑
i=0

wTS, iε
∗
γ, t−i = γt. (21)

The solution of this problem is given in the following corollary.

Corollary 2. The weights wTS, i, i = 0, . . . , t− 1, of estimator (19), which minimize the
distance measure (20) and satisfy Eq. (21), are given by

wTS, i = βTS, i

(
1 + ε∗γ, t−i

(
γt −

t−1∑
j=0

βTS ,jε
∗
γ, t−j

)(
t−1∑
j=0

βTS ,j(ε
∗
γ, t−j)

2

)−1)
.

The results of Corollary 2 follow from Lemma 1 by noting that the weights βTS, i, for
i = 0, . . . , t− 1, and the residuals ε∗γ, i, for i = t, . . . , 1, correspond to the weights di and
the estimates yγ, i, respectively, for i = 1, . . . , t.

The calibration approach used in this paper is suitable for time series because, similar
to survey sampling, minimizing the distance function results in a nearly unbiased estima-
tor. Additionally, the calibration equation adjusts the weights in the linear combination
so that the newly assigned weights for the auxiliary series yield exact estimates. Conse-
quently, in settings with high correlation, these calibrated weights produce highly precise
calibrated estimators of θt.
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3 Numerical comparisons

The last survey θ̂t (2), time series θ̂TS, t (3), regression-type θ̂R, t (5), calibrated θ̂C, t (7),
calibrated last survey θ̂CLS, t (12), and calibrated time series θ̂CTS, t (19) estimators are
compared using time series models presented in Table 1, according to which study and
auxiliary time series, {θi} and {γi}, i = 1, 2, . . . , 700, are generated, representing the
modeled finite population means created under the assumption that the initial values
are zero. The implementation and comparison of these estimators are carried out using
the R programming language. Detailed model specifications, including model equations,
coefficients, and the variance of model residuals, are provided in the Appendix.

The comparison of estimators is also conducted depending on the following factors.

• The sampling variances S2
θ and S2

γ of the last survey estimators for θt and γt,
respectively. The values for S2

θ are 0.49, 1, or 2.25, while those for S2
γ are 0.7,

1.2, or 2.5.
• Numbers of repeated surveys t representing the number of sample means. The

simulation includes survey counts of 15, 30, 60, or 120, where 15 is the minimum,
and 120 is the maximum number of repeated surveys. To examine the effect of
series size, each selected survey number t is formed by taking the last t values in the
series of sample means with a total size of 700, removing the first 700− t values of
each series to eliminate the initialization effect. This ensures that the sample means
included in smaller series sizes are also part of the larger series sizes. For example,
if t = 30, the sample means from the series size of 15 are included in the larger
series.

• The correlation ρ(εθ, εγ) between the errors εθ, 700, εθ, 699, . . . , εθ, 1 and εγ, 700,
εγ, 699, . . . , εγ, 1, which takes values of 0.9 or 0.6, characterizes the relationship be-
tween the errors used to generate the series θ700, θ699, . . . , θ1 and γ700, γ699, . . . , γ1
according to the selected models.

For each scenario and each specific combination of values for the factors S2
θ , S2

γ , σ2
θ ,

σ2
γ , t, and ρ(εθ, εγ), M = 105 estimates of θ̂t, θ̂TS, t, θ̂R, t, θ̂C, t, θ̂CLS, t, and θ̂CTS, t are

calculated. These estimates are then used to estimate the quartiles of the mean square error
(MSE) of the estimators for particular combinations of the mentioned factors, enabling
an assessment of estimators’ efficiency.

Specifically, for one particular combination of factor values, the MSE of an estimator,
say θ̂t, is estimated using the formula

MSE(θ̂t) =
1

M

M∑
m=1

(θ̂t,m − θt)2,

where θ̂t,m denotes the estimate of θt obtained from the mth simulated time series
{yθ, i}i∈T .

