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Abstract. This paper investigates finite-time stability of fractional uncertain difference equations
with time delay. A fractional sum inequality is obtained from uncertain initial-value conditions.
A delayed discrete Gronwall’s inequality is used, and sample paths are numerically illustrated.
Finally, finite-time stability results are obtained for a fractional uncertain recurrent neural network
model. It can be concluded that this paper provides an efficient tool for finite-time analysis of high-
dimensional fractional uncertain systems with time delay.
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1 Introduction

Many nonlinear phenomena hold features of discrete time, long-term interaction, and
uncertainty. Since fractional-order operators hold memory effects, the uncertainty theory
developed by Liu [8, 9] was recently introduced in fractional differential and difference
equations [6, 10, 13, 14].

An uncertain initial-value problem can be given presented by

C∆β
aX(t) = F

(
t+ β − 1, X(t+ β − 1)

)
+ G (t+ β − 1, X(t+ β − 1))ξ(t+ β − 1),

X(a) = Xχ, 0 < β 6 1,

(1)

*This work is financially supported by the National Natural Science Foundation of China (NSFC) (grant
No. 12101338) and Key Research Project of Neijiang Normal University (grant No. 2021ZD10).

1Corresponding author.

© 2025 The Author(s). Published by Vilnius University Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

https://orcid.org/0000-0002-6375-9183
https://orcid.org/0000-0002-1946-6770
https://orcid.org/0000-0002-6977-1773
mailto:wuguocheng@gmail.com
https://www.vu.lt/leidyba/en/
https://creativecommons.org/licenses/by/4.0/


2 L.-L. Huang et al.

where t ∈ Ω =: {a+ 1− β, . . . , a+ T − β} and T ∈ N1 := {1, 2, . . . }. C∆β
a denotes

the Caputo difference, the real-valued functions F and G are Lipschitz continuous, and
ξ(a), ξ(a+ 1), . . . , ξ(a+n) are n+ 1 i.i.d. uncertain variable with the linear uncertainty
distribution L(c, d) [8].

The fractional chaotic map or fractional difference equations with time delays was
proposed in [15, 17]. Rich dynamic behaviors were reported in both initial and terminal
value problems. It has been used successfully in deep learning and data-driven learn-
ing [18]. Very recently, the fractional recurrent neural network was proposed in [4]:

C∆β
aX(t) = AF

(
X(t+ β − 1)

)
, 0 < β 6 1, t ∈ Ω,

X(a) = Xχ,
(2)

where X : Na → Rm is the system’s state, and X = (x1, . . . , xm)T. F = (f(x1), . . . ,
f(xm))T is a vector active function.

When we consider the uncertainty by using the drift term X(t+ β − 1)ξ(t+ β − 1)
and 0 < β 6 1, the fractional uncertain recurrent neural network can be improved as
a time-varying system

C∆β
aX(t) = AF

(
X(t+ β − 1)

)
+BX(t+ β − 1)ξ(t+ β − 1), t ∈ Ω,

X(a) = Xχ.
(3)

It describes how the trajectory moves through space from an uncertain initial-value. It is
also indeed an uncertain function of time t. Interval-valued fractional calculus was sug-
gested in continuous and discrete-time systems [5,12]. Unfortunately, in high-dimensional
systems, we must consider the solutions’ w-monotonity problems, which complicates the
analysis. This is the main purpose for which we turn to the uncertainty theory [8, 9] and
consider fractional uncertain difference equations in this paper.

However, this also becomes complicated since one encounters the discretization prob-
lems of the nonlocal operators, as well as time delays and uncertainty. As is well known,
the Gronwall inequality is an important tool to finite-time stability analysis (see, for
example, [7,16]). Thus, we need one in an uncertain case (3). Concerning the uncertainty
initial-value problems, it is important to guarantee that the fractional uncertain system is
stable in a finite time.

Fortunately, a delay discrete Gronwall inequality was newly proposed in discrete
fractional calculus [19]. Then this paper possibly provides the finite-time stability results
of (1) and fractional recurrent networks with uncertainty (3) as a high-dimensional case.

2 Preliminaries

We revisit some basics of discrete fractional calculus and uncertainty theory. β ∈ R, and
t(β) is the discrete factorial function

t(β) :=
Γ(t+ 1)

Γ(t+ 1− β)
,

where t ∈ Nβ := {β, β + 1, . . . }.
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2.1 Discrete fractional calculus

Definition 1. (See [2].) Suppose u : Na → R and 0 < β. The β-order fractional sum is
defined by

∆−βa u(t) :=
1

Γ(β)

t−β∑
s=a

(t− σ(s))(β−1)u(s), t ∈ Na+β ,

where σ(s) = s+ 1.

