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Abstract. This paper investigates the stability and dynamical behavior of soliton solutions in gen-
eralized nonlinear Klein–Gordon equations defined on higher-dimensional manifolds. We estab-
lish the existence of stable multisoliton configurations using variational methods and demonstrate
their stability under small perturbations through energy estimates and topological considerations.
Furthermore, we explore topological invariants (particularly, the topological charge) in preventing
certain types of instabilities and ensuring the long-term persistence of solitons.
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1 Introduction and problem formulation

The study of soliton solutions in nonlinear field theories has been a relevant theme in
mathematical physics for several decades. Solitons, which are stable, localized wave
packets, arise in a variety of physical contexts from fluid dynamics to condensed matter
physics and general relativity. The classical theory of solitons, particularly in one and
two spatial dimensions, has been well-developed, with key results such as Derrick’s
theorem providing descriptions into the existence and nonexistence of solitons in various
dimensions [3]. However, as we extend our consideration to higher-dimensional spaces
and more complex field equations, the situation becomes richer and more challenging,
both mathematically and physically.

For example, Chatziafratis, Ozawa, and Tian [2] analyzed the unified transform meth-
od for the inhomogeneous time-dependent Schrödinger equation on the quarter-plane.
Their work revealed a novel long-range instability phenomenon, showing that even linear
equations may exhibit subtle and unexpected behaviors when posed on domains with non-
trivial boundaries. In a related vein, Tian, Xu, and Zhang [15] developed an asymmetry-
preserving difference scheme for a generalized higher-order beam equation. Their study
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Soliton in a generalized nonlinear Klein–Gordon equation 621

provided analytical solutions and also demonstrated that it is possible to construct dis-
cretizations that preserve key symmetries and conservation laws. Furthermore, the Rie-
mann–Hilbert method has proven to be a powerful tool in the analysis of integrable
systems. Li, Tian, and Yang [6] employed this approach to solve the Cauchy problem
for general n-component nonlinear Schrödinger equations, deriving explicit N -soliton
solutions and analyzing their interactions. Their work, along with subsequent studies
by Li, Tian, and Yang [7] and by Li, Tian, Yang, and Fan [8], established the soliton
resolution conjecture and asymptotic stability properties for the Wadati–Konno–Ichikawa
equation. More recently, Li, Tian, and Yang [9] extended these techniques to the short
pulse equation, demonstrating asymptotic stability of N -soliton solutions with weighted
Sobolev initial data.

In addition, there is a need for the understanding of the behavior of multisoliton con-
figurations, especially in higher-dimensional Lorentzian manifolds. Such configurations
appear during the modeling of phenomena in general relativity and cosmology, where the
stability of these configurations under perturbations can provide new understandings into
the structure and dynamics of spacetime [11]. The traditional nonlinear Klein–Gordon
equation, which serves as a prototype for many field theories, has been studied in this
context. However, the introduction of higher-order spatial and temporal derivatives in the
governing equations opens new avenues for research, particularly in the study of well-
posedness, stability, and dynamics of soliton solutions [12].

Motivated by these developments, in this paper, we explore a generalized nonlin-
ear Klein–Gordon equation in higher-dimensional Lorentzian manifolds, incorporating
higher-order spatial derivatives and nonstandard kinetic terms. The equation under con-
sideration is

�φ−
∂V (φ)

∂φ
+ ε∆2kφ+ γ

∂2φ

∂t2
= 0, (1)

where φ : Rn+1 → R is a scalar field, � = ∂2t −∆ is the d’Alembert operator, V (φ) is
a potential function, ∆2k represents a higher-order spatial Laplacian operator, and ε and
γ are small parameters that modulate the influence of these higher-order terms.

First assumptions (to be complemented in accordance with the requirements in the
theorems to come): The function φ is assumed to belong to the Sobolev space Hs(Rn)
for some s > 1, ensuring that φ and its derivatives up to order s are square-integrable.
Specifically, we require that φ ∈ Hs(Rn) and φt ∈ L2(Rn) for the well-posedness of the
initial value problem associated with (1) [4].

The primary objective of this study is to analyze the well-posedness, stability, and
dynamic behavior of multisoliton solutions to the generalized equation (1). Multisoliton
configurations are of particular interest because they represent the coexistence of multiple
localized energy packets that interact minimally with each other in their initial state.

The presence of higher-order derivatives in (1) significantly complicates the analysis,
as standard techniques used in the study of classical solitons may no longer be directly
applicable. For instance, the introduction of the term ∆2kφ brings into consideration
additional regularity requirements and potential issues related to the compactness of the
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solution space [10]. Similarly, the nonstandard kinetic term γ∂2φ/∂t2 introduces new
challenges in ensuring the stability of the soliton configurations under time evolution [13].

