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Abstract. We study the well-posedness and decay estimates of Cauchy problem for Active model B
in R3. First, based on the higher-order norm estimates of solutions and the mollifier technique, we
obtain the local existence of unique strong solution. Then, by using pure energy method, one proves
the global well-posedness and time decay estimates, provided that the H 3/2_norm of initial data is
sufficiently small.
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1 Introduction

Recently, in order to describe the phase separation among orientationally disordered ac-
tive particles whose propulsion speed decreases rapidly enough with density, Wittkowski
et al. [22] introduced the active model B:

o=~ (1)
J=—-Vu+T, 2)
p=—p+¢*— Vo +AVe)? 3)

where ¢(x,t) is a conserved scalar-order parameter filed at position x and time ¢. It is
worth pointing out that Eq. (1) expresses conservation of ¢, Eq. (2) states that its mean
current J — I' is proportional to the gradient of a nonequilibrium chemical potential p
obeying Eq. (3) with a constant A # 0, which is used to violate ¢ — —¢ symmetry and
time reversal symmetry. Besides, the vector I" is a Gaussian white noise whose variance
we take to be constant. The noise is often neglected altogether for phase-separation studies
[3], and we generally ignore it in this paper.
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Combining Egs. (1)-(3), we obtain the following equation [2, 20]:
o1+ A% = —Ap + Ap® + MNA|Vp|2 4)

Equation (4) is a classical fourth-order nonlinear parabolic equation. If we assume that
A = 0, it is reduced to the classical Cahn—Hilliard equation [5,7, 10, 11]

e+ A% = Af(p), 5

where f(¢) = ¢ — ¢ is the derivative of potential.

It was Caffarelli and Muler [4] who first investigated the Cauchy problem of Eq. (5)
in general N dimensions, obtained an L°°(R™  R)-a priori estimate of solution. Latterly,
assuming that

f(u) € C*(B(a,2r),R), flw)y=0M)|u—al' asu— a,

with some positive integer [ and L = max{5, N}, B(u,2r) = {u € R: [u—1| < 2r}, by
using Hoff and Smoller’s idea with a slight modification and Fourier splitting method, Liu
et al. [15] considered small data global well-posedness and time decay rate of solutions
for the Cauchy problem of Eq. (5) in R”. Besides, Cholewa and Rodriguez-Bernal [6]
exhibited the dissipative mechanism of the Cauchy problem of Eq. (5) in H!(R"). There
are also some papers related to the Cauchy problem of Cahn—Hilliard equation; please
refer to [8,9, 14, 23] and the reference therein.

Now, let us turn to Active model B. In [2], by using fixed point argument, Bae
and Lee showed the existence of a unique global-in-time solution, Gevrey regularity,
and decay properties with small initial data for the Cauchy problem of (4) in critical
Besove space and Wiener space. Latterly, for Active model B with the logarithmic Cahn—
Hilliard equation, Bae [1] showed the existence of unique global-in-time solutions if the
initial data are sufficiently small in Wiener space. In this paper, applying pure energy
method [12,21], we improve their global well-posedness results to critical Sobolev space
and establish the optimal decay estimates for strong solutions of system (4).

Due to the first term on the right-hand side of (4);, which has a destabilizing effect, we
cannot deal with its Cauchy problem straightforward [2]. Instead, assuming that u = p—1
(it is motivated by the fact that constants are stationary solutions and so we deal with (4);
near constant solutions), we obtain the Cauchy problem of u(z, t)

up + A%u = 2Au + Au® 4+ 3Au% + AA|Vul?, (6)
u(x,0) = uo(x) = @o(z) — 1. @)

In the following, we consider system (6)—(7) instead of Eq. (4). To choose space to solve
system (6)—(7), we first check a scaling-invariant property. On the basis of the left-hand
side of (6) and the last term on the right-hand side of (6), a natural scaling is

ur(t, ) — u(\', Az).

