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Abstract. This investigation focuses on the conformable time-fractional discrete coupled nonlinear
Schrödinger system (CTFCDNLSEs). This system incorporates a fractional order represented as
a conformable derivative. Through the application of the fractional transformation method (FTM),
a set of novel analytical discrete solutions is derived. These solutions are characterized by an array
of mathematical functions, including trigonometric, hyperbolic, and rational functions. Among
these solutions, discrete fractional bright solitons, dark solitons, combined solitons, and periodic
solutions stand out. To demonstrate the influence of the fractional-order parameter on the dynamics
of fractional discrete solitons, graphical representations are provided. These findings are significant
for exploring complex nonlinear discrete physical phenomena.
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1 Introduction

Within the realm of nonlinear sciences, the exploration of discrete solitons has con-
sistently garnered significant interest among researchers. These discrete solitons have
been observed across a diverse spectrum of systems of physical and biological nature,
encompassing quantum chains, molecular particles, Einstein–Bose condensates, electrical
lattices, and more recently, within light-based structures [2, 4, 11, 12, 16]. Over the past
few decades, researchers have made a noteworthy observation regarding the nature of
differential–difference equations (DDEs). Unlike fully discretized difference equations,
DDEs are characterized as partially (or wholly) discretized semidiscrete equations [8,10].
They involve discrete spatial variables while maintaining continuous time. The pursuit
of exact solutions for nonlinear DDEs (NDDEs) has garnered considerable interest from
researchers, prompting the development of numerous analytical methods for obtaining
these solutions. Some of the techniques that have been employed include the modified
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Kudryashov method [5, 13, 20], the amplitude ansatz technique [18], the expa function
approach [9], the modified simple equation method [3], the variational principle method
[17], the Hirota bilinear and extended sinh-Gordon equation expansion schemes [15, 25],
etc. [19].

There are various types of fractional derivatives, including the Caputo fractional deriva-
tive, Atangana–Baleanu Caputo fractional derivative, the local fractional derivative, the
M-truncated fractional derivative, β-fractional derivative, conformable derivative, and so
on. However, the mathematical properties of the conformable derivative have contributed
to its extensive application in recent research studies [1].

Recent research has extended nonlinear differential–difference equations (NDDEs) to
their fractional-order derivative. Fractional NDDEs (FNDDEs) have gained considerable
prominence in various scientific disciplines including physics, chemistry, biology, and
engineering. The derivation of analytical solutions for FNDDEs holds paramount signif-
icance in the representation and modeling of numerous physical phenomena. These phe-
nomena encompass particle vibrations within lattices, electrical current flow in networks,
and the propagation of pulses in biological systems [7, 14, 21, 22].

A distinctive aspect of this research is the development of a novel approach for deriv-
ing optical solutions for FNDDEs by utilizing the fractional transformation method. This
technique enables us to solve a range of nonlinear equations and will facilitate the search
for various novel fractional solutions to nonlinear problems.

This method also provides a direct, straightforward and computationally feasible ap-
proach for deriving exact traveling wave solutions to nonlinear equations. These solutions
can be instrumental in advancing the comprehension of FNDDEs. Moreover, this trans-
formation can be extended to other types of nonlinear wave equations. The fractional
transformations approach found that the solutions need to be of rational form and include
both trigonometric and hyperbolic forms. The primary objective of this work is to develop
an efficient auxiliary method for a class of nonlinear model equations.

The CTFCDNLSEs were introduced as a mathematical framework for describing the
phenomenon of self-trapping discrete solitons within the field of nonlinear optics [23].

Given that fractional-order models may accurately reflect the dependent process of
function development, we suggest the CTFCDNLSEs as

iDα
t ψn + (ψn−1 + ψn+1)

[
1 + β

(
|ψn|2 + |φn|2

)]
− 2ψn = 0,

iDα
t φn + (φn−1 + φn+1)

[
1 + β

(
|ψn|2 + |φn|2

)]
− 2φn = 0.