Definition 2. (See [1].) Let u : Na → R, β > 0, and N = dβe. The Caputo difference
of order β is given by

C∆β
au(t) :=

{
∆
−(N−β)
a ∆Nu(t), N − 1 < β < N,

∆Nu(t), β = N,

where t ∈ Na+N−β .

Theorem 1. (See [3].) For the initial-value problem

C∆β
au(t) = f

(
t+ β − 1, u(t+ β − 1)

)
, 0 < β 6 1,

u(a) = c,

the equivalent fractional sum equation is given as

u(t) = u(a)

+
1

Γ(β)

t−β∑
s=a+1−β

(
t− σ(s)

)(β−1)
f
(
s+ β − 1, u(s+ β − 1)

)
, t ∈ Na+1.

First, the uncertainty space is denoted by (z,L,M), where L stands for a σ-algebra
in a nonempty set z, and the set functionM : L → [0, 1] represents an uncertain measure.
A measurable function ξ defined in the uncertainty space can be called an uncertain
variable; for example, the uncertainty distribution Ψ(`) = M{ξ 6 `} (` ∈ R) is used to
describe the incomplete information of the uncertain variable ξ. When a continuous and
strictly increasing function Ψ(`) satisfies Ψ(`)+Ψ(1−`) = 1, it is called the symmetrical
uncertainty distribution. For example, the linear uncertain variable L(−ψ,ψ) (ψ > 0)
and standard normal uncertain variable N (0, 1) are also symmetric. We introduce some
definitions and lemmas.

2.2 Uncertainty theory

Definition 3. (See [8].) Let ξ1, ξ2, . . . , ξn be uncertain variables and f be a measurable
function with real value. Then ξ = f(ξ1, ξ2, . . . , ξn) is an uncertain variable defined by

ξ(γ) = f
(
ξ1(γ), ξ2(γ), . . . , ξn(γ)

)
∀γ ∈ z.

Nonlinear Anal. Model. Control, 30(Online First):1–12, 2025

https://doi.org/10.15388/namc.2025.30.41799


4 L.-L. Huang et al.

Lemma 1. (See [8].) Let ξ1, ξ2, . . . be uncertain variables, and let limi→∞ ξi = ξ almost
surely. Then ξ is an uncertain variable.

The definitions of discrete fractional calculus can be extended to the uncertain case.

Definition 4. (See [14].) Let β > 0 and ξ(t) be an uncertain sequence. Then the fractional
sum for uncertain sequence ξ(t) is given by

∆−βa ξ(t) :=
1

Γ(β)

t−β∑
s=a

(
t− σ(s)

)(β−1)
ξ(s), t ∈ Na+β .

Definition 5. (See [14].) For 0 < β, N = dβe, and ξ(t) defined on Na, the Caputo
difference of uncertain sequence ξ(t) is defined as

C∆β
aξ(t) :=

{
∆
−(N−β)
a ∆Nξ(t), N − 1 < β < N,

∆Nξ(t), β = N,

where t ∈ Na+N−β .

Theorem 1 can also hold for the uncertain sequence. It is useful for numerical solu-
tions of chaotic systems and finite-time stability analysis.

3 Finite-time stability

Suppose that the real-valued functions F (t, x) and G (t, x) are Lipschitz-continuous.
They satisfy the Lipschitz condition∣∣F (t, p)−F (t, q)

∣∣+
∣∣G (t, p)− G (t, q)

∣∣
6 L |p− q|, t ∈ {a, a+ 1, . . . , a+ T} ∀p, q ∈ R, (4)

where

L < S =
Γ(β + 1)Γ(T − a−N + 1)

(1 + M )Γ(T − a−N + β + 1)
and M = max

{
|c|, |d|

}
.

Then the initial-value problem (1) has a unique solution (see [11]).

Lemma 2. (See [19].) Let x, f, and g : Na → R. g(t) is a nondecreasing and non-
negative function. Let q(t) = f(t)g(t) and q be a nondecreasing function. If x(t) satisfies

x(t) 6 f(t− 1) + ∆−βa+1−βg(t+ β − 1)x(t+ β − 1), 0 < β 6 1,

then x(t) is bounded:

x(t) 6 f(t− 1)eβ
(
g(t− 1), (t− σ(a)

)(β)
), t ∈ Na+1.