Hence, we take the Sobolev spaces H>/2(R?) related to the scaling-invariant property.

https://www.journals.vu.lt/nonlinear-analysis
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Notation 1. In order to consider system (6)—(7) .in critical Sobolev space, we introduce
the homogeneous negative index Sobolev space H ~*(R3):

H*(R%) = {f € L*(R®): |||¢]* (&) . < 0}

endowed with the norm || f|;—. = 11€]72 F(€)|| 2. Besides, the symbol A! (I € R) is
defined by

A f(x) = / € F(e)e> ¢ de,
R3

where f is the Fourier transform of f. In the following, the letter C' will always denote
positive constants different in various occurrences.

Next, we establish the local well-posedness of strong solutions to system (6)—(7).
More precisely, we prove the following theorem.

Theorem 1 [Local well-posedness]. Suppose that ug € H?(R3). Then there exist a small
positive time Ty > 0 and a unique strong solution u(x,t) to system (6)—(7) in R3 x (0, Tp]
such that

u € C([0,Tp]; H*(R?)) N L*(0,Ty; H* (R?)).

The second goal of this paper is to consider the small initial data global well-posedness
for system (6)—(7).

Theorem 2 [Small initial data global well-posedness]. Assume that uy € HY(R3)
(N > 2), Cy is a positive constant to be determined in (35), and Cy, Co are two positive
constants to be determined in (43). Then there exists a positive constant

5 . 1 1
=mins ——, —————
0 2C," 2C1 04

such that if |[uo||2 2 + [| A3/ %ug||22 < do holds, then there exists a unique global solution
u(x, t) that satisfies for all t > 0,

t
Ja®lfs + [ 900 s ds < Cluolfrn. ®)
0

In the end, by using the negative Sobolev norm estimates and the pure energy method,
we show that the solutions of problem (6)—(7) satisfy some negative algebraic decay
estimates.

Theorem 3 [Decay]. Let N > 2. Assume that ug € H N(R?*) N H —5(R3) for some
s €[0,3/2) and ||uo||2, + || A43/?ug||2, < 0o holds. Then for all t > 0, we have

A7 u()],. < C 9)
and
A v S CA+8)"UFD2 for1=0,1,...,N. (10)
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Since Hardy-Littlewood—Sobolev theorem implies that for p € [1,2), LP(R™) C
H~*(R?) with s = n(1/p—1/2) € [0,3/2). Then, by Theorem 3, we obtain the optimal
decay estimates.

Corollary 1. Under the assumptions of Theorem 3, if we replace the H—s (R™) assump-
tion by ug € LP(R®) (1 < p < 2), then, for| = 0,1, ..., N, the following decay estimate
holds:

HAl“Hm < C(1 + )" BO/p=1/2)/2+1/2]

The structure of this paper is organized as follows. In Section 2, we introduce some
preliminary results, which are useful to prove main results. Section 3 is devoted to prove
the local well-posedness of solutions. In Section 4, we prove the small initial data global
well-posedness. The proof of decay rate of solutions is shown in Section 5.

2 Preliminaries

The following useful Sobolev embedding theorem will be used in the proofs.
Lemma 1. (See [18].) For 0 < s < 3/2, we have
[ull Lo/ 20 (msy < Cllull grogsy forallu € H*(R?).

The following Sobolev interpolate inequality was introduced in [17].

Lemma 2. (See [17].) Let 0 < m,a < I, 1 < q,r < 0o. Then we have
HV“f!|Lp<Rs> CHV’”fHLq RN (L

where 6 € [0, 1], and « satisfies

a 1 m 1 1

———=|—=—=-=)(1-9 - —=]6.

3.p (3 q>( %+(3 T)
Here, when p = oo, we require that 0 < 6 < 1.

The following Kato—Ponce inequality is of great importance in our paper.

