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Abstract. In this paper, the controllability of a stochastic impulsive integro-differential system
involving nonlocal conditions and conformable derivatives is analyzed. The solution of the system
is derived by Duhamel’s formula using Laplace and inverse Laplace transforms. The controllability
result for the linear system is proved by using controllability Grammian matrix, and for the
nonlinear integro-differential system, fixed point techniques are used. The applicability of the
system is verified by means of an example.
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1 Introduction

A dynamical nonlinear system is a mathematical model, which is used to refer to a time-
dependant behaviour of a system that governs the evolution of the state of the system
over time [14, 27]. Nonlinear dynamical systems are used to study various problems in
the field of planetary motion control, economic growth models, epidemiological models,
neural networks, mechanical and aerospace systems, and so on [8]. A nonlinear system is
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one in which the input and output are not directly dependant on each other resulting
in behaviours like bifurcations, chaos, and multiple equilibria that cannot be adequately
described by simple linear equations. Hence, the analysis and control of nonlinear sys-
tems are often unpredictable and show intricate behaviours [24]. The integro-differential
system depends on both its instantaneous rate of change and a cumulative effect of past
interactions [16, 30]. A conformable derivative extends the idea of a regular derivative to
noninteger orders while keeping its definition simple and similar to classical calculus. It
preserves many familiar properties like the product and chain rules, making it easier to
understand and apply to real-world problems [18].

Controllability is one of the most important qualitative behaviour. It is often studied as
the ability of a system to steer from an initial state to a final state at certain time intervals
using appropriate control functions [11, 23]. The study of controllability of linear and
nonlinear system is of considerable significance among many researchers [17,28]. In [32],
You et al. analysed the relative controllability of delay differential equations, and in [21],
Jothilakshmi et al. examined the controllability of integro-delay impulsive differential
equations by using a delayed perturbation of Mittag-Leffler functions. Controllability of
second-order systems have been studied with great interest using various conditions over
the recent years [4, 7, 26]. Impulsive conditions in a system are often referred to as the
circumstances where instantaneous and sudden changes happen in the state of the system
[3, 29]. The study of systems with impulses is inevitable as it alters the behaviour of the
system causing analogous changes [6, 15]. Cabada et al. [12] have investigated a semi-
linear impulsive noninstantaneous delay system and proved the controllability of the same
using fixed point approaches. Compared to the classical initial conditions of a system,
the nonlocal initial conditions provide more specific and explicit details concerning the
system [1, 13].

The stochastic systems involve random variables or processes that influence the be-
haviour of the system over a specific period of time that incorporates some sort of random-
ness or uncertainities to the state of the system [2,20,33]. The existence and controllability
of a stochastic system with infinite delay involving conformable derivatives was studied
by Huang et al. [19] via measures of noncompactness. The authors utilize advanced
mathematical methodologies, such as fixed point theorems and stochastic analysis, to
derive sufficient conditions for the controllability of system. This work extends existing
theories by incorporating conformable derivatives, which generalize classical derivatives
to provide a more accurate representation of real-world phenomena. This contribution is
particularly relevant for developing effective control strategies in engineering and applied
sciences, where managing the behavior of complex systems under uncertainty is a critical
challenge. For instance, similar studies have investigated the controllability of differen-
tial systems with conformable derivatives [31], as well as the relative controllability of
impulsive-delay conformable differential equations [25].
• The conformable derivatives are more compactible and consistent to functions of

different orders of differentiability permitting more precise applications with accu-
racy.

• They can more effectively prove the principle of action in some real-world issues
than the classical fractional derivative.
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• It may be regularly used to describe some unique events since the conformable
derivative has certain characteristics that the Riemann–Liouville derivative and Ca-
puto derivative do not have and the resulting formula is significantly less complex.

• By focusing on systems with integro-differential equations and impulsive condi-
tions, the study enhances the theoretical understanding and control of complex
stochastic systems exhibiting impulsive nature.