If f(t) = K, g(t) = λ are constants and x(t) satisfies

x(t) 6 K + λ∆−βa+1−βx(t+ β − 1), t ∈ Na+1,
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then x(t) is bounded:
x(t) 6 Keβ

(
λ,
(
t− σ(a)

)(β)
).

Here eβ(λ, (t− σ(a))(β)) is the delay discrete-time Mittag-Leffler function [1], and

eβ
(
λ,
(
t− σ(a)

)(β))
:=

+∞∑
k=0

λk(t− a+ kβ − k)(kβ)

Γ(kβ + 1)
, 0 < β 6 1, t ∈ Na+1.

We note that the delay discrete-time Mittag-Leffler function is a piece-wise function:

eν
(
λ,
(
t− σ(a)

)(β))
=


1 + λ, t = a+ 1,

1 + λ (1+β)(β)

Γ(β+1) + λ2, t = a+ 2,

. . .∑n
k=0

λk(n+kβ−k)(kβ)

Γ(kβ+1) , t = a+ n.

We define a finite-time set Ω∗ = {a+ 1−β, . . . , a+T ∗−β} with a positive integer
number T ∗ 6 T .

Definition 6. For given positive real scalars ε, % and T ∗ satisfying ε < % and T ∗ 6 T ,
the initial-value problem (1) is said to be finite-time stable under (ε, %, T ∗) almost surely
when |Y0 − Z0| < ε such thatM{|Yt − Zt| < % for any t ∈ Ω∗} = 1, where Yt and Zt
are solutions of the initial-value problem (1) with the initial conditions Y0 and Z0.

Theorem 2. The initial-value problem (1) is said to be finite-time stable under (ε, %, T ∗)
almost surely if F and G satisfy the Lipschitz condition (4) and

eβ
(
L (1 + M ), (T ∗ − σ(a)

)(β)
) <

%

ε
.

Proof. Let Yt and Zt be two solutions of FUDE (1) with initial conditions Y0 and Z0,
respectively. Then the initial-value problem (1) is equal to the following discrete integral
equation by Theorem 1:

Xt = xX0 +
1

Γ(β)

t−β∑
s=a+1−β

(
t− σ(s)

)(β−1)
F
(
s+ β − 1, X(s+ β − 1)

)
+ G

(
s+ β − 1, X(s+ β − 1)

)
ξ(s+ β − 1).

We give∣∣Yt(γ)− Zt(γ)
∣∣

6 |Y0 − Z0|+
1

Γ(β)

t−β∑
s=a+1−β

(
t− σ(s)

)(β−1)[∣∣F (s+ β − 1, Y (s+ β − 1)
)

−F
(
s+ β − 1, Z(s+ β − 1)

)∣∣+ M
∣∣G (s+ β − 1, Y (s+ β − 1)

)
− G

(
s+ β − 1, Z(s+ β − 1)

)∣∣]
Nonlinear Anal. Model. Control, 30(Online First):1–12, 2025
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6 |Y0 − Z0|+
1+M

Γ(β)

t−β∑
s=a+1−β

(
t− σ(s)

)(β−1)[∣∣F(s+ β − 1, Y (s+ β − 1)
)

−F
(
s+ β − 1, Z(s+ β − 1)

)∣∣+
∣∣G (s+ β − 1, Y (s+ β − 1)

)
− G

(
s+ β − 1, Z(s+ β − 1)

)∣∣]
6 |Y0 − Z0|+

L (1+M )

Γ(β)

t−β∑
s=a+1−β

(
t− σ(s)

)(β−1)∣∣Y (s+ β − 1)− Z(s+ β − 1)
∣∣

= |Y0 − Z0|+ L (1 + M )∆−βa+1−β
∣∣Y (t+ β − 1)− Z(t+ β − 1)

∣∣.
According to Lemma 2, we get∣∣Yt(γ)− Zt(γ)

∣∣ 6 |Y0 − Z0|eβ
(
L (1 + M ), (t− σ(a))(β)

)
6 |Y0 − Z0|eβ

(
L (1 + M ), (T ∗ − σ(a))(β)

)
.