(1)

Here the variables ψn and φn represent complex entities, each associated with a dis-
crete site indexed by the integer value n, and β = ±1. When α = 1, Eq. (1) reduces to
the discrete coupled nonlinear Schrödinger equations (NLSEs) as previously described in
Dai et al.’s work. In the special case where ψn = 0 (or φn = 0), Eq. (1) transforms into
the fractional Ablowitz–Ladik (AL) equations. Moreover, when α = 1 and ψn = 0 (or
φn = 0), Eq. (1) simplifies to the AL equations. This governs regulates a multitude of
physical processes, including the dynamics of pulses in the realm of nonlinear optics [24].

In Eq. (1), the conformable time-fractional derivative of the order α is defined as the
following.
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Definition 1. Let the function H : [0,∞) → R have the conformable derivative as
follows [6]:

Dα
t (t) = lim

ϕ→0

H(t+ ϕt1−α)−H(t)
ϕ

, α ∈ (0, 1], t > 0.

Furthermore, if the aforementioned limit exists, then the functionH becomes α-differen-
tiable.

Theorem 1. Assume that the functions H, W are α-differentiable in t and α ∈ (0, 1].
Then we have the following expressions:

(i) b1Dα
t (H) + b2D

α
t (W) = Dα

t (b1H+ b2W) for all b1, b2 ∈ R;
(ii) Dα

t (t
ρ) = ρtρ−α for all ρ ∈ R;

(iii) Dα
t (HW) = HDα

t (W) +WDα
t (H);

(iv) Dα
t (H/W) = (HDα

t (W)−WDα
t (H))/W2;

(v) Dα
t (H(t)) = t1−α dH/dt.

Theorem 2. Considering the assumptions made in the preceding theorem,

Dα
t (HoW)(t) = t1−αW ′(t)H′

(
W(t)

)
.

2 Discrete soliton solutions of the CTFCDNLSE via novel analytical
approach

We apply following transformations in Eq. (1) to obtain discrete traveling wave solutions:

ψn = Unξn exp(iGn), ξn = dn+ c
tα

α
+ ξ0,

φn = Vnξn exp(iGn), Gn = pn+ q
tα

α
+ δ,

(2)

and

ψn±1 = Un±1ξn exp
(
i(Gn ± p)

)
, φn±1 = Vn±1ξn exp

(
i(Gn ± p)

)
. (3)

In the context of seeking discrete optical solutions, we consider the real functions Un
and Vn, as well as the parameters d and c, which are associated with the pulse width and
group velocity, respectively. Additionally, the parameters p and q characterize the wave
number and frequency of the carrier. The constants ξ0 and δ represent the initial phases.

Taking into account the above relations and substituting Eqs. (2)–(3) into Eq. (1),
we can proceed to separate the real and imaginary components, leading to the following
outcome:

−qUn + cos p(Un−1 + Un+1)
(
1 +mβ

(
U2
n + V2

n

))
− 2Un = 0,

cDα
ξnUn − sin p(Un−1 − Un+1)

(
1 +mβ

(
U2
n + V2

n

))
= 0,

−qVn + cos p(Vn−1 + Vn+1)
(
1 +mβ

(
U2
n + V2

n

))
− 2Vn = 0,

cDα
ξnVn − sin p(Vn−1 − Vn+1)

(
1 +mβ

(
U2
n + V2

n

))
= 0,

(4)

where m = exp(iGn) exp(−iGn).
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3 The FTM

We propose the following ansatz for Eq. (4):

Un =
A0 +A1L2ξn
A2 + L2(ξn)

, Vn =
F0 + F1L2ξn
F2 + L2(ξn)

, (5)

where ξn = dn+ c(tα/α)+ ξ0. Here the values of the constants A0, A1, A2, F0, F1, and
F2 will be determined subsequently.

The function L in ansatz form (5) is a function of ξn and has the following cases.

Case I: L(ξn) = ξn. Equation (5) turns into

Un =
A0 +A1ξ

2
n

A2 + ξ2n
, Vn =

F0 + F1ξ
2
n

F2 + ξ2n
, (6)

and
ξn±1 = ξn ± d. (7)

Taking the derivative of Eq. (6) once with respect to ξn leads to

Dα
ξnUn =

2(−A0 +A1A2)ξn
(A2 + ξ2n)

2
, Dα

ξnVn =
2(−F0 + F1F2)ξn

(F2 + ξ2n)
2

. (8)

Inserting Eqs. (6)–(8) into Eq. (4) and putting each coefficient of ξln, l = 0, 1, 2, . . . ,
equal to zero, we derive a few algebraic equations, and by solving them using MAPLE
software, we can achieve the following results.