For example, to obtain the quartiles of the MSE for t = 15, ρ(εθ, εγ) = 0.9,
and the AR(1) model for γ’s in Scenario 1, we consider all MSE estimates across all
combinations of the values of S2

θ , S2
γ , σ2

θ , σ2
γ , and the coefficients of the AR(1) model

used in this scenario. Here the shorthand γ’s refers to the set {γi}i∈1,2,...,700.
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Table 1. Overview of model scenarios.

Scenario Model for study time series {θi} Models for auxiliary time series {γi}
1 AR(1) AR(1) or ARMA(1, 1)
2 AR(2) AR(2) or ARMA(2, 2)
3 MA(2) MA(2) or AR(1)

Figure 1. Boxplots of the MSE of estimators under Scenario 1 across values of t, for ρ(εθ, εγ) = 0.9,
assuming an AR(1) model for the γ’s.

Figure 2. Boxplots of the MSE of estimators under Scenario 1 across values of t, for ρ(εθ, εγ) = 0.6,
assuming an AR(1) model for the γ’s.

Comparison of estimators across values of t. In Figs. 1–4, we present boxplots of
the MSE of estimators under Scenario 1 across values of t and ρ(εθ, εγ) for both AR(1)
and ARMA(1, 1) models for the γ’s. As the results across values of t for Scenarios 2
and 3 exhibit similar patterns to those in Scenario 1, we focus our presentation on Sce-
nario 1.

Calibration significantly reduces MSE for all calibrated estimators with its impact
increasing as the correlation ρ(εθ, εγ) rises. When ρ = 0.9, calibrated estimators like

Nonlinear Anal. Model. Control, 30(3):551–572, 2025

https://doi.org/10.15388/namc.2025.30.41781


564 D. Pumputis

Figure 3. Boxplots of the MSE of estimators under Scenario 1 across values of t, for ρ(εθ, εγ) = 0.9,
assuming an ARMA(1, 1) model for the γ’s.

Figure 4. Boxplots of the MSE of estimators under Scenario 1 across values of t, for ρ(εθ, εγ) = 0.6,
assuming an ARMA(1, 1) model for the γ’s.

θ̂CTS, t and θ̂CLS, t achieve much lower MSE than θ̂TS, t and θ̂t, highlighting calibration’s
effectiveness in leveraging auxiliary information.

Among calibrated estimators, θ̂CTS, t consistently yields the lowest MSE in high-
correlation settings by integrating time series and calibration adjustments. The regression
estimator θ̂R, t also performs well, maintaining low MSE across varying correlations by
systematically incorporating auxiliary data. As ρ increases, θ̂R, t achieves MSE values
close to the best-performing calibrated estimators.

With more repeated surveys (t), the MSE decreases for most estimators, particularly
when ρ = 0.9, except for θ̂t, which does not depend on t. However, at moderate correla-
tion (ρ = 0.6), the reduction is less pronounced as auxiliary data has a weaker influence.

Under both the AR(1) and ARMA(1, 1) models, the regression estimator θ̂R, t out-
performs the others. The AR(1) model yields slightly lower MSE for all calibrated and
regression estimators, particularly at high values of ρ, suggesting that its simpler structure

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Estimation in repeated surveys: Time series and calibration 565

allows for better utilization of strong correlations. At moderate ρ, the choice of model has
minimal effect on MSE, reinforcing that AR(1) is most beneficial under high correlation.

Comparison of estimators across sampling variances S2
θ and S2

γ . The estimators of θt
are compared across different combinations of sampling variances S2

θ , S2
γ and correlation

ρ(εθ, εγ). Due to the large number of tables, only key results are presented.
Except for θ̂C, t, estimator variability increases with higher sampling variance. Inter-

estingly, θ̂C, t remains relatively robust, showing similar quartiles across different S2
θ and

S2
γ , though they are larger than those of other calibration-based estimators.
θ̂CLS, t and θ̂CTS, t perform well with high ρ(εθ, εγ) and simpler auxiliary models

but sometimes underperform compared to θ̂TS, t, especially with larger S2
θ and S2

γ . Thus,
θ̂TS, t remains reliable when the auxiliary information used for calibration has a low cor-
relation with the study’s time series.