Lemma 3. (See [13].) Let 1 < p < oo, s > 0. There exists a positive constant C' such
that

HAS(fg)HLP(R?’) S C[Hf||L”1(R3)HAngLPQ(]R?’) + HASfHL‘Il(Ri")Hg”qu(RS)}’
where p1,q1,D2,q2 € (1,00) satisfying 1/p =1/p1 + 1/p2 = 1/q1 + 1/qo.
The Hardy-Littlewood—Sobolev theorem implies the following LP-type inequality.
Lemma 4. (See [19].) Let0 < s<3/2,1<p<2and1/2+ s/3=1/p, then
11l == ey < CllSf Lo e
The special Sobolev interpolation lemma will be used in the proof of Theorem 2.
Lemma 5. (See [19,21].) Let s > 0 and | > 0, then

1
HVZfHL?(R?' CHlefHLZ(RS)HfHe s(R3) with 0 =

l+1+s

https://www.journals.vu.lt/nonlinear-analysis
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3 Local well-posedness

First, we derive the following key energy estimates on ¢(t) defined by
o(t) = [[ut)]| > + 1,
which are needed for the proof of Theorem 1.

Proposition 1. Suppose that uy € H?(R?). Let u(-,t) be a solution to problem (6)—(7)
in R3 x (0, T). Then there exist a small time Ty € (0,T) such that

To To
w5+ [ 196 a7 + [ etz 0 < (an
0 0

Proof. Multiplying (6) by u and integrating the resulting equation over R3, we arrive at

1d
2 s + Al + 2l
:/uAu?’derS/uAudz+)\/UA\VU\2dx. (12)
R3 R3 RS

Simple calculation shows that

/uAu3 dz = —/Vu SVud de = —3/u2|Vu|2 dz. (13)
R3

R3 R3

By using Sobolev’s embedding theorem together with Young’s inequality, we derive that

)\/uA|Vu|2 dz = )\/ Vul?Aude < 7| Au3, + ) VullL,
R3 R3
1 1
< ZHAuHiQ + C|| V|3 < ZHAUH%Q +CPt). (14)

Moreover, Holder’s inequality gives

3/uAu2 dz = —3/Vu-Vu2dx: —6/u|Vu|2 dz
R3

R3 R3

< %/UZ\VU\2dx+C/|Vu|2 = g/u2|Vu|2dxfC/uAudx
R3 R3 R3 R3
3 1

<5 [wvul do -+ J1AulEs + Clulf
R3
3 1

< §/u2\Vu\2dx+ J1uls + a2 ). (15)
R3

Nonlinear Anal. Model. Control, 30(4):573-591, 2025
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Summing (12)—(15) up, we have

d 2 2 2 4

qelullze + IAulz + 4l Vullz. < CP%(). (16)
Taking A to (6), multiplying the resulting equation by Awu and integrating over R3, we

deduce that

1d

5Bl + 1A% + 29 Auls

/A2 3 Audx+3/A2 2 Audm—l—)\/A2|Vu|2 Audz.  (17)
RS R3

There are three terms on the right-hand side of (17). By using Holder’s inequality, Kato—
Ponce inequality, and Sobolev interpolate inequality, we deduce that

/A2u3 -Audz = /AUS A%y dz
R3
< [|a%] L |Au? . < Of| A%l L [l Aullze ulgs

Clauls o 12 Al )1l

/N

< tla%ul2, + Cllaul vl
< 1HAQUHQ2 + CP1(1), (18)
/A2 2 Azudx—S/Au - A%udz

R3
\CHA%HLzHAuQHLz Ol a%ul| a1 Aull e flul s

cHMuHLz(HAQ 152 1Al Il 2 el

N

//\

gHAQuHLz + C|| Aul|Z: | Vull 72 ul 72

1 2
< glaul. + o2°(@), 19)

and

/\/A2|Vu|2 -Audr = /\/A\VU\Z - A%y dx

<A A% L AIVUR] L. < C[| A2, | VA s [Vl o
OHA%HLz(HA? 250 A5 [ Al 2

N

//\

6|}A2u|’L2 +C|| AU} < 6||A2u||22 +Cd'0(1).  (20)

https://www.journals.vu.lt/nonlinear-analysis
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Summing (17)—(20), we obtain

d
llAul + [A%)2, + 4|V Au|2. < CHY(1). Q1)

Note that [|ul|%. = C(|jul|%2 + ||Aul|%.). Adding (16) and (21) together gives

20+ [ (8w + A5 + 4] Tuo)} + 4] TAu);.)