For positive real scalars ε < % and T ∗ 6 T , if the conditions hold eβ(L (1 + M ),
(T ∗ − σ(a))(β)) < %/ε and |Y0 −Z0| < ε, then one can obtain that |Yt(γ)−Zt(γ)| < %
for any t ∈ Ω∗. As a result, this means

M
{
|Yt − Zt| < %, t ∈ Ω∗

}
= 1

from which the proof is completed.

Example 1. Consider the initial-value problem

C∆β
aX(t) = ϑ sinX(t+ β − 1) + ςX(t+ β − 1)ξ(t+ β − 1), 0 < β 6 1,

X(a) = X0, t ∈ Ω.
(5)

ξ(t) is a disturbance factor. ςX(t+β−1)ξ(t+β−1) is a disturbance term. The uncertain
variable with an uncertainty measure has an average value defined as the expected value
and variance. More conveniently, the uncertainty theory also gives high-order moment
estimation, which is very helpful in parameter estimation and machine learning.

By the comparison principle and the existence conditions, we can investigate the
boundedness of the system’s states.

First, we have the fractional sum equation

X(t) = X0

+
1

Γ(β)

t−β∑
s=a+1−β

(
t−σ(s)

)(β−1)(
ϑ sinX(s+β−1)+ςX(s+β−1)ξ(s+β−1)

)
,

where t ∈ {a + 1, . . . , a + T}. Set the parameters a = 0, ϑ = 0.05, ς = 0.1, β =
0.95, and T = 4. The uncertain variable ξ(t) follows the linear uncertainty distribution
L(−0.5, 0.5). We obtain L = 0.15 < S = 0.1760. As a result, the initial-value
problem (5) has a unique solution.
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Figure 1. Sample paths of Yt and Zt.

Then, for ε = 0.11, % = 0.4 and T ∗ = 4, since eβ(λ, (t− σ(a))(β)) is nondecreasing
with λ > 0, we give

eβ
(
L (1 + M ),

(
T ∗ − σ(a)

)(β))
= 2.2125 <

%

ε
= 3.6364.

Thus, the initial-value problem (5) is finite-time stable almost surely by Theorem 2.
We give several possible sample paths for the initial-value problem (5) and illustrate

the finite-time stability. Specifically, for ε = 0.11, the initial conditions are set to Y0 =
0.45 and Z0 = 0.55, respectively. Suppose the uncertain variable ξ(t) follows the linear
uncertainty distribution L(−0.5, 0.5). For simplicity, we only choose ξ as −0.5, 0, and
0.5 for numerical simulations.

Finally, these sample paths are numerically illustrated in Fig. 1. All of the paths are
located in the interval [0.4, 0.8], which means that the finite-time stability is guaranteed
almost surely.

Now we can extend the idea to a high-dimensional case. The fractional recurrent
neural network (3) is a system of fractional difference equations in form of

C∆β
aX(t) = F̄

(
t+ β − 1, X(t+ β − 1)

)
+ Ḡ

(
t+ β − 1, X(t+ β − 1)

)
ξ(t+ β − 1),

X(a) = Xχ, 0 < β 6 1, t ∈ Ω.
(6)

Definition 7. For given positive real scalars ε, %, and T ∗ satisfying ε < % and T ∗ 6 T ,
the initial-value problem (1) is said to be finite-time stable under (ε, %, T ∗) almost surely
when ‖Y0 −Z0‖ < ε such thatM{‖Yt −Zt‖ < % for any t ∈ Ω∗} = 1, where Yt and
Zt are solutions of the initial-value problem (1) with the initial conditions Y0 and Z0.

Nonlinear Anal. Model. Control, 30(Online First):1–12, 2025
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In this paper, the symbol ‖·‖means the infinite norm. We set the n-dimensional vector
ρ = (ρ1, ρ2, . . . , ρn)T and n× n matrix A = (aij), then

‖ρ‖ = max
16i6n

|ρi| and ‖A‖ = max
16i6n

n∑
j

|aij |.

Suppose the real-valued vector functions F̄ (t, x) and Ḡ (t, x) are Lipschitz-continuous
and satisfy∥∥F̄ (t,p)− F̄ (t,q)

∥∥+
∥∥Ḡ (t,p)− Ḡ (t,q)

∥∥ 6 L ‖p− q‖ ∀p,q ∈ Rn (7)

with the positive Lipschitz constant

L <
Γ(β + 1)Γ(T − a−N + 1)

(1 + M )Γ(T − a−N + β + 1)
and M = max

{
|c|, |d|

}
.