The regression estimator θ̂R, t shows the smallest MSE quartile differences, indicating
consistent, low-variability performance. The last survey estimator’s MSE closely matches
S2
θ , aligning with theoretical expectation.

The overall comparison of the estimators. Table 2 displays the overall quartiles of
the MSE for estimators under Scenario 1, incorporating both AR(1) and ARMA(1, 1)
models for the γ’s across different levels of correlation ρ(εθ, εγ). For example, to obtain
the overall quartiles of the MSE for ρ(εθ, εγ) = 0.9 under the AR(1) model for the γ’s
in Scenario 1, we aggregate all MSE estimates across all combinations of the values of t,
S2
θ , S2

γ , σ2
θ , σ2

γ , and the coefficients of the AR(1) model used in this scenario.
Calibration, especially in θ̂CTS, t, is most effective when correlation is high (≈ 0.9),

minimizing MSE. Under AR(1), strong dependency enhances calibration, but its advan-
tage diminishes with ARMA(1, 1) or weaker correlation (0.6), increasing MSE variabil-
ity.

The time series estimator θ̂TS, t remains stable with low MSE, ensuring reliability
across scenarios. While it is consistent, calibrated estimators like θ̂CTS, t achieve lower
MSE in simpler cases.

The regression estimator θ̂R, t adapts well across correlation levels, maintaining low
MSE even with ARMA(1, 1). Meanwhile, the last survey estimator θ̂t has the highest
MSE as it relies only on recent data.

Table 3 presents the overall quartiles of the MSE for estimators in Scenario 2, in-
corporating both AR(2) and ARMA(2, 2) models for the γ’s at two levels of correlation
ρ(εθ, εγ). When correlation is high (ρ(εθ, εγ) = 0.9), the calibrated time series estimator
θ̂CTS, t achieves the lowest MSE across all quartiles in the AR(2) model by leveraging
correlation for improved accuracy. In the ARMA(2, 2) model, θ̂C, t performs best in the
first quartile, while θ̂CTS, t remains competitive, particularly in the middle and upper
quartiles. The calibrated last survey estimator θ̂CLS, t performs similarly to θ̂CTS, t but
is slightly less accurate in more complex models. The regression estimator θ̂R, t shows
higher MSE in both models.

When correlation decreases (ρ(εθ, εγ) = 0.6), θ̂CTS, t still performs well in the AR(2)
model, though with slightly higher MSE. In the ARMA(2, 2) model, it maintains the
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Table 2. Overall quartiles of the MSE of estimators under Scenario 1 with AR(1) model (on the left) and
ARMA(1, 1) model (on the right) for γ’s.

Quar-
tiles θ̂t θ̂TS, t θ̂R, t θ̂C, t θ̂CLS, t θ̂CTS, t

ρ(εθ, εγ) = 0.9

Q1 0.491 0.293 0.098 0.041 0.169 0.110
Q2 0.989 0.420 0.191 0.164 0.299 0.197
Q3 2.209 0.667 0.421 0.353 0.513 0.369

ρ(εθ, εγ) = 0.6

Q1 0.491 0.293 0.143 0.057 0.187 0.128
Q2 0.989 0.420 0.233 0.360 0.325 0.240
Q3 2.209 0.667 0.443 0.962 0.608 0.496

Quar-
tiles θ̂t θ̂TS, t θ̂R, t θ̂C, t θ̂CLS, t θ̂CTS, t

ρ(εθ, εγ) = 0.9

Q1 0.491 0.293 0.152 0.043 0.244 0.154
Q2 0.989 0.420 0.245 0.213 0.486 0.314
Q3 2.209 0.667 0.436 0.750 1.176 0.813

ρ(εθ, εγ) = 0.6

Q1 0.491 0.293 0.203 0.139 0.341 0.226
Q2 0.989 0.420 0.350 0.563 0.657 0.531
Q3 2.209 0.667 0.568 1.328 1.298 0.924

Table 3. Overall quartiles of the MSE of estimators under Scenario 2 with AR(2) model (on the left) and
ARMA(2, 2) model (on the right) for γ’s.