0
t

< B(to) + C / $19(s) ds,
0

Simple calculation shows that there exists a time Ty € (0,7") such that

Ty
D(t) + / (HAu(s)Hi2 + HAQU(S)Hi2 —I—4HVu(s)Hi2 + 4HVAu(s)H2LZ)ds
0
< C(9y), (22)

where C(Py) is a positive constant depending on $;. Moreover, on the basis of (22),
Kato—Ponce inequality, and Sobolev’s embedding theorem, we easily obtain

To
/ g2
0
Ty To To
<C</|‘A2u”iz dt+/||Au||2L2 dt—i—/HAu?’Hiz dt
0 0 0
To To
2 2
+ [ o aaer [awae], dt>
0 0
To To To
< C(/HAQuHiz dt+ [ 18ulade+ [ alelulds deops
0 0 0
TO TD
+ / Ao 2 dt + / IV A2 ]| Va2, dt)
0 0

To To To
<c</|\A2uH; dt+/||Au||2Lz dt+/||muuiz||w\§2 at
0 0 0

TO TO
2
+ / 1V Al 2 ] 2 [Vl 2 dt + / 18242, [Vl 22 | Aut] 2 dt)
0 0

Nonlinear Anal. Model. Control, 30(4):573-591, 2025


https://doi.org/10.15388/namc.2025.30.41788

580 F Liu et al.

TO TD
<C’</||A2uHi2 dt+/||Au|\§2 dt)
0 0

<C,
which, together with (22), yields that (11) holds. This complete the proof. O

Proof of Theorem 1. Since the energy estimates have been derived, the local existence of
strong solutions can be established by using the mollifier technique as described in [16]
(see, for example, [24]), and we omit the details. Besides, we consider the unique of
local strong solutions for problem (6)—(7). Let uy,us € C([0, To); H2(R3)) N L2(0, Tp;
H*(R?)) be two strong solutions of system (6)—(7) with the same initial data u1(-,0) =
ua(+,0) = ug(-,0), and set

v=uy —up € C([0,Tp]; H*(R?)) N L*(0, To; H*(R?)).
It is easy to see that v(+,0) = u1(+,0) — uz(-,0) = 0. Then, for system (6)—(7), we have
vy + A%0 + 2A0 = A[v(u% + uius + u%)] + 3A [v(ul + Ug)]
+ AA(Vo - V(uy + ug)). (23)
Multiplying both sides of (23) by v, integrating over R?, we derive that

1d
2dt

= /v(u% + ugug +u3)Avde + 3/ [v(uy + ug)| Avda
R3 R3

lollZe + 1Av][Z2 + 2] Vol

/\/ (Vv - V(ur 4 ug))Avda. (24)

R3

Applying Holder’s inequality, Sobolev interpolate inequality, and Young’s inequality, it
yields that

/ (ul + urug + uz)Av dx
3
< A0 g2 o]l 2 (JJu 2o + [zl
1/2 1/2 1/2 1/2
< O Av||2]|v]] £ [(IIVulll RIAw 1592 + (| Vuz |l Aus )57 ]
CllAv| 2 |lvl| 2 < 6||AU||%2 +Cll 2,

3/ [U(ul +uz)]Avdx

R3

< CllAv] e flvllze (lull Lo + lluzllze-)

https://www.journals.vu.lt/nonlinear-analysis
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< Ol Av| 2ol e [||Vu1||”2uAul||”2 + | Vua |22 | Aua | 17)
< CJ|Av]| zafo]| 2 < 6||AU||%2 + w13,
and
)x/ (Vv -V(u + uz))Av dx