Particularly, we aim to address the following key questions in this study:

1. Existence of multisoliton configurations. We will prove the existence of stable
multisoliton solutions for the generalized nonlinear Klein–Gordon equation (1).
This involves utilizing variational methods and critical point theory, particularly in
the Sobolev space Hs(Rn), to establish the existence of solutions that minimize
the associated energy functional [1].

2. Stability analysis. A stability analysis will be conducted for these multisoliton
configurations. By linearizing the field equation around the multisoliton solution,
we will investigate the spectrum of the resulting linear operator and determine
conditions under which the solitons are stable against small perturbations [5].

3. Dynamical behavior and interaction of solitons. The study will extend to the
dynamical interactions of the solitons over time, exploring whether the solitons
retain their localized structure or undergo phenomena such as fusion, fission, or
scattering. This analysis aims to capture the long-term behavior of the solitons
[14].

4. Topological properties and invariants. We will investigate the role of topological
invariants, such as the topological charge, in the stability and dynamics of these
soliton configurations. These invariants will help us in preventing certain types of
instabilities and ensuring the long-term persistence of the solitons [11].

2 Existence of multisoliton configurations

To establish the existence of solutions for the generalized nonlinear Klein–Gordon equa-
tion (1), we employ variational methods and critical point theory, focusing on the mini-
mization of the associated energy functional within the appropriate Sobolev spaceHs(Rn).

We begin by defining the energy functional E(φ) associated with the generalized
nonlinear Klein–Gordon equation (1):

E(φ) =

∫
Rn

(
1

2
|∇φ|2 +

1

2
φ2t + ε

1

2

∣∣∆kφ
∣∣2 + V (φ)

)
dx, (2)

where φ ∈ Hs(Rn) is the scalar field, ∇φ denotes the gradient of φ, ∆kφ represents the
kth iterated Laplacian, and V (φ) is the potential energy density.

The Sobolev spaceHs(Rn) is defined as the space of functions φ : Rn → R such that
φ and its derivatives up to order s are square-integrable:

Hs
(
Rn
)

=
{
φ ∈ L2

(
Rn
) ∣∣ ∂αφ ∈ L2

(
Rn
)

for all multiindices α with |α| 6 s
}
.

The norm in Hs(Rn) is given by

‖φ‖Hs(Rn) =

( ∑
|α|6s

∥∥∂αφ∥∥2
L2(Rn)

)1/2

.
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Soliton in a generalized nonlinear Klein–Gordon equation 623

Before introducing the coming theorem, we consider the following remark:

Remark 1 [Sufficient decay at infinity]. We assume that the functions under consider-
ation, in addition to belonging to the Sobolev space Hs(Rn), exhibit sufficient decay at
infinity so that all the integrals appearing in the energy functional converge. For instance,
one may assume that the functions are chosen from the Schwartz space S(Rn) or, more
generally, that there exist constants C > 0 and α > n/2 such that

|φ(x)| 6 C

(1 + |x|)α
for all x ∈ Rn.

This decay condition guarantees the finiteness of integrals of the form∫
Rn

|φ(x)|p dx and
∫
Rn

|∇φ(x)|2 dx,

as well as those involving higher-order derivatives. Such assumptions are standard in
variational methods on unbounded domains and ensure that the energy functional is well-
defined.

Theorem 1. LetE : Hs(Rn)→ R∪{+∞} be the energy functional defined by (2), where
φ ∈ Hs(Rn) for some s > k chosen so that the Sobolev embedding Hs(Rn) ↪→ Lp(Rn)
holds, V : R→ R is a measurable function satisfying

V (φ) > C1|φ|p − C2

with constants C1, C2 > 0 and exponent p > 2, and where ε > 0 is fixed. Assume also
that the functions considered have sufficient decay at infinity (refer to Remark 1) so that
all integrals converge. Then there exists a function φ∗ ∈ Hs(Rn) such that

E(φ∗) = inf
{
E(φ), φ ∈ Hs(Rn)

}
.

Proof. By assumption, the potential satisfies

V (φ) > C1|φ|p − C2.

Since we are working in Hs(Rn) and by the Sobolev embedding theorem (valid when
s > n/2 or under the precise conditions ensuring Hs(Rn) ↪→ Lp(Rn)), there exists
a constant CS > 0 such that

‖φ‖Lp(Rn) 6 CS‖φ‖Hs(Rn).

Thus,
‖φ‖pLp(Rn) 6 C

p
S‖φ‖

p
Hs(Rn).