Quar-
tiles θ̂t θ̂TS, t θ̂R, t θ̂C, t θ̂CLS, t θ̂CTS, t

ρ(εθ, εγ) = 0.9

Q1 0.491 0.323 0.113 0.122 0.150 0.084
Q2 0.995 0.487 0.196 0.343 0.219 0.123
Q3 2.212 0.774 0.426 0.971 0.411 0.222

ρ(εθ, εγ) = 0.6

Q1 0.491 0.323 0.189 0.192 0.172 0.107
Q2 0.995 0.487 0.274 0.608 0.270 0.196
Q3 2.212 0.774 0.476 2.429 0.461 0.441

Quar-
tiles θ̂t θ̂TS, t θ̂R, t θ̂C, t θ̂CLS, t θ̂CTS, t

ρ(εθ, εγ) = 0.9

Q1 0.491 0.323 0.122 0.072 0.212 0.133
Q2 0.995 0.487 0.220 0.302 0.347 0.239
Q3 2.212 0.774 0.440 0.805 0.509 0.393

ρ(εθ, εγ) = 0.6

Q1 0.491 0.323 0.186 0.184 0.237 0.128
Q2 0.995 0.487 0.275 0.802 0.369 0.229
Q3 2.212 0.774 0.480 2.575 0.540 0.467

Table 4. Overall quartiles of the MSE of estimators under Scenario 3 with MA(2) model (on the left) and
AR(1) model (on the right) for γ’s.

Quar-
tiles θ̂t θ̂TS, t θ̂R, t θ̂C, t θ̂CLS, t θ̂CTS, t

ρ(εθ, εγ) = 0.9

Q1 0.489 0.347 0.098 0.043 0.176 0.125
Q2 0.992 0.474 0.191 0.129 0.275 0.219
Q3 2.210 0.759 0.421 0.440 0.463 0.368

ρ(εθ, εγ) = 0.6

Q1 0.489 0.347 0.127 0.144 0.243 0.198
Q2 0.992 0.474 0.229 0.457 0.450 0.382
Q3 2.210 0.759 0.454 1.394 0.809 0.826

Quar-
tiles θ̂t θ̂TS, t θ̂R, t θ̂C, t θ̂CLS, t θ̂CTS, t

ρ(εθ, εγ) = 0.9

Q1 0.489 0.347 0.117 0.042 0.288 0.194
Q2 0.992 0.474 0.201 0.179 0.532 0.413
Q3 2.210 0.759 0.429 0.735 1.111 0.965

ρ(εθ, εγ) = 0.6

Q1 0.489 0.347 0.118 0.096 0.344 0.260
Q2 0.992 0.474 0.214 0.364 0.552 0.454
Q3 2.210 0.759 0.442 1.256 0.931 0.783

lowest MSE in upper quartiles, while θ̂C, t sees a greater increase in MSE, indicating
reduced adaptability. The regression estimator θ̂R, t remains a reasonable option.

The time series estimator θ̂TS, t is stable across conditions, often outperforming θ̂C, t
in the upper quartile.

Table 4 summarizes the quartiles of MSE for the estimators in Scenario 3, consid-
ering both MA(2) and AR(1) models for the γ’s at two specified correlation levels,
ρ(εθ, εγ). In most scenarios, across different correlations and models, the calibrated
estimator θ̂C, t achieves the lowest MSE values in the first quartile, making it the best
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choice among calibrated estimators, especially under high correlation. The estimators
θ̂CLS, t and θ̂CTS, t are similar in quality, though θ̂CTS, t performs slightly better overall.
Both typically outperform the time series estimator θ̂TS, t but show slightly higher MSE in
the upper quartile when using the AR(1) model for γ’s or under moderate correlation. The
regression estimator θ̂R, t remains effective across most conditions, making it versatile.
As in other simulation settings, the last survey estimator θ̂t has the highest MSE as it is
the simplest estimator, relying only on the last survey sample mean. It serves as the basis
for constructing the calibrated last survey estimator θ̂CLS, t.