Hence, it is inevitable to study the controllability behaviour of such systems using
conformable derivatives. To the best of the author’s knowledge, there is no prior work
concerning to the controllability analysis of stochastic impulsive integro-differential sys-
tem with nonlocal conditions and conformable derivatives, which is the main inspiration
for this work. The structure of the paper is as follows: Section 2 formulates the integro-
differential problem and states some important definitions, propositions, and lemmas used
to prove the results. Section 3 contains the controllability results of the corresponding
linear system and the nonlinear integro-differential system. Section 4 briefs about an
example related to the integro-differential system studied. Section 5 concludes the paper.

2 Problem formulation and preliminaries

In this paper, the stochastic impulsive differential system involving conformable deriva-
tives and nonlocal conditions is considered as follows:

Dγ
(
Dγ
(
z(t)

))
= Az(t) + Bu(t) + b̃

(
t, s,z(t)

)dW (t)

dt

+ g̃

(
t,z(t),

t∫
0

f̃
(
t, s,z(s)

)
ds

)
, t ∈ [0, ζ], (1)

z(0) = z0 +p(z), (2)
z′(0) = z1 +q(z), (3)

z
(
t+i
)
− z

(
t−i
)
= Mi

(
z(ti)

)
, i = 1, 2 . . . n, (4)

z′
(
t+i
)
− z′

(
t−i
)
= Ni

(
z(ti)

)
, i = 1, 2, . . . n, (5)

where Dγ(t) denotes the conformable derivative of order 0 < γ 6 1. A is the infinitesimal
generator of a cosine family {C(t),S(t)}t∈R on (B, ‖·‖). B is a bounded linear operator
of V → B, where V is a Hilbert space. The control function u(·) is an element of
L2([0, ζ],V). The elements z0 and z1 are two fixed vectors in B. We denote a space
of piecewise continuous functions P̂C ([0, ζ],B) = {z : [0, ζ] → B} such that z ∈
P̂C ([0, ζ],B) with norm defined as |z|

P̂C
= supt∈[0,ζ] ‖z(t)‖. Also, the continuous

functions are defined such that g̃ : [0, ζ] ×B → B, f̃ : [0, ζ] ×B, p : P̂C → B, q :
P̂C → B with its values in B. The complete probability space is defined by (Ω,Ft,P)
generated with the filtration Ft and the covariance operator Q such that trQ <∞. W (t)
is a Wiener process with Ft generated byW (ζ), 0 6 ζ 6 t, and b̃ is a continuous function
defined as b̃ : [0, ζ]×B→ B. Here (4) and (5) denote the impulsive conditions such that
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the function z(·) is continuous on each interval 0 < ti 6 ti+1 with right and left limits
given by z(t+i ),z

′(t+i ) and z(t−i ),z
′(t−i ).

Definition 1. (See [24].) The conformable derivative of order γ, 0 < γ 6 1, of the
function z(·), where z(·) : [0,∞)→ R, is given by

Dγz(t) = lim
Ψ̂→0

z(t+ Ψ̂ t1−γ)− z(t)

Ψ̂

for t > 0, and if the limit exists,

Dγz(0) = lim
t→0+−

Dγz(t).

Any conformable integral Iγ(·) for function z(·) is given by

Iγz(t) =

t∫
0

sγ−1z(s) ds

for t > 0.

Lemma 1. (See [24].) If z(·) is a continuous and differential function in the domain
Iγ(·), then the following holds:

Dγ
(
Iγ(t)

)
= z(t), Iγ

(
Dγz(·)

)
(t) = z(t)− z(0).

Proposition 1. (See [24].) For a differentiable function z(·), the following result is true:

Lγ(D
γz(t))(ρ) = ρLγ

(
z(t)ρ

)
− z(0),

where Lγ denotes the Laplace transform of conformable derivatives of order γ of a func-
tion z(·), which can be given as follows:

Lγ(z(t))ρ =

∞∫
0

tγ−1e−ρt
γ/γz(t)dt, ρ > 0.

Proposition 2. (See [24].) For a twice differential function z(·), the following result is
true:

Lγ
(
Dγ
(
Dγ
(
z(t)

)))
(ρ) = ρ2Lγ

(
z(t)

)
(ρ)− ρz(0)− z′(0).