Set 1:

c = −4
(
mF 2

1 +
1

2

)
sin p d, β = 1,

q = 4 cos pmF 2
1 + 2 cos p− 2,

A1 = F1, A2 =
A0

F1
, F0 = F1F2,

where A0, F1, F2, p, d, ξ0, and δ are arbitrary constants.
Thus, discrete soliton solutions of Eq. (1) are

ψn =
A0 + F1ξ

2
n

A0

F1
+ ξ2n

exp(iGn), φn =
F1F2 + F1ξ

2
n

F2 + ξ2n
exp(iGn), (9)

where

ξn = dn+

(
−4
(
mF 2

1 +
1

2

)
sin p d

)
tα

α
+ ξ0

and

Gn = pn+
(
4 cos p mF 2

1 + 2 cos p− 2
) tα
α

+ δ.
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Set 2:

q = −2, β = −1,

A1 = ±
√
−m(mF 2

1 + 1)

m
, A2 = ± A0m√

−m(mF 2
1 + 1)

, F0 = F1F2,

where A0, F1, F2, p, d, c, ξ0, and δ are arbitrary constants.
Thus, discrete soliton solutions of Eq. (1) are

ψn =
A0 ±

√
−m(mF 2

1 +1)

m ξ2n

± A0m√
−m(mF 2

1 +1)
+ ξ2n

exp(iGn),

φn =
F1F2 + F1ξ

2
n

F2 + ξ2n
exp(iGn),

(10)

where

ξn = dn+ c
tα

α
+ ξ0 and Gn = pn− 2

tα

α
+ δ.

Case II: L(ξn) = sin ξn. Equation (5) turns into

Un =
A0 +A1 sin

2 ξn

A2 + sin2 ξn
, Vn =

F0 + F1 sin
2 ξn

F2 + sin2 ξn
, (11)

and
sin ξn±1 := sin(ξn ± d) = sin ξn cos d± cos ξn sin d. (12)

Then

Un±1 =
A0 +A1(sin ξn cos d± cos ξn sin d)

2

A2 + (sin ξn cos d± cos ξn sin d)2
,

Vn±1 =
F0 + F1(sin ξn cos d± cos ξn sin d)

2

F2 + (sin ξn cos d± cos ξn sin d)2
.

(13)

Taking the derivative of Eq. (11) once with respect to ξn leads to

Dα
ξnUn =

2(−A0 +A1A2) cos ξn sin ξn

(A2 + sin2 ξn)2
,

Dα
ξnVn =

2(−F0 + F1F2) cos ξn sin ξn

(F2 + sin2 ξn)2
.

(14)

Inserting Eqs. (11)–(14) into Eq. (4) and putting each coefficient of sinl ξn, l = 0,
1, 2, . . . , equal to zero, we derive a few algebraic equations, and solving them using
MAPLE software, we can achieve the following results.
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Set 1:

c = −2 sin p cos d sin d, β = 1, q = 2 cos p− 2,

A0 = A1A2, F1 = ±iA1, F2 = ∓ iF0

A1
,

where A1, A2, F0, p, d, ξ0, and δ are arbitrary constants.
Thus, discrete soliton solutions of Eq. (1) are

ψn =
A1A2 +A1 sin

2 ξn

A2 + sin2 ξn
exp(iGn), φn =

F0 ± iA1 sin
2 ξn

∓ iF0

A1
+ sin2 ξn

exp(iGn),

where

ξn = dn− 2 sin p cos d sin d
tα

α
+ ξ0 and Gn = pn+ (2 cos p− 2)

tα

α
+ δ.