AlAv] Lz [Voll s (IVua | o + [[Vuz] o)

<
3/4 4
< CJ|A] g2 (| Av) 35 01155 (1Aus ||z + [[Aus| 2 )

/4y, 11/4 <
< vl ol < SIAvls + Cllol 25)
Combining (26)—(25) together gives
d
IIIIZ: + [AvlIZ: + 41Vo]7z < CllvllZe. (26)

It follows from the Gronwall inequality and v|;—¢ = 0 that v = 0. Hence, the uniqueness
of strong solution is complete and the proof is complete. O

4 Small initial data global well-posedness

The aim of this section is to study the global existence of unique strong solution of system
(6)—(7), provided that the initial data is sufficiently small. We first prove the following
lemma.

Lemma 6. Assume that Cy is a positive constant to be determined in (35). There exists

a sufficiently small constant
1

50 = ﬁ (27)
such that if |[uo||2 + || A%/ %uo||22 < 8o holds, then there exists a unique global solution
u(x, t) satisfying

t
i+ (14525 + [ (14725, + Dl + 4%l + [Vul) ds
0
C(lluollZa + [[4% o] 72)-

Proof. Applying Holder’s inequality, Sobolev embedding theorem in R3, and Young’s
inequality, we can reestimate (15) as

/uAu dz < C||u||Lz||Au2||L3/2 Cllullzs||ul Lo || Aul 12

< Olull 22| 432[ (IVul| 22 + [|Aul )
< C(lull gz + 14%2ul| 22) (| Vull 22 + | Aul32). (28)

Nonlinear Anal. Model. Control, 30(4):573-591, 2025
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Summing up (12)—(14) and (28), we have
d 2 Aull2 411V ul2
a”u”m + | Aullzz + 4[| Vul|7-
< O(lullez + 14%2ul|22) (IVul72 + [[Au]72). 29)

Taking A3/2 to (6), multiplying the resulting equation by A3/2u, and integrating over R3,
we deduce that

1d, ..
5 A%l T+ AT | Te + 20145202

2dt
= //13/2Au3~A3/2udaz+3/A3/2Au2 A2y de
R3 R3
+/\/A3/2A\Vu\2 A3y, (30)
s

There are three terms on the right-hand side of (17). By using Holder’s inequality, Kato—
Ponce inequality, and Sobolev’s interpolate inequality, we deduce that

/A3/2Au3 A3 Pude = //13/2u3 A2 Audz
R3 R3

AT o || 477267 o < CAT 2| o || 4320 | ol o
<O A2 o | A% 20| L1Vl 3

< C(|A™2u|5, + (14520l ) (ull 7] 432 72)®

< C(|lulle + [[432ul| )2 (| A72u]|} + [[4%24][}.), G

3/A3/2Au2-/13/2d:1: = 3/A3/2u2 A2 Audz
R3 R3
<O A7 | 43262 o < CIAT 2| o | 4320 L llull s

CAT | | 4772 ol 271 4% 2]
< C(ljullze + [14%2ull ) (|47 2ull s + 47 2ul]72), 32)

N

and
/\//13/2A|Vu\2 A3y da
R3

3 [ AT 25 < A 4]

R3

https://www.journals.vu.lt/nonlinear-analysis
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CllAT2ull | Vulls | A2l
Of|4%ul| o (| A7/2u] . + 1]14° 20| 7.). (33)

NN

Combining (30)—(33) together gives

1d 2 2 2
5 14 2ull e + 1472l o + 2] 452l
(lullze + | 4220l 1) + (lullze + | 4220 ) + (|43l ]
A7 2u|7 + (| 4%/ 2]}
lullre + [|A32u]| ) (lull g2 + || 4% 20|, +1)

x (472l 2 + 4°72u] 12)- (34)

<C|
x(
C(

Adding (29) and (34) together, we arrive at

d
o UlllEe =+ [[4%72 ]| ) +2(| 472l + |Aul2) +4(1 47 2], + | Vul32)
< C(llullze + 14720l o) (lullzz + | 4720l 12 +1)
< (IVullz + 1AulFa + (|47 a7, + (|47 2a].).