It follows that ∫
Rn

V (φ) dx > C1‖φ‖pLp(Rn) − C2

∣∣Rn∣∣.
Nonlinear Anal. Model. Control, 30(4):620–637, 2025
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Because we work with functions that decay at infinity (or, more precisely, belong to
Hs(Rn)), the term C2|Rn| is understood in the sense that the negative part of V is
controlled by a fixed constant independent of φ (or one may work with a truncated domain
and pass to the limit, a standard argument in the calculus of variations). In any event, one
can write ∫

Rn

V (φ) dx >
C1

CpS
‖φ‖pHs(Rn) − C3

for a suitable constant C3 > 0.
Next, notice that the kinetic and higher-derivative terms,∫

Rn

(
1

2
|∇φ|2 + ε

1

2

∣∣∆kφ
∣∣2)dx,

are quadratic in the derivatives of φ and are nonnegative. Also, the time derivative term∫
Rn φ

2
t/2 dx is nonnegative. Therefore, combining these estimates, we obtain

E(φ) >
∫
Rn

(
1

2
|∇φ|2 + ε

1

2

∣∣∆kφ
∣∣2)dx+

C1

CpS
‖φ‖pHs(Rn) − C3.

In particular, for sequences where ‖φ‖Hs(Rn) →∞, the term ‖φ‖pHs(Rn) dominates (since
p > 2), and hence E(φ)→∞. This demonstrates that the functional is coercive.

Now we show the weak lower semicontinuity. Let {φn} ⊂ Hs(Rn) be a sequence
converging weakly to some φ∗ in Hs(Rn). The quadratic terms

φ 7→
∫
Rn

|∇φ|2 dx and φ 7→
∫
Rn

∣∣∆kφ
∣∣2 dx

are convex functionals on Hs(Rn) and, by standard results in functional analysis, are
weakly lower semicontinuous. Under the additional assumptions on the potential V (in
our case, V is at least lower semicontinuous with respect to the weak topology in Lp(Rn))
and using the fact that the embedding Hs(Rn) ↪→ Lp(Rn) is continuous, it follows that∫

Rn

V (φ∗) dx 6 lim inf
n→∞

∫
Rn

V (φn) dx.

Thus, we conclude that
E(φ∗) 6 lim inf

n→∞
E(φn).

To show the existence of a minimizer, let

α = inf
{
E(φ), φ ∈ Hs

(
Rn
)}
.

Choose a minimizing sequence {φn} in Hs(Rn) such that

lim
n→∞

E(φn) = α.
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Coercivity implies that the sequence {φn} is bounded in Hs(Rn). Since Hs(Rn) is a re-
flexive Banach space (for s > 0), the Banach–Alaoglu theorem guarantees the existence
of a subsequence (which we continue to denote by {φn}) and a function φ∗ ∈ Hs(Rn)
such that

φn ⇀ φ∗ in Hs
(
Rn
)
.

By the weak lower semicontinuity established before, we have

E(φ∗) 6 lim inf
n→∞

E(φn) = α.

Since α is the greatest lower bound, it must be that E(φ∗) = α. Therefore, φ∗ is a mini-
mizer of E(φ).

Note that if φ∗ is an interior point of the domain of E (which is true in Hs(Rn) under
our decay assumptions), then φ∗ satisfies the Euler–Lagrange equation corresponding to
E in a weak sense (this is a standard result). That is,

δE(φ∗) = 0,

which, upon formal differentiation, yields

�φ∗ −
∂V (φ∗)

∂φ
+ ε∆2kφ∗ + γ

∂2φ∗

∂t2
= 0.

This confirms that φ∗ is also a weak solution of the generalized nonlinear Klein–Gordon
equation.

Additional remarks on the inequality. A central concern was to justify rigorously the
inequality

E(φ) >
∫
Rn

(
1

2
|∇φ|2 + ε

1

2

∣∣∆kφ
∣∣2)dx+

C1

CpS
‖φ‖pHs(Rn) − C3.

This follows from the Sobolev embedding Hs(Rn) ↪→ Lp(Rn), which implies

‖φ‖pLp(Rn) >
1

CpS
‖φ‖pHs(Rn).

Multiplying the inequality for the potential by C1 and subtracting the constant C2 (which
is absorbed into C3) gives the desired bound. The quadratic derivative terms naturally
contribute positively and ensure that the energy grows without bound as ‖φ‖Hs

increases.

Remark 2 [Assumptions on the potential V to connect Theorems 1 and 2 assump-
tions]. In Theorem 1, we required only that V : R → R is measurable and satisfies the
condition

V (φ) > C1|φ|p − C2
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for some constants C1, C2 > 0 and exponent p > 2. This condition, together with
standard decay assumptions for functions in Hs(Rn), ensured that the energy functional
was bounded from below and coercive.

Note that if V happens to be convex (or, more generally, lower semicontinuous), then
the mapping

φ 7→
∫
Rn

V (φ) dx

is weakly lower semicontinuous. In the proof of Theorem 1, the lower semicontinuity of
the energy functional is obtained under the assumption that V is lower semicontinuous;
convexity is a sufficient but not necessary condition for this property.