Set 2:

β = −1, q = 2 cos p− 2,

A0 = A1A2, F1 = ±iA1, F2 = ∓ iF0

A1
,

where A1, A2, F0, p, d, c, ξ0, and δ are arbitrary constants.
Thus, discrete soliton solutions of Eq. (1) are

ψn =
A1A2 +A1 sin

2 ξn

A2 + sin2 ξn
exp(iGn), φn =

F0 ± iA1 sin
2 ξn

∓ iF0

A1
+ sin2 ξn

exp(iGn), (15)

where

ξn = dn+ c
tα

α
+ ξ0 and Gn = pn+ (2 cos p− 2)

tα

α
+ δ.

Case III: L(ξn) = sinh ξn. Equation (5) turns into

Un =
A0 +A1 sinh

2 ξn

A2 + sinh2 ξn
, Vn =

F0 + F1 sinh
2 ξn

F2 + sinh2 ξn
, (16)

and
sinh ξn±1 := sinh(ξn ± d) = sinh ξn cosh d± cosh ξn sinh d. (17)

Then

Un±1 =
A0 +A1(sinh ξn cosh d± cosh ξn sinh d)

2

A2 + (sinh ξn cosh d± cosh ξn sinh d)2
,

Vn±1 =
F0 + F1(sinh ξn cosh d± cosh ξn sinh d)

2

F2 + (sinh ξn cosh d± cosh ξn sinh d)2
.

(18)
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Taking the derivative of Eq. (16) once with respect to ξn leads to

Dα
ξnUn =

2(−A0 +A1A2) cosh ξn sinh ξn

(A2 + cosh2 ξn)2
,

Dα
ξnVn =

2(−F0 + F1F2) cosh ξn sinh ξn

(F2 + cosh2 ξn)2
.

(19)

Inserting Eqs. (16)–(19) into Eq. (4) and putting each coefficient of sinhl ξn, l =
0, 1, 2, . . . , equal to zero, we derive a few algebraic equations, and solving them using
MAPLE software, we can achieve the following results.

Set 1:
c = −2 sin p cosh d sinh d, β = 1, q = 2 cos p− 2,

A0 = A1A2, F1 = ±iA1, F2 = ∓ iF0

A1
,

where A1, A2, F0, p, d, ξ0, and δ are arbitrary constants.
Thus, discrete soliton solutions of Eq. (1) are

ψn =
A1A2 +A1 sinh

2 ξn

A2 + sinh2 ξn
exp(iGn), φn =

F0 ± iA1 sinh
2 ξn

∓ iF0

A1
+ sinh2 ξn

exp(iGn),

where

ξn = dn− 2 sin p cosh d sinh d
tα

α
+ ξ0 and Gn = pn+ (2 cos p− 2)

tα

α
+ δ.

Set 2:
β = −1, q = 2 cos p− 2,

A0 = A1A2, F1 = ±iA1, F2 = ∓ iF0

A1
,

where A1, A2, F0, p, d, c, ξ0, and δ are arbitrary constants.
Thus, discrete soliton solutions of Eq. (1) are

ψn =
A1A2 +A1 sinh

2 ξn

A2 + sinh2 ξn
exp(iGn), φn =

F0 ± iA1 sinh
2 ξn

∓ iF0

A1
+ sinh2 ξn

exp(iGn), (20)

where

ξn = dn+ c
tα

α
+ ξ0 and Gn = pn+ (2 cos p− 2)

tα

α
+ δ.

Case IV: L(ξn) = cosh ξn. Equation (5) turns into

Un =
A0 +A1 cosh

2 ξn

A2 + cosh2 ξn
, Vn =

F0 + F1 cosh
2 ξn

F2 + cosh2 ξn
, (21)

and

cosh ξn±1 := cosh(ξn ± d) = cosh ξn cosh d± sinh ξn sinh d. (22)
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Then

Un±1 =
A0 +A1(cosh ξn cosh d± sinh ξn sinh d)

2

A2 + (cosh ξn cosh(d)± sinh ξn sinh d)2
,

Vn±1 =
F0 + F1(cosh ξn cosh d± sinh ξn sinh d)

2

F2 + (cosh ξn cosh d± sinh ξn sinh d)2
.