Then system (6) with initial conditions almost surely has a unique solution almost surely.
We straightforwardly give the following theorems. The proofs are similar to those of

Theorem 2.

Theorem 3. System (6) is said to be finite-time stable under (ε, %, T ∗) almost surely if F̄
and Ḡ satisfy the Lipschitz condition (7) and

eβ
(
L (1 + M ),

(
T ∗ − σ(a)

)(β)
) <

%

ε
.

By Theorem 3, we can use it in the following two real applications.

Example 2. The fractional uncertain recurrent neural network with uncertainty reads

C∆β
aX(t) = A tanhX(t+ β − 1) +BX(t+ β − 1)ξ(t+ β − 1), 0 < β 6 1,

X(a) = X0, t ∈ Ω,

where X = (x1, x2)T, tanhX = (tanhx1, tanhx2)T,

A =

(
0.05 0.04
0.03 0.03

)
, and B =

(
0.08 0

0 0.08

)
.

First, if the parameters a = 0, β = 0.95, T = 4, ε = 0.11, and % = 0.4, we
have L = 0.17 < 0.1760, and the fractional uncertain recurrent neural network (2) has
a unique solution almost surely. Assume that Y(t) and Z(t) are the solutions with initial
conditions Y0 and Z0, respectively.

Now, we set the initial conditions Y0 = (0.45, 0.4)T and Z0 = (0.38, 0.5)T such that
‖Y0−Z0‖ = 0.1 < ε. From Theorem 3 it can be concluded that system (2) is finite-time
stable almost surely. That is, within the given time domain {a + 1, . . . , a + T ∗}, the
distance ‖Yt − Zt‖ (starting from Y0 and Z0 with ‖Y0 − Z0‖ < ε = 0.11) does not
exceed ρ = 0.4. As a result, the finite-time stability is verified in Figs. 2 and 3.
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Figure 2. Sample paths of Example 2: y1(t) and z1(t).
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Figure 3. Sample paths of Example 2: y2(t) and z2(t).

The Lipschitz condition can be generally given as∥∥F (t, p)−F (t, q)
∥∥+

∥∥G (t, p)− G (t, q)
∥∥

6 L (t)‖p− q‖ ∀p, q ∈ R, t ∈ Na+1,
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where the Lipschitz constant becomes a function with respect to t, and

L (t) < S =
Γ(β + 1)Γ(T − a−N + 1)

(1 + M )Γ(T − a−N + β + 1)
, t ∈ Ω.

Theorem 4. System (3) is finite-time stable under (ε, %, T ∗) almost surely if there exists

T ∗ = max
{
t− a: eβ

(
L (t)(1 + M ),

(
t− σ(a)

)(β)
)

<
%

ε
, t ∈ {a+ 1, a+ 2, . . . , a+ T}

}
.

Example 3. The fractional uncertain recurrent neural network with time-variable coeffi-
cients is given as

C∆β
aX(t) = A(t+ β − 1) tanhX(t+ β − 1)

+B(t+ β − 1)X(t+ β − 1)ξ(t+ β − 1),

X(a) = X0, 0 < β 6 1, t ∈ Ω,

where X = (x1, x2, . . . , xm)T.

Suppose

A(t) =
1

2

(
0.05 0.04
0.03 0.03

)(
cos t sin t
− sin t cos t

)
and

B(t) =

(
0.04 cos t 0.04 sin t
−0.04 sin t 0.04 cos t

)
.

Other parameters are kept the same as those of Example 2. If we set ρ = 0.4, we can
determine the finite time T ∗ = 4 by ‖Yt − Zt‖ < ρ/ε and Theorem 4.

4 Conclusions

The fractional discrete recurrent neural networks are a class of fractional difference equa-
tions with time delay. We consider the model with uncertain initial-value conditions and
provide the numerical schemes. We give the finite-time stability analysis method and
determine the finite time through the delay discrete Gronwall inequality.

We note that the fractional uncertain difference equations have a recurrent formula
that is more general than the famous time series model

xn+1 = c0xn + c1xn−1 + · · ·+ cpxn−p + rε, 1 6 p < n,

which is a linear one. c0, . . . , cp, and r are unknown parameters to be determined. ε is an
uncertain term. It is popularly used as a prediction model. Our nonlinear model holds long
memory effects with only fractional-order and system parameters. It also has discrete
fractional calculus and uncertainty theories to support it. This new feature can explore
new theories and applications when it meets machine learning. We will consider this
application in future work.
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