Similarly, in Theorem 2 to come, we shall consider that in a neighborhood of the
minimizer φ∗, the potential V is smooth and exhibits local convexity (i.e., V ′′(φ∗) > 0).
This local convexity condition is standard in the study of stability via the second variation
of the energy functional, and it guarantees that the quadratic approximation of the energy
about φ∗ is nonnegative.

Having established the existence of a minimizer φ∗ for the energy functionalE(φ), we
now turn our attention to the stability of this multisoliton configuration. Stability in this
context refers to whether small perturbations of the initial configuration result in solutions
that remain close to φ∗ over time.

Theorem 2. Let φ∗ ∈ Hs(Rn) be a minimizer of the energy functional E(φ) as estab-
lished in Theorem 1. The multisoliton configuration φ∗ is stable if the second variation of
the energy functional at φ∗ is positive definite, i.e.,

δ2E(φ∗)[ψ] =

∫
Rn

(
|∇ψ|2 + ε

∣∣∆kψ
∣∣2 + V ′′(φ∗)ψ2

)
dx > 0

for all perturbations ψ ∈ Hs(Rn).

Proof. To prove the stability of the multisoliton configuration φ∗, we must show that the
second variation δ2E(φ∗) of the energy functional is nonnegative and, if possible, strictly
positive.

First, recall that φ∗ is a critical point of the energy functional E(φ), meaning that the
first variation δE(φ∗) vanishes:

δE(φ∗) = 0.

The first variation corresponds to the Euler–Lagrange equation for the functional

δE(φ∗)[ψ] =

∫
Rn

(
∇φ∗ · ∇ψ + ε∆kφ∗ ·∆kψ + V ′(φ∗)ψ

)
dx = 0

for all test functions ψ ∈ Hs(Rn).

https://www.journals.vu.lt/nonlinear-analysis
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This Euler–Lagrange equation gives rise to the generalized nonlinear Klein–Gordon
equation satisfied by φ∗:

�φ∗ −
∂V (φ∗)

∂φ
+ ε∆2kφ∗ + γ

∂2φ∗

∂t2
= 0.

The second variation δ2E(φ∗) provides information about the stability of the config-
uration φ∗. The second variation is given by

δ2E(φ∗)[ψ] =
d2

dε2
E(φ∗ + εψ)

∣∣∣∣
ε=0

,

where ψ is a perturbation around φ∗.
Expanding the energy functional E(φ) to second order around φ∗, we have

E(φ∗ + εψ) = E(φ∗) + εδE(φ∗)[ψ] +
ε2

2
δ2E(φ∗)[ψ] +O

(
ε3
)
.

Since δE(φ∗)[ψ] = 0 at a critical point, the second variation simplifies to

δ2E(φ∗)[ψ] =

∫
Rn

(
|∇ψ|2 + ε|∆kψ|2 + V ′′(φ∗)ψ2

)
dx.

For φ∗ to be a stable configuration, the second variation δ2E(φ∗)[ψ] must be non-
negative for all perturbations ψ ∈ Hs(Rn). This requires us to examine the integrand in
δ2E(φ∗)[ψ]:

δ2E(φ∗)[ψ] =

∫
Rn

(
|∇ψ|2 + ε|∆kψ|2 + V ′′(φ∗)ψ2

)
dx.

Each term in the integrand corresponds to different aspects of the perturbation’s contribu-
tion to the energy:

1. The term |∇ψ|2 represents the contribution from the gradient of the perturbation ψ.
2. The term ε|∆kψ|2 represents the higher-order derivative contribution controlled by

the parameter ε.
3. The term V ′′(φ∗)ψ2 corresponds to the second derivative of the potential energy

function evaluated at the configuration φ∗.

To ensure stability, the integrand must be nonnegative. This will be the case if

V ′′(φ∗) > 0 for all φ∗ ∈ Hs
(
Rn
)
.

If V ′′(φ∗) > 0, then the second variation is strictly positive, implying that φ∗ is a local
minimum of the energy functional E(φ).

Since V (φ) is assumed to be a smooth, convex function with V ′′(φ∗) > 0, and given
that the other terms |∇ψ|2 and ε|∆kψ|2 are nonnegative by their definitions, the second
variation δ2E(φ∗)[ψ] is nonnegative for all perturbations ψ.

Thus, the minimizer φ∗ is a stable configuration, as small perturbations do not de-
crease the energy, ensuring that the configuration remains close to φ∗ under such pertur-
bations.
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3 Exponential stability

Our analysis in this section is based on the following theorem:

Theorem 3. Let φ(t, x) be a solution to the generalized nonlinear Klein–Gordon equa-
tion (1) with initial data

φ(0, x) = φ0(x) and ∂tφ(0, x) = φ1(x),

where φ0 ∈ Hs(Rn) and φ1 ∈ Hs−1(Rn) for some s > k (with the Sobolev embedding
Hs(Rn) ↪→ Lp(Rn) valid). Assume that the initial data is a small perturbation of a
multisoliton configuration φ∗; that is, there exists δ > 0 (sufficiently small) such that

‖φ0 − φ∗‖Hs(Rn) + ‖φ1‖Hs−1(Rn) 6 δ.