Definition 2. (See [10].) Consider a cosine family (C(t))t∈R of one parameter with
bounded linear operators. Then (C(t))t∈R is said to be a strongly continuous cosine family
iff it satisfies the following conditions:

• When I is an identity operator, C(0) = I.
• C(s+ t) + C(s− t) = 2C(s)C(t) for all s, t ∈ R.
• For each z ∈ B, a function t, defined as t→ C(t)z, is strongly continuous.
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Let (S(t))t∈R be the sine family associated with (C(t))t∈R. Then (S(t))t∈R can be defined
as follows:

S(t)z =

t∫
0

C(s)z ds, z ∈ B.

Let A be the infinitesimal generator of a strongly continuous cosine family (C(t),S(t))t∈R.
Then for any t → C(t)z, which is continuous and twice differentiable, the domain of A
can be defined by

D(A) = {z ∈ B}: Az =
(
Dγ
)2
C(0)z, z ∈ D(A).

Remark 1. (See [10].) Arbitrary functions z(t) and z1(t) satisfies the following property
of Laplace transforms:

Lγ

t∫
0

sγ−1z

(
tγ − sγ

γ

)
z1(s) ds(ρ) = L

(
z(t)(ρ)

)
L
(
z1(t)(ρ)

)
.

3 Controllability results

In this section, Duhamel’s formula is used to derive the solution of system (1)–(5).
At any t ∈ [0, ζ], applying the Laplace transform to system (1)–(5), we get

Lγ
[
Dγ
(
Dγ
(
z(t)

))]
ρ = ρ2Lγ

(
z(t)

)
(ρ)− ρ

(
z0 +p(z)

)
−
(
z1 +q(z)

)
.

By Proposition 2, we get

Lγ
[
Dγ
(
z(t)

)]
(ρ) = ρ

(
ρ2 I− A

)−1[
z0 +p(z)

]
+
(
ρ2 I− A

)−1[
z1 +q(z)

]
+
(
ρ2 I− A

)−1
Lγ

(
b̃
(
t, s,z(t)

)dW (t)

dt

)
+
(
ρ2 I− A

)−1
Lγ

(
g̃

(
t,z(t),

t∫
0

f̃
(
t, s,z(s)

)
ds

))
+ Bu(t)(ρ).

By applying the inverse Laplace transform and Remark 1, we have

z(t) = C

(
tγ

γ

)[
z0 +p(z)

]
+ S

(
tγ

γ

)[
z1 +q(z)

]
+

t∫
0

sγ−1S

(
tγ − sγ

γ

)(
b̃
(
s,z(s)

)dW (s)

ds

)
ds

+

t∫
0

sγ−1S

(
tγ − sγ

γ

)(
g̃

(
s,z(s),

t∫
0

f̃
(
t,r,z(r)

)
dr + Bu(s)

))
ds,
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where {C(t),S(t)} is a one parameter cosine family of bounded linear operators that
satisfies the conditions given in Definition 2.

The following definition provides the solution of the considered system.

Definition 3. A stochastic process z ∈ P̂C ([0, ζ],B) is a mild solution of (1)–(5) if for
each u ∈ L2([0, ζ],V), z(t) is Ft-adapted and measurable for each t > 0 and it satisfies
the integral equation

z(t) = C

(
tγ

γ

)[
z0 +p(z)

]
+ S

(
tγ

γ

)[
z1 +q(z)

]
+

t∫
0

sγ−1S

(
tγ − sγ

γ

)(
b̃
(
s,z(s)

)dW (s)

ds

)
ds

+

t∫
0

sγ−1S

(
tγ − sγ

γ

)(
g̃

(
s,z(s),

t∫
0

f̃
(
t,r,z(r)

)
dr

)
+ Bu(s)

)
ds

+

m∑
i=1

C

(
tγ − tγi
γ

)
Mi

(
z(ti)

)
+

m∑
i=1

S

(
tγ − tγi
γ

)
Ni
(
z(ti)

)
.

Definition 4. For any z̃ ∈ P̂C ([0, ζ],B), system (1)–(5) is controllable on [0, ζ] if
a control u exists such that u ∈ L2([0, ζ],V) and the mild solution z(t) of (1)–(5)
should satisfy the condition z(ζ) = z̃.