Young’s inequality implies that

d
3 lulz= + 1 4372[2,) + 2(||A72u]3, + | AulZa) +2(]| A% 2|2, + | Vull2:)
< (1+ Co([lul22 + [|4%/2u|[2,))
) (IVul2s + | AulZs + (|47 2|7, + [|452u[3,),

where Cy € R is a constant. Hence,

d ;
q (lZe =+ 4% 2l + (14720 + 1 AulEa + 4572, + [VulZ:)
< Co(lluliF + | 4%2u[3.)
x (IVull3a + |Aull3z + |47 2u]) 7, + [|4%/2u]7.). (35)
Keeping in mind condition (27), that is,

1

2
lullze + (4%l 2 <00 = 5

one may deduce that there exists a time 7" > 0 such that for all ¢ € [0, T),

llul|2s + ||A3/2u]|2L2 < o2z + HA?’/ZuOHiz. (36)

Nonlinear Anal. Model. Control, 30(4):573-591, 2025
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Indeed, we can argue (36) by contradiction. Assume that (36) is not true. Hence, there
exists a time 7, < T (the first time) such that

1
o)+ 14720 o = 80 = o @7
2C)

Then .
2 2
lu®) s + 472 u@®l2 < 60 = 57 0<t<T.

On the basis of (35), for 0 < ¢ < T, we obtain

d
ap U3 + (1472 22) + (147 2ul[ g + [ Aullfa) + (4% 2ul| 7, + [Vul2)
1
< S (1Al + I AulFe + (|47, + [ Vullz),

which implies that

1

ol + 457202 o < Bl + 450 < 60 =

this is a contradiction with (37). In other words, (36) is true. Hence, by (35), for all
te[0,7),if
2
||UO||%2 + HAS/QUOHLQ < do,
we have

t

Julfe + 1492l + [ (4720 + S, + 45723, + [ Ful2) ds

0
2

< Cr([luollz + (|4 2o 2) < Cido, (38)

where C; € R7 is a positive constant. The proof is complete. O

Next, with the above preparations in hand, we give the proof of Theorem 2.

Proof of Theorem 2. Taking AN to (6), multiplying the resulting equation by AN v, and
integrating over R3, we deduce that

1d

2dt

:/ANAu3-/1Nuda:+3/ANAu2-ANuda:
RS

R3

1AV ull 7o + 4% 2, + 2] A%

+/\/ANA|Vu|2 AN dz. (39)

R3

https://www.journals.vu.lt/nonlinear-analysis
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The main tools to deal with the three terms on the right-hand side of (17) are Holder’s
inequality, Young’s inequality, Kato—Ponce inequality together with Sobolev’s interpolate

inequality. We have

/ANAU3 - ANudr < HANHUHWHANHUSHLG/5

R3
ClAN | o (lallgs ANl 1)

Of| 42l [ 4Y 2,

C(llullZs + (| 43/%a]3,) | AN *2ulf2,,

N CINN

N

3/ANAU2~ANud:c

R3

34N uf o [ A e

1A ]| o llull s ANl

NN N

(lull g2 + [|4* ]| 1)
X ([ ANl [ + (|42l |),
and

AT A A A

R3
ClA™ | oI Vullus]| 4% 24l 1,

<

< a2, 42,

< Ol + 147202 )| 4420,
Plugging (40)—(42) into (39), one deduces that

1d
LAV, + A2, 422

< O(lullee + 1 4%2ul| ) (lull 2 + [[4*2u] L +1)
X ([ AN+l 7o + |4V 420 |7.).
By using Young’s inequality and (38), we have that
d
gAYl + 1AV 2u] + ANl
< Ca(llullfs + | 4%l 72) (JAY* ul 7 + 1|4V +ul|7.)
< OCo(JluolFs + [ 4% 2uol7a) (|AY ul  + [|4V+2ul|7.),

where Cy € R™ is a positive constant. Then, if

2 2 . 1 1
luollZe + 1| 4°2ul| . < 6o := mm{ 2Cy’ 2010, }

Nonlinear Anal. Model. Control, 30(4):573-591, 2025
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we have d
AVl + Ca (A2, + (|4 72) <o, (44)

where C3 = 1 — 010250. Integrating (44) over (0,t), we obtain (8) and complete the
proof. O

5 Decay estimates

In order to study the decay estimates of system (6)—(7), we shall derive the evolution of
the negative Sobolev norms of the solution.