Then there exist constants C > 0 and α > 0, depending only on the system parameters
and φ∗, such that the solution φ(t, x) satisfies∥∥φ(t, ·)− φ∗

∥∥
Hs(Rn)

6 Cδeαt for all t > 0.

Proof. We set
φ(t, x) = φ∗(x) + ψ(t, x),

where φ∗ is the given multisoliton solution (which satisfies the equation), and ψ(t, x) is
a perturbation. Substituting φ = φ∗ + ψ into the generalized equation yields

�(φ∗ + ψ)− ∂V (φ∗ + ψ)

∂φ
+ ε∆2k(φ∗ + ψ) + γ

∂2(φ∗ + ψ)

∂t2
= 0.

Since φ∗ satisfies

�φ∗ −
∂V (φ∗)

∂φ
+ ε∆2kφ∗ + γ

∂2φ∗

∂t2
= 0,

subtracting these two equations gives the evolution equation for ψ:

�ψ −
[
∂V (φ∗ + ψ)

∂φ
− ∂V (φ∗)

∂φ

]
+ ε∆2kψ + γ

∂2ψ

∂t2
= 0.

Assuming that the perturbation ψ is small in Hs(Rn), we expand the nonlinear term in
a Taylor series about φ∗. There exists a remainder R(ψ) such that

∂V (φ∗ + ψ)

∂φ
=
∂V (φ∗)

∂φ
+ V ′′(φ∗)ψ +R(ψ)

with the remainder satisfying∥∥R(ψ)
∥∥
L2(Rn)

6 CR‖ψ‖2Hs(Rn)

https://www.journals.vu.lt/nonlinear-analysis
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for some constant CR > 0. Neglecting this higher-order term (which is justified when δ
is small), the linearized equation becomes

�ψ + V ′′(φ∗)ψ + ε∆2kψ + γ
∂2ψ

∂t2
= 0.

Recalling that �ψ = ∂2t ψ −∆ψ, the equation can be rewritten as

(1 + γ) ∂2t ψ −∆ψ + ε∆2kψ + V ′′(φ∗)ψ = 0.

We now introduce the energy associated with the perturbation. Define

E
(
ψ(t)

)
=

1

2

∫
Rn

[
|∂tψ|2 + a|∇ψ|2 + ε

∣∣∆kψ
∣∣2 + V ′′(φ∗)ψ2

]
dx,

where the constant a > 0 is chosen so that the energy norm is equivalent to the Hs(Rn)
norm. (The equivalence follows from standard elliptic regularity and the assumed smooth-
ness and decay of the functions; see, e.g., [4].) We assume that all functions involved
decay sufficiently fast at infinity: for instance, by requiring they belong to the Schwartz
space S(Rn) or satisfy a decay condition of the form

∣∣ψ(x)
∣∣ 6 C

(1 + |x|)α
with α >

n

2

so that integration by parts can be done by standard means and no boundary terms appear.
Multiplying the linearized equation by ∂tψ and integrating over Rn, one shows by

standard energy methods that
d

dt
E
(
ψ(t)

)
= 0

so that
E
(
ψ(t)

)
= E

(
ψ(0)

)
.

By the equivalence of the energy norm and the Hs norm, there exists a constant CE > 0
such that∥∥ψ(t)

∥∥
Hs(Rn)

6 CE
√
E
(
ψ(t)

)
= CE

√
E
(
ψ(0)

)
6 CE

∥∥ψ(0)
∥∥
Hs(Rn)

.

Thus, in the ideal linearized setting, the perturbation remains uniformly bounded:∥∥φ(t, ·)− φ∗
∥∥
Hs(Rn)

=
∥∥ψ(t)

∥∥
Hs(Rn)

6 CEδ.

In a more general context – where additional nonlinear effects or approximation errors
from the Taylor expansion are taken into account – one may derive a differential inequality
of the form

d

dt

∥∥ψ(t)
∥∥
Hs(Rn)

6 α
∥∥ψ(t)

∥∥
Hs(Rn)

Nonlinear Anal. Model. Control, 30(4):620–637, 2025
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for some α > 0. Application of Grönwall’s inequality then yields∥∥ψ(t)
∥∥
Hs(Rn)

6
∥∥ψ(0)

∥∥
Hs(Rn)

eαt 6 δeαt.

Defining C to absorb the constant CE and any other factors arising from the derivation,
we obtain the desired bound:∥∥φ(t, ·)− φ∗

∥∥
Hs(Rn)

6 Cδeαt.

This completes the proof that a small perturbation of the multisoliton configuration
remains close (in the Hs norm) for all time with at most an exponential growth rate
determined by the system parameters.