Real data example. For additional analysis, real data from the Lithuanian Labour Force
Survey, conducted quarterly by the State Data Agency between 2011 and 2020 (excluding
the third quarter of 2016), are used. The dataset, titled Employment Survey, was obtained
from the Lithuanian Open Data Portal [20]. The Labour Force Survey in Lithuania em-
ploys a sampling design where a simple random sample of individuals is initially selected
from the Population Register. Subsequently, all members of the selected individuals’
households are included in the survey, resulting in a cluster sample where each cluster
comprises all persons living at the selected address. Thus, each quarterly sample consists
of approximately 8 000 households, representing around 1% of the population aged 15
and over [19].

In this example, {yθ, i}i∈T and {yγ, i}i∈T represent the last survey estimates, calcu-
lated as the quarterly sample unemployment rate and the proportion of sampled individu-
als aged 15 to 25, respectively. The values {γi}i∈T , where T = {1, 2, . . . , 39}, represent
the true quarterly proportions of individuals aged 15 to 25, obtained from the Population
Register [21]. The aim is to estimate θ39, which represents the unemployment rate for the
fourth quarter of 2020.

Following the Box and Jenkins [2] procedures for time series model estimation, the
sample unemployment rate and the proportion of sampled individuals aged 15 to 25 are
found to follow ARMA(2, 1, 2) models:

∆yθ, i = −0.09∆yθ, i−1 − 0.98∆yθ, i−2 − 0.11εyθ, i−1 + 0.77εyθ, i−2 + εyθ, i,

∆yγ, i = −0.45∆yγ, i−1 − 0.69∆yγ, i−2 + 0.45εyγ , i−1 + 0.27εyγ , i−2 + εyγ , i

with ν2θ = 1.127 · 10−4, where ∆yθ, i = yθ, i − yθ, i−1, ∆yγ, i = yγ, i − yγ, i−1, and
εyθ, i and εyγ , i denote the white noise error terms. Although the correlation between
{yθ, i}i∈T and {yγ, i}i∈T is strong (ρ = 0.83), the correlation between the corresponding
residuals, ρ(εyθ , εyγ ) = 0.47, is only moderate. The strong correlation between the series
{yθ, i}i∈T and {yγ, i}i∈T suggests that both the regression-based θ̂R, t and the calibrated
θ̂C, t estimators are likely to perform well.

Since the dataset under analysis provides access to unit-level sample data, we estimate
the variance S2

θ by calculating the average of the sampling variances estimated for each i,
where i ∈ T . This method yields a variance value of S2

θ = 1.039 · 10−5. Scott et al. [15]
provide some suggestions for estimating the variance S2

θ when unit-level sample data is
not available. Since unit-level sample data are available, the variances of the estimators
are estimated using bootstrap without-replacement [6].
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Table 5. Estimates of θt and variances of estimators for the real-data case.

Estimators θ̂t θ̂TS, t θ̂R, t θ̂C, t

Estimates of θt 0.085 0.086 0.076 0.067
Variance of estimators ×105 1.039 0.943 0.209 0.124

Table 5 compares different estimators of θt = θ39 based on their estimates and
variances. However, the estimators θ̂CLS, t and θ̂CTS, t are excluded from the calcula-
tions as the approximation (11) fails to capture the most significant part of the Wold
decomposition due to the relatively large absolute value of the autoregressive coefficient,
|λθ, 2| = 0.98, and the short time series length of t = 39. Specifically, the decomposition
coefficients omitted beyond t = 39 remain significant in terms of their absolute values; for
example, the next few are−0.148,−0.082, and 0.152. The exclusion of these coefficients
leads to a substantial loss of information in the approximation, which in turn negatively
affects the effectiveness and stability of the estimators θ̂CLS, t and θ̂CTS, t under these
conditions.