Lemma 7. If |ug |2, + || A%/ 2ug|2> < do, then for s € [0,1/2], we have
d . . ;
S amsulf + €AVl + 47 Bul) < OV Al Tl 65
Moreover, for s € (1/2,3/2), we have
d —s —s —s
gllaullye + oA vul  + (|47 Aulf,)
< OV A= ul| o (19ullfys + | Aul e flul 722 ValZ275). @6)

Proof. Applying A~ to (6), multiplying the resulting identity by A~*u, summing up and
then integrating by parts, we deduce that

1d,_s 2 s 2 s 2
s A7 ullze + A7 Al + 2] A7V,
= /A‘SAu3-A_Sudx—&—?)/A_SAule_sudx
R3 R3
+)\/A’SA\VU\2 - A%y de. 47)
R3

The main tool to estimate the nonlinear terms in the right-hand side of (47) is the Hardy—
Littlewood—Sobolev theorem. This forces us to require that s € (0,3/2). If s € (0,1/2],
we easily obtain 1/2+4s/3 < 1 and 3/s > 6. Then, applying Hardy-Littlewood-Sobolev
theorem, Kato—Ponce inequality together with Holder’s and Young’s inequalities, it yields
that

//1_3Au3 - A %udx

R

A7 (3u®Au+ 6u|Vul?) - A udx
R3
Cla™ull . (A7 (P Aw)| o + [ 47 @l VuP)| )
c|

|A7$UHL2 (||u2AuHL1/(1/2+s/3> + HUWUF HL1/<1/2+-</3))- (48)

NN
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Simple calculation shows that

a2 Au]| ss o) < Cllul| e | Aul| 2 ] oy

Olullgrz | Al 2 |Vl 157 | A 127
O A o[Vl 224 | Al |15

C

IVullZs + [[Aul. (49)

INCININ N

and

Cllull o | Vul| 2 [ Vel o

Clluull 2 [Vl o | A 225 |V Al | 15

|V ol Auf| 225 |V Al | 17

ClIVul3z + | Aull? + [|VAu|f3.. (50)

H“|v“|2HL1<1/z+s/3>

INCININ N

Combining (48)—(50) together gives

/A‘SAu3 A ude < Ol A= 2 [ Vulle. 51)
Similarly,

3//1*5Au2 AT udr < O A5l g2 || Vul % (52)

R3

Besides, we also have

)\/A_SA|VU|2 AT ude < AA7 | |47 AV

R3 . )
CHA uHL2 HA|VU| HL1(1/2+5/3)

C||A™%ul| . |V Aul 12]| V]| 3/
Ol A% u| o |V Aul| 2 | A 157 |V A |17
CllA™ul| . | Aul 3. (53)

NN

NN

Then (45) can be obtained by plugging estimate (51)—(53) into (47).