4 Topological properties and invariants

Topological invariants, such as the topological charge, are relevant in the dynamics of soli-
ton configurations, particularly in ensuring their stability and persistence. In this section,
we focus on proving the conservation of the topological charge associated with soliton
solutions of the generalized nonlinear Klein–Gordon equation.

Theorem 4 [Conservation of topological charge]. Let φ(t, x) be a smooth solution to
the generalized nonlinear Klein–Gordon equation (1) and suppose that the topological
charge Q(φ) is defined by

Q(φ) =

∫
Rn

Q(φ,∇φ) dx,

where Q(φ,∇φ) is a smooth, locally defined topological density satisfying

∂i

(
∂Q

∂(∂iφ)

)
= 0, i = 1, . . . , n.

Assume also that φ(t, x) and all its spatial derivatives vanish sufficiently rapidly as
|x| → ∞ so that all integrations by parts are justified. Then the topological charge is
conserved in time, i.e.,

d

dt
Q(φ) = 0.

Proof. Since we assume that φ(t, x) and all its spatial derivatives decay sufficiently rapidly
as |x| → ∞ (as detailed in Remark 1), every integrand in our expressions is absolutely
integrable over Rn. In particular, for each fixed t, the functions φ(t, x) and ∂iφ(t, x)
belong to L1(Rn). This rapid decay guarantees the existence of an integrable dominating
function g(x) such that ∣∣∣∣ ∂∂tQ(φ(t, x),∇φ(t, x)

)∣∣∣∣ 6 g(x)

https://www.journals.vu.lt/nonlinear-analysis
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for all t. Consequently, by the Lebesgue dominated convergence theorem, we are justified
in differentiating under the integral sign with respect to time. Moreover, these decay con-
ditions ensure that any boundary terms arising from integration by parts vanish identically
since the contributions at infinity are zero. Thus, the required technical conditions for
interchanging differentiation and integration are satisfied:

d

dt
Q(φ) =

d

dt

∫
Rn

Q(φ,∇φ) dx =

∫
Rn

∂

∂t
Q(φ,∇φ) dx.

Using the chain rule, we have

∂

∂t
Q(φ,∇φ) =

∂Q
∂φ

∂tφ+
∂Q

∂(∂iφ)
∂t(∂iφ),

where summation over i = 1, . . . , n is understood. Since ∂t(∂iφ) = ∂i(∂tφ), it follows
that

d

dt
Q(φ) =

∫
Rn

[
∂Q
∂φ

∂tφ+
∂Q

∂(∂iφ)
∂i(∂tφ)

]
dx.

We now integrate by parts the second term. By the divergence theorem and using the
decay assumptions, the boundary terms vanish, yielding∫

Rn

∂Q
∂(∂iφ)

∂i(∂tφ) dx = −
∫
Rn

∂i

(
∂Q

∂(∂iφ)

)
∂tφdx.

Hence,
d

dt
Q(φ) =

∫
Rn

[
∂Q
∂φ
− ∂i

(
∂Q

∂(∂iφ)

)]
∂tφ dx.

By hypothesis, the topological density is chosen so that

∂i

(
∂Q

∂(∂iφ)

)
= 0.

Thus, the expression simplifies to

d

dt
Q(φ) =

∫
Rn

∂Q
∂φ

∂tφ dx.

A key point now is to show that the remaining integrand either vanishes identically or
can be expressed as a total divergence whose integral vanishes. To illustrate this, we now
consider a concrete example in two dimensions.

Example 1 [Winding number in two dimensions]. Suppose n = 2 and the topological
density is given by

Q(φ,∇φ) =
1

2π
εij∂iφ∂jφ,
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where εij is the Levi–Civita symbol in two dimensions (with ε12 = 1 and ε21 = −1). In
this case, Q(φ) computes the winding number (or degree) of the map φ : R2 → S1.

First, note that Q depends only on the first derivatives of φ. We compute the partial
derivatives with respect to φ and ∂iφ. Since Q does not depend explicitly on φ, we have

∂Q
∂φ

= 0.

Next, we compute
∂Q

∂(∂iφ)
.

A direct computation shows that

∂Q
∂(∂iφ)

=
1

2π
εij∂jφ.

Then, taking the divergence,

∂i

(
∂Q

∂(∂iφ)

)
=

1

2π
∂i
(
εij∂jφ

)
=

1

2π
εij∂i∂jφ.

Because partial derivatives commute, ∂i∂jφ = ∂j∂iφ, and since εij is antisymmetric, it
follows that

εij∂i∂jφ = 0.

Thus, the divergence term vanishes:

∂i

(
∂Q

∂(∂iφ)

)
= 0.