As seen from Table 5, the highest estimate is given by θ̂TS, t = 0.086, while the
lowest is obtained from θ̂C, t = 0.067. In terms of variance, θ̂t has the highest value
(1.039 ·10−5), indicating lower reliability. The variance of the time series estimator θ̂TS, t
is slightly lower than that of θ̂t as it incorporates the time-dependent structure of the data.
The regression estimator θ̂R, t outperforms the time series estimator but performs worse
than the calibrated estimator θ̂C, t, which exhibits the lowest variance (0.124 · 10−5),
indicating higher stability. These findings are consistent with the results from artificial
data, where, in some simulation settings, the calibrated estimator θ̂C, t shows the lowest
first quartile of MSE among all estimators. While the median is commonly used for such
comparisons, the lowest first quartile indicates that in at least 25% of simulated cases, θ̂C, t
produces particularly small errors. This implies a relatively high probability that, in real-
data applications with only one realization of the time series {yθ, i}i∈T and {yγ, i}i∈T ,
the MSE of θ̂C, t will be the smallest among the considered estimators.

4 Conclusions

Our study introduces a set of newly improved estimators that integrate calibration and
regression-based adjustments in repeated surveys. The last survey estimator (2) is com-
monly used but does not leverage past information, leading to higher variance [14]. Sim-
ilarly, while the time series estimator (3) provides some improvements, it lacks auxiliary
information [7,15]. In contrast, our approach achieves lower MSE and improved accuracy
as confirmed through numerical simulations. These findings suggest that regression-
and calibration-based methods should be preferred in settings where auxiliary series are
available.

Overall, the performance of the estimators is significantly influenced by factors such
as the correlation between the errors of the target and auxiliary series, the complexity of
the models for θ’s and γ’s, the sampling variances, and the number of repeated surveys,
though not all estimators are affected by all these factors to the same extent.
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High correlation (ρ(εθ, εγ)) consistently enhances the performance of calibration-
based estimators, particularly θ̂CTS, t, which combines calibration with time-series ad-
justments to achieve the lowest MSE across most scenarios. This estimator is highly
adaptable and robust, excelling in both simple (e.g., AR(1)) and relatively complex
(e.g., ARMA(2, 2)) model settings. In all scenarios, it is evident that the calibrated esti-
mators perform better when the model structure for θ’s and γ’s is the same. This alignment
allows the estimators to more effectively employ the correlation and structural similarity
between the study and auxiliary time series, resulting in lower MSE values. When the
models differ, these estimators lose some efficiency due to the mismatch in model dy-
namics, which reduces their ability to fully exploit the correlation between the errors of
θ’s and γ’s.

The calibrated estimator θ̂C, t achieves low MSE in high-correlation settings, partic-
ularly with simpler auxiliary models. However, its sensitivity to correlation strength and
model complexity limits its reliability in varied conditions.

The regression estimator θ̂R, t demonstrates consistent and reliable performance across
various scenarios, achieving low MSE with minimal variability. It excels in high-correla-
tion settings and remains robust under moderate correlations and more complex auxiliary
models. While occasionally outperformed by calibration-based estimators like θ̂CTS, t in
very high-correlation scenarios, θ̂R, t is a versatile and stable choice, particularly when
the relationship between the target and auxiliary series is weaker.

Analysis of real Lithuanian Labour Force Survey data supports these findings for both
the calibrated estimator θ̂C, t and the regression-based estimator θ̂R, t, showing that they
achieve lower variance and greater reliability, particularly in high-correlation settings.