(23)

Taking the derivative of Eq. (21) once with respect to ξn leads to

Dα
ξnUn =

2(−A0 +A1A2) cosh ξn sinh ξn

(A2 + cosh2 ξn)2
,

Dα
ξnVn =

2(−F0 + F1F2) cosh ξn sinh ξn

(F2 + cosh2 ξn)2
.

(24)

Inserting Eqs. (21)–(24) into Eq. (4) and putting each coefficient of coshl ξn, l =
0, 1, 2, . . . , equal to zero, we derive a few algebraic equations, and solving them using
MAPLE software, we can achieve the following results.

Set 1:

c = −2 sin p cosh d sinh d, β = 1, q = 2 cos p− 2,

A0 = A1A2, F1 = ±iA1, F2 = ∓ iF0

A1
,

where A1, A2, F0, p, d, ξ0, and δ are arbitrary constants.
Thus, discrete soliton solutions of Eq. (1) are

ψn =
A1A2 +A1(cosh

2 ξn)

A2 + cosh2 ξn
exp(iGn), φn =

F0 ± iA1 cosh
2 ξn

∓ iF0

A1
+ cosh2 ξn

exp(iGn), (25)

where

ξn = dn− 2 sin p cosh d sinh d
tα

α
+ ξ0 and Gn = pn+ (2 cos p− 2)

tα

α
+ δ.

Set 2:
β = −1, q = 2 cos p− 2,

A0 = A1A2, F1 = ±iA1, F2 = ∓ iF0

A1
,

where A1, A2, F0, p, d, c, ξ0, and δ are arbitrary constants.
Thus, discrete soliton solutions of Eq. (1) are

ψn =
A1A2 +A1(cosh

2 ξn)

A2 + cosh2 ξn
exp(iGn), φn =

F0 ± iA1 cosh
2 ξn

∓ iF0

A1
+ cosh2 ξn

exp(iGn), (26)

where
ξn = dn+ c

tα

α
+ ξ0 and Gn = pn+ (2 cos p− 2)

tα

α
+ δ.
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Case V: Lξn = cos ξn. Equation (5) turns into

Un =
A0 +A1 cos

2 ξn
A2 + cos2 ξn

, Vn =
F0 + F1 cos

2 ξn
F2 + cos2 ξn

, (27)

and
cos ξn±1 := cos(ξn ± d) = cos ξn cos d∓ sin ξn sin d. (28)

Then

Un±1 =
A0 +A1(cos ξn cos d∓ sin ξn sin d)

2

A2 + (cos ξn cos d∓ sin ξn sin d)2
,

Vn±1 =
F0 + F1(cos ξn cos d∓ sin ξn sin d)

2

F2 + (cos ξn cos d∓ sin ξn sin d)2
.

(29)

Taking the derivative of Eq. (11) once with respect to ξn leads to

Dα
ξnUn =

2(−A0 +A1A2) cos ξn sin ξn
(A2 + cos2 ξn)2

,

Dα
ξnVn =

2(−F0 + F1F2) cos ξn sin ξn
(F2 + cos2 ξn)2

.

(30)

Inserting Eqs. (27)–(30) into Eq. (4) and putting each coefficient of cosl ξn, l =
0, 1, 2, . . . , equal to zero, we derive a few algebraic equations, and solving them using
MAPLE software, we can achieve the following results.

Set 1:
c = −2 sin p cos d sin d, β = 1, q = 2 cos p− 2,

A0 = A1A2, F1 = ±iA1, F2 = ∓ iF0

A1
,

where A1, A2, F0, p, d, ξ0, and δ are arbitrary constants.
Thus, discrete soliton solutions of Eq. (1) are

ψn =
A1A2 +A1 cos

2 ξn
A2 + cos2 ξn

exp(iGn), φn =
F0 ± iA1 cos

2 ξn

∓ iF0

A1
+ cos2 ξn

exp(iGn), (31)

where

ξn = dn− 2 sin p cos d sin d
tα

α
+ ξ0 and Gn = pn+ (2 cos p− 2)

tα

α
+ δ.