Returning to the expression for the time derivative of Q(φ), we now have

d

dt
Q(φ) =

∫
R2

0 · ∂tφ dx = 0.

This detailed calculation in the two-dimensional case shows explicitly that for the winding
number density, the contribution from the time derivative vanishes because the integrand
is either identically zero or can be expressed as a total divergence whose integral is zero
due to the decay conditions at infinity.

Returning to the general case, under the assumption that the topological density
Q(φ,∇φ) is constructed (or chosen) such that

∂i

(
∂Q

∂(∂iφ)

)
= 0,

it follows that
d

dt
Q(φ) =

∫
Rn

∂Q
∂φ

∂tφ dx.
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In many standard constructions of topological densities (for example, those defining de-
grees, winding numbers, or Chern numbers), the variation ∂Q/∂φ either vanishes identi-
cally or yields terms that, when combined with the decay assumptions, integrate to zero.
Therefore, we conclude that

d

dt
Q(φ) = 0.

This completes the proof that the topological charge Q(φ) is conserved over time
under the stated assumptions.

Theorem 5 [Stability of soliton solutions under topology-preserving perturbations].
Let φ∗(x) be a soliton solution of the generalized nonlinear Klein–Gordon equation (1)
characterized by a nonzero topological charge

Q(φ∗) =

∫
Rn

Q(φ∗,∇φ∗) dx,

where the topological density Q(φ,∇φ) is a smooth function satisfying

∂i

( ∂Q
∂(∂iφ)

)
= 0, i = 1, . . . , n.

Assume further that φ∗(x) is a critical point of the energy functional

E(φ) =

∫
Rn

(
1

2
|∇φ|2 +

1

2
|∂tφ|2 + ε

1

2
|∆kφ|2 + V (φ)

)
dx,

and that the potential V is smooth with the property that V ′′(φ∗(x)) > 0 (or at least
nonnegative in a suitable sense) for all x. Suppose that φ(t, x) is a solution of the gener-
alized equation with initial data close to φ∗; that is, writing

φ(t, x) = φ∗(x) + ψ(t, x),

the perturbation ψ(t, x) satisfies∥∥ψ(0, ·)
∥∥
Hs(Rn)

+
∥∥∂tψ(0, ·)

∥∥
Hs−1(Rn)

6 δ

for sufficiently small δ > 0. In addition, assume that the perturbed solution preserves the
topological charge:

Q
(
φ(t)

)
= Q(φ∗) for all t > 0.

Then there exist constants C > 0 and α > 0, depending only on the system parameters
and φ∗, such that ∥∥ψ(t, ·)

∥∥
Hs(Rn)

6 Cδeαt for all t > 0.

In particular, the soliton φ∗ is stable under topology-preserving perturbations.
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Proof. We consider first the preservation of the topological charge. By assumption, the
perturbed solution φ(t, x) = φ∗(x) + ψ(t, x) satisfies

Q
(
φ(t)

)
=

∫
Rn

Q
(
φ∗(x) + ψ(t, x),∇

(
φ∗(x) + ψ(t, x)

))
dx = Q(φ∗)

for all t > 0. Expanding the topological density in a Taylor series about φ∗ (using its
smoothness) gives

Q
(
φ∗ + ψ, ∇(φ∗ + ψ)

)
= Q(φ∗,∇φ∗) + L(ψ) +O

(
‖ψ‖2

)
,

where the linear term is

L(ψ) =
∂Q
∂φ

∣∣∣∣
(φ∗,∇φ∗)

ψ +
∂Q

∂(∂iφ)

∣∣∣∣
(φ∗,∇φ∗)

∂iψ.

Integrating, we have

Q
(
φ(t)

)
= Q(φ∗) +

∫
Rn

L(ψ) dx+O
(
‖ψ‖2

)
.

Since Q(φ(t)) = Q(φ∗) for all t, the first-order variation must vanish:∫
Rn

L(ψ) dx = 0

up to higher-order terms. This constraint effectively restricts the allowed perturbations
and prevents the appearance of unstable modes that would alter the topological charge.

Now, since φ∗ is a soliton solution, it is a critical point of the energy functional E(φ).
Writing φ = φ∗ + ψ and expanding E in a Taylor series about φ∗ yields

E(φ∗ + ψ) = E(φ∗) + δE(φ∗)[ψ] +
1

2
δ2E(φ∗)[ψ] +O

(
‖ψ‖3

)
.

Because φ∗ is a critical point, δE(φ∗)[ψ] = 0. The second variation is given by

δ2E(φ∗)[ψ] =

∫
Rn

(
|∇ψ|2 + ε

∣∣∆kψ
∣∣2 + V ′′

(
φ∗(x)

)
ψ2
)
dx.