The time series estimator θ̂TS, t relies solely on the target series and performs con-
sistently across various scenarios, independent of auxiliary series. Its effectiveness stems
from employing the time series structure of θ’s, making it robust to model specifications.
While it may be outperformed by calibration-based estimators in scenarios where aux-
iliary information is valuable, θ̂TS, t remains a straightforward and reliable option for
estimating θt.

In contrast, the last survey estimator θ̂t consistently exhibits the highest MSE, pri-
marily serving as a baseline for comparison and as a basis for constructing the calibrated
last survey estimator θ̂CLS, t. While simple, its reliance on sampling variance limits its
precision, particularly in scenarios with high sampling variance.

Thus, when choosing an estimator, practitioners should consider the availability and
quality of auxiliary information along with the correlation structure and complexity of the
underlying models. The calibrated time series estimator θ̂CTS, t is recommended when
high correlation exists between the target and auxiliary series, particularly when both
follow similar structural models, as it consistently achieves the lowest MSE. The es-
timator θ̂CLS, t is a slightly worse alternative to θ̂CTS, t but accommodates a simpler
structure, resulting in easier calculations. Note that in cases with a strong autoregressive
component and limited data length (t), θ̂CLS, t and θ̂CTS, t yield less reliable results as the
Wold decomposition approximation (11) becomes inaccurate and undermines estimator
accuracy. The regression estimator θ̂R, t is a strong alternative, especially in settings where

Nonlinear Anal. Model. Control, 30(3):551–572, 2025

https://doi.org/10.15388/namc.2025.30.41781


570 D. Pumputis

correlation is moderate or when auxiliary models differ from the target series, as it remains
stable and reliable across various conditions. The calibrated estimator θ̂C, t is well-suited
for cases with high correlation and simpler auxiliary models but should be used cautiously
in complex settings due to its sensitivity to correlation strength. The time series estimator
θ̂TS, t is ideal when no reliable auxiliary information is available as it provides a robust
approach based solely on the target series structure. Finally, the last survey estimator θ̂t
should generally be avoided for inference due to its high MSE.

The estimation methods derived in this paper can be applied to time series that arise
from real surveys as well as from human activities. They can also be applied to naturally
occurring series such as the average daily temperature.

Future research could extend the estimators derived in this paper to nonstationary
time series, incorporate machine learning for improved precision, and explore adaptive
methods like Bayesian approaches. Applying them to real-world surveys and complex
designs would validate their practicality, while multivariate extensions and uncertainty
quantification could enhance robustness and reliability. The development of variance esti-
mation methods for calibrated estimators with a nonlinear weight structure is also a major
challenge.
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Appendix. Detailed model specifications

Scenario 1

Models for study time series {θi}i∈{1,...,700}:

AR(1): θi = λθθi−1 + εθ, i, εθ, i ∼ N(0, σ2
θ),

where λθ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
Models for auxiliary time series {γi}i∈{1,...,700}:

AR(1): γi = λγγi−1 + εγ, i, εγ, i ∼ N(0, σ2
γ),

with λγ ∈ {0.2, 0.4, 0.6, 0.8, 0.95}, and

ARMA(1, 1): γi = λγγi−1 + ψγεγ, i−1 + εγ, i, εγ, i ∼ N(0, σ2
γ),

with (λγ , ψγ) selected from {(0.2, 0.1), (0.4, 0.3), (0.6, 0.5), (0.8, 0.7), (0.95, 0.9)}.
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Scenario 2

Models for study time series {θi}i∈{1,...,700}:

AR(2): θi = λθ, 1θi−1 + λθ, 2θi−2 + εθ, i, εθ, i ∼ N(0, σ2
θ),

where (λθ, 1, λθ, 2) are from {(0.1, 0.8), (0.3, 0.6), (0.5, 0.4), (0.7, 0.2), (0.9, 0.05)}.
Models for auxiliary time series {γi}i∈{1,...,700}:

AR(2): γi = λγ, 1γi−1 + λγ, 2γi−2 + εγ, i, εγ, i ∼ N(0, σ2
γ),

where (λγ, 1, λγ, 2) ∈ {(0.2, 0.7), (0.4, 0.5), (0.6, 0.3), (0.8, 0.1), (0.95, 0.01)}, and

ARMA(2, 2): γi = λγ, 1γi−1 + λγ, 2γi−2 + ψγ, 1εγ, i−1 + ψγ, 2εγ, i−2 + εγ, i,

εγ, i ∼ N(0, σ2
γ),

with tuples from {(0.2, 0.7, 0.1,−0.15), (0.4, 0.5, 0.3,−0.25), (0.6, 0.3, 0.5,−0.45),
(0.8, 0.1, 0.7,−0.65), (0.95, 0.01, 0.9,−0.85)}.

Scenario 3

Models for study time series {θi}i∈{1,...,700}:

MA(2): θi = ψθ, 1εθ, i−1 + ψθ, 2εθ, i−2 + εθ, i, εθ, i ∼ N(0, σ2
θ),

with (ψθ, 1, ψθ, 2) ∈ {(0.1, 0.8), (0.3, 0.6), (0.5, 0.4), (0.7, 0.2), (0.9, 0.05)}.
Models for auxiliary time series {γi}i∈{1,...,700}:

MA(2): γi = ψγ, 1εγ, i−1 + ψγ, 2εγ, i−2 + εγ, i, εγ, i ∼ N(0, σ2
γ),

where (ψγ, 1, ψγ, 2) ∈ {(0.2, 0.7), (0.4, 0.5), (0.6, 0.3), (0.8, 0.1), (0.95, 0.01)}, and

AR(1): γi = λγγi−1 + εγ, i, εγ, i ∼ N(0, σ2
γ),

where λγ ∈ {0.1, 0.2, 0.3, 0.4, 0.95}.
In all scenarios, the values of σ2

θ and σ2
γ are set to 0.49, 1, 2.25 and 0.7, 1.2, 2.5,

respectively.
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20. Lietuvos atvirų duomenų portalas, 2025, https://data.gov.lt/.

21. Population Register, https://www.registrucentras.lt/en/.

https://www.journals.vu.lt/nonlinear-analysis

https://doi.org/10.2307/2290268
https://doi.org/10.1214/aoms/1177728427
https://doi.org/10.1214/aoms/1177728427
http://www.asasrms.org/Proceedings/papers/1980_037.pdf
https://doi.org/10.2991/jsta.2018.17.4.1
https://doi.org/10.2991/jsta.2018.17.4.1
https://doi.org/10.1111/j.1467-842X.1979.tb01118.x
https://doi.org/10.1177/0282423X241254193
https://doi.org/10.1177/0282423X241254193
https://doi.org/10.1111/j.2517-6161.1950.tb00058.x
https://doi.org/10.1111/j.2517-6161.1950.tb00058.x
https://doi.org/10.1111/rssa.12950
https://doi.org/10.1111/rssa.12950
https://link.springer.com/book/9780387406206
https://doi.org/10.2307/2286000
https://doi.org/10.2307/1403000
https://doi.org/10.2307/1403000
http://ro.uow.edu.au/cssmwp/10
http://ro.uow.edu.au/cssmwp/10
https://doi.org/10.2307/1403271
https://archive.org/details/samplingmethodsf0000fran/page/n5/mode/2up
https://archive.org/details/samplingmethodsf0000fran/page/n5/mode/2up
https://ec.europa.eu/eurostat/cache/metadata/EN/employ_esqrs_lt.htm
https://ec.europa.eu/eurostat/cache/metadata/EN/employ_esqrs_lt.htm
https://data.gov.lt/
https://www.registrucentras.lt/en/
https://www.journals.vu.lt/nonlinear-analysis

	Introduction
	Estimation
	Regression-type estimator
	Calibrated estimator
	Calibrated last survey estimator
	Calibrated time series estimator

	Numerical comparisons
	Conclusions
	Appendix
	References