Next, if s € (1/2,3/2), we can estimate the right-hand side term of (47) in a different
way. Since s € (1/2,3/2), it is easy to see that 1/2 + s/3 < 1 and 2 < 3/s < 6. Then
Hardy-Littlewood—Sobolev theorem, Kato—Ponce inequality, and Holder’s inequality im-
ply that

< Cllull oo || Al 2 || /4
< Cllull gz | Al g2 ]| 5 2 3522
< Cl|Aul| g |ul) 352Vl 222

H“ZA“HLl(l/us/m

Nonlinear Anal. Model. Control, 30(4):573-591, 2025


https://doi.org/10.15388/namc.2025.30.41788

588 F Liu et al.

and
HU|VU|2HL1<1/2+S/3> < Cllull = [|Vul| 2| Vul| Lo/«
< Ollull g2 || V]| 2 | Vual| 52 [ A 3572
< O|Vul s 2| AulP2 0 < O (Va2 + [|Aulf22).
Hence,
/A_SAu3 A %udx
s—1/2 3/2—s
<O A™5u|| L (V2 + | A e 522 V] 35 7°). (54)
Similarly,
3/A75Au2 A %udx
s—1/2 3/2—s
<O A7) L (V2 + | A e [l V]| 3577°). (55)
Moreover,

A / A= AIVuf? - A*udz < C||/A~%u|| |V Aul| 2 | Vul| o/

R3 o 3/9—g
< C||A™5|| L IV Al 2 |Vl 552 | A2

<CljA” u||L2HVuHH2. (56)
Plugging estimate (54)—(56) into (47), we obtain (46). Hence, the proof is complete. [
Next, we give the proof of Theorem 3.
Proof of Theorem 3. First, we prove the decay rate of solutions for s € [0, 1/2]. Define
Eost) = A7 ulfe (1) = [| 4w,
Then, integrating in time (45), by the bound (8), we derive that

£ (1) <E.(0) +c/ [VulfeVEm dr < (14 sup VE),
0

o<t
which implies (9) for s € [0,1/2], that is,
[A~*u(t)|2, < C. (57)
Moreover, if | = 1,2,..., N, we may use Lemma 5 to have
V55 > Ol ) 2 o
Then, by this facts and (57), we get

[V ulfs > o) 9tal7) V.
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Thus, forl =1,2,..., N,

IVl > OV ] fye)

We deduce from (44) the following inequality:
d
Ry Co(E)Y W) <0 forl=1,2,...,N,
which implies
) <Co(1+t)"""% forl=1,2,...,N.

Hence, (9) holds.

On the other hand, the arguments for s € [0, 1/2] cannot be applied to s € (1 /2,3/2).
However, observing that ug € H~'/2 holds since H~* N L2 ¢ H~* forany s’ € [0, 5],
we can deduce from what we have proved for (9)—(10) with s = 1/2 that the following
estimate holds for/ = 0,1,..., N:

V"l

|2 < Co(1+)71/270

Therefore, we deduce from (46) that for s € (1/2,3/2),
¢
E-(H) <E_(0)+C / IVula /e () dr
+c/uwlﬁww%ﬂ¢a4ﬂw

t

SC+C sup VE_(1)+C [ (47" n=9/247 sup /E_,(7)

o<t T€[0,t]
< C+C sup VE_4(7),
T€10,t]

which implies that (9) holds for s € (1/2,3/2), i.e.,
s 2
A 5u(t)|| . < C. (58)
Since we have proved (58), we may repeat the arguments leading to (10) for s € [0, 1/2]

to prove that they also hold for s € (1/2,3/2). Therefore, the proof of Theorem 3 is
complete. O

6 Conclusion

The classical Cahn—Hilliard equation arises in the study of phase separation on cooling
binary solutions such as glasses, alloys, and polymer mixtures. During the past years,
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there are many classical results on the well-posedness and the large time behavior of its
initial-boundary value problem and Cauchy problem. Mathematically, Active model B
can be seen as one of its modifications. Due to the existence of the higher-order nonlinear
term AA|V|? in (4), its mathematical analysis is more difficult than the classical Cahn—
Hilliard equation (5). The main purpose of this paper is to study the local well-psoedness,
small initial data global well-posedness, and decay estimates of the Cauchy problem of
Active model B. Assuming that the initial data is sufficiently small, using pure energy
method together with the negative Sobolev norm estimates, one overcome the difficulties
caused by the nonlinear terms and obtains the main results in critical Sobolev space. We
believe our results will attract the readers in the related fields.
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manuscript.
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