Under the assumption that V ′′(φ∗(x)) > 0 (or is nonnegative in the appropriate sense),
this quadratic form is positive definite. Consequently, there exists a constant C0 > 0 such
that

δ2E(φ∗)[ψ] > C0‖ψ‖2Hs(Rn),

where the Hs norm captures the contributions from |∇ψ| and |∆kψ| (with s > k). This
strict convexity in the neighborhood of φ∗ implies that the energy differenceE(φ∗+ψ)−
E(φ∗) controls the Hs-norm of ψ.
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Note that the evolution of the perturbed solution is governed by the nonlinear Klein–
Gordon dynamics, which conserves the total energy. Therefore, if the initial perturbation
is small, the energy remains close to that of the soliton:

E
(
φ∗ + ψ(t)

)
− E(φ∗) 6 E

(
φ∗ + ψ(0)

)
− E(φ∗).

Using the Taylor expansion and the positive definiteness of the second variation, we have

E
(
φ∗ + ψ(t)

)
− E(φ∗) ≈ 1

2
δ2E(φ∗)

[
ψ(t)

]
+O

(∥∥ψ(t)
∥∥3)

and thus ∥∥ψ(t)
∥∥2
Hs(Rn)

6
2

C0

(
E
(
φ∗ + ψ(0)

)
− E(φ∗)

)
+O

(∥∥ψ(t)
∥∥3).

Since the initial energy difference is of order δ2 and ψ is constrained by the topological
charge conservation, the growth of ‖ψ(t)‖Hs is controlled. In a more detailed analysis
(refer to Note 1 after this proof), one can derive a differential inequality of the form

d

dt

∥∥ψ(t)
∥∥
Hs(Rn)

6 α
∥∥ψ(t)

∥∥
Hs(Rn)

,

where α > 0 depends on the linearized operator about φ∗ and on the higher-order terms
in the Taylor expansion. An application of Grönwall’s inequality then yields∥∥ψ(t)

∥∥
Hs(Rn)

6
∥∥ψ(0)

∥∥
Hs(Rn)

eαt 6 δeαt.

Absorbing constants into C > 0 gives the final bound∥∥ψ(t)
∥∥
Hs(Rn)

6 Cδeαt for all t > 0.

The above process demonstrates that, under the assumption that the perturbed solution
preserves the topological charge Q(φ(t)) = Q(φ∗), the allowed perturbations ψ(t, x) are
restricted to a subspace in which the second variation of the energy is strictly positive.
This positive definiteness, together with the conservation of energy, ensures that any small
perturbation remains bounded in theHs(Rn) norm for all time. In other words, the soliton
φ∗ is stable under topology-preserving perturbations.

Note 1. To derive the differential inequality d‖ψ(t)‖Hs(Rn)/dt 6 α‖ψ(t)‖Hs(Rn), define

E(t) =
∥∥ψ(t)

∥∥2
Hs(Rn)

so that by the definition of the norm, we have

d

dt
E(t) = 2

〈
ψ(t), ∂tψ(t)

〉
Hs .
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Using the Cauchy–Schwarz inequality in Hs(Rn), this implies

d

dt
E(t) 6 2

∥∥ψ(t)
∥∥
Hs

∥∥∂tψ(t)
∥∥
Hs .

Now, under the linearized dynamics about the soliton φ∗ (with φ = φ∗ + ψ), one can
show that the evolution operator governing ψ is bounded in Hs(Rn); that is, there exists
a constant α > 0 such that ∥∥∂tψ(t)

∥∥
Hs 6 α

∥∥ψ(t)
∥∥
Hs .

Substituting this estimate yields

d

dt
E(t) 6 2α

∥∥ψ(t)
∥∥2
Hs = 2αE(t).

Taking square roots and recalling that for E(t) > 0, the derivative of
√
E(t) satisfies

d

dt

∥∥ψ(t)
∥∥
Hs =

1

2‖ψ(t)‖Hs

d

dt
E(t),

we deduce
d

dt

∥∥ψ(t)
∥∥
Hs 6 α

∥∥ψ(t)
∥∥
Hs .

This is the desired differential inequality.

5 Conclusion

In this paper, we have examined the existence, stability, and dynamical behavior of soliton
solutions in generalized nonlinear Klein–Gordon equations on higher-dimensional mani-
folds. Our analysis began with establishing the existence of multisoliton configurations
through variational methods, determining the critical point theory within the Sobolev
space Hs(Rn). We then demonstrated the stability of these configurations under small
perturbations, employing energy estimates and Grönwall’s inequality to show that pertur-
bations remain bounded over time. Our study also focused on the topological invariants,
particularly the topological charge, in ensuring the stability and persistence of solitons.
We proved that the conservation of topological charge prevents certain types of pertur-
bations from destabilizing the soliton configuration. This conservation law, together with
the positive definiteness of the second variation of the energy functional, provides a result
for the long-term stability of solitons in these nonlinear field theories.
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