Set 2:
β = −1, q = 2 cos p− 2,

A0 = A1A2, F1 = ±iA1, F2 = ∓ iF0

A1
,

where A1, A2, F0, p, d, c, ξ0, and δ are arbitrary constants.
Thus discrete soliton solutions of Eq. (1) are

ψn =
A1A2 +A1 cos

2 ξn
A2 + cos2 ξn

exp(iGn), φn =
F0 ± iA1 cos

2 ξn

∓ iF0

A1
+ cos2 ξn

exp(iGn),
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where

ξn = dn+ c
tα

α
+ ξ0 and Gn = pn+ (2 cos p− 2)

tα

α
+ δ.

4 Physical description

We have effectively obtained a collection of exact soliton solutions by utilizing the FTM
in the CTFCDNLSE. Consequently, our computations yield expressions containing unde-
termined parameters. These solutions illustrate a broad spectrum of waveforms, which
can arise by selecting various values for these parameters. These solutions consist of
trigonometric and hyperbolic functions.

Figures 1–4 and 5–7 are kink-shape and periodic solitons, respectively. These figures
consist of dark and bright solitons. In Fig. 1(a), α = 0.9, and in Fig. 1(b), α = 0.1. In
Fig. 2(a), α = 0.75, and in Fig. 2(b), α = 0.1. In Fig. 3(a), α = 0.1, and in Fig. 3(b),

(a) α = 0.9 (b) α = 0.1

Figure 1. The 3D profiles represents abs(ψn) of Eq. (9) with parameters A0 = 3, F1 = 2, d = 1, p = 0.5,
ξ0 = 0.01, δ = 0.05, and m = 1.

(a) α = 0.75 (b) α = 0.1

Figure 2. The 3D profiles represents abs(ψn) of Eq. (10) with parameters A0 = 3, F1 = 2, d = 1, p = 0.5,
ξ0 = 0.01, δ = 0.05, and m = 1.
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(a) α = 0.1 (b) α = 0.01

Figure 3. The 3D profiles represents abs(ψn) of Eq. (15) with parameters A1 = 3, A2 = −2, d = 1,
p = 0.5, ξ0 = 0.01, and δ = 0.05.

(a) α = 0.5 (b) α = 0.1

Figure 4. The 3D profiles represents abs(ψn) of Eq. (20) with parameters A1 = 3, A2 = −2, d = 1,
p = 0.5, ξ0 = 0.01, and δ = 0.05.

(a) α = 0.5 (b) α = 0.25

Figure 5. The 3D profiles represents abs(φn) of Eq. (25) with parametersA1 = 3, F0 = −2, d = 1, p = 0.5,
ξ0 = 0.01, and δ = 0.05.
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(a) α = 0.5 (b) α = 0.001

Figure 6. The 3D profiles represents abs(ψn) of Eq. (26) with parametersA1 = 3,A2 = −2, F0 = 2, d = 1,
p = 0.5, ξ0 = 0.01, and δ = 0.05.

(a) α = 0.5 (b) α = 0.001

Figure 7. The 3D profiles represents abs(ψn) of Eq. (31) with parametersA1 = 3,A2 = −2, F0 = 2, d = 1,
p = 0.5, ξ0 = 0.01, and δ = 0.05.

α = 0.01. In Fig. 4(a), α = 0.5, and in Fig. 4(b), α = 0.1. In Fig. 5(a), α = 0.5, and
in Fig. 5(b), α = 0.25. In Fig. 6(a), α = 0.5, and in Fig. 6(b), α = 0.001. In Fig. 7(a),
α = 0.5, and in Fig. 7(b), α = 0.001. Figures 1–7 demonstrate that variations in the
fractional parameter α influence the soliton’s width and amplitude.

5 Conclusion

The model we investigated was the CTFCDNLSE as a FNDDEs. Applying the fractional
transformation technique, we uncovered various soliton families, including trigonometric
solitons, hyperbolic solitons, singular solitons, and kink solitons. It is important to high-
light that the solutions obtained in this research are innovative and expand the existing
knowledge base. This approach is a straightforward method that does not require the
use of the homogeneous balance principle. Furthermore, the utilization of 3D profiles
provided valuable insights into the behavior and characteristics of these solitons. It should
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be noted that the order of the derivative, namely the parameter α, influences the determi-
nation of these solutions.
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