3.1 Linear system

Consider a stochastic linear impulsive differential system as follows:

Dγ
(
Dγ
(
z(t)

))
= Az(t) + Bu(t) + b̃(t)

dW (t)

dt
, t ∈ [0, ζ], (6)

z(0) = z0 +p(z), (7)
z′(0) = z1 +q(z), (8)

z
(
t+i
)
− z

(
t−i
)
= Mi

(
z(ti)

)
, i = 1, 2 . . . , n, (9)

z′
(
t+i
)
− z′

(
t−i
)
= Ni

(
z(ti)

)
, i = 1, 2, . . . , n. (10)

Here Dγ , A, B, b̃, W (t) are defined as in Section 2.

Theorem 1. The stochastic linear impulsive differential system (6)–(10) is controllable
on t ∈ [0, ζ] iff the controllability Grammian matrix

W̃(t) =

ζ∫
0

sγ−1S

(
tγ − sγ

γ

)
BB∗S∗

(
tγ − sγ

γ

)
ds

is positive definite for some ζ > 0.
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Proof. The positive definite Grammian matrix is not singular. Hence, the inverse can be
defined as W̃−1. The control function can be defined as follows:

u(t) = sγ−1B∗S∗
(
tγ − sγ

γ

)
W̃−1

[
z̃− C

(
ζγ

γ

)[
z0 +p(z)

]
− S

(
ζγ

γ

)[
z1 +q(z)

]
−

t∫
0

sγ−1S

(
tγ − sγ

γ

)(
b̃(s)

dW (s)

ds

)
ds

−
m∑
i=1

C

(
tγ − tγi
γ

)
Mi

(
z(ti)

)
−

m∑
i=1

S

(
tγ − tγi
γ

)
Ni
(
z(ti)

)]
.

Here ∗ indicates the transpose of matrix. The system gets steered from 0 to z̃ by the
control u(t) at t = ζ based on starting points z0 = z1 = · · · = 0 and ending point
z̃ = y. The solution of the linear system is

z(t) = C

(
tγ

γ

)[
z0 +p(z)

]
+ S

(
tγ

γ

)[
z1 +q(z)

]
+

t∫
0

sγ−1S

(
tγ − sγ

γ

)(
b̃(s)

dW (s)

ds
+ Bu(s)

)
ds

+

m∑
i=1

C

(
tγ − tγi
γ

)
Mi(z

(
ti)
)
+

m∑
i=1

S

(
tγ − tγi
γ

)
Ni
(
z(ti)

)
. (11)

Substituting t = ζ in (11), we get

z(ζ) = C

(
ζγ

γ

)[
z0 +p(z)

]
+ S

(
ζγ

γ

)[
z1 +q(z)

]
+

ζ∫
0

sγ−1S

(
ζγ − sγ

γ

)(
b̃(s)

dW (s)

ds
+ Bu(s)

)
ds

+

m∑
i=1

C

(
ζγ − tγi
γ

)
Mi

(
z(ti)

)
+

m∑
i=1

S

(
ζγ − tγi
γ

)
Ni
(
z(ti)

)
.

Substituting u(t) in above equation, we get

z(ζ) = C

(
ζγ

γ

)[
z0 +p(z)

]
+ S

(
ζγ

γ

)[
z1 +q(z)

]
+

ζ∫
0

sγ−1S

(
ζγ − sγ

γ

)(
b̃(s)

dW (s)

ds

)
ds

+ B

[
sγ−1B∗S∗

(
tγ − sγ

γ

)
W̃−1

[
z̃− C

(
ζγ

γ

)[
z0 +p(z)

]
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− S

(
ζγ

γ

)[
z1 +q(z)

]
−

t∫
0

sγ−1S

(
tγ − sγ

γ

)(
b̃(s)

dW (s)

ds

)
ds

−
m∑
i=1

C

(
tγ − tγi
γ

)
Mi

(
z(ti)

)
−

m∑
i=1

S

(
tγ − tγi
γ

)
Ni
(
z(ti)

)]]

+

m∑
i=1

C

(
ζγ − tγi
γ

)
Mi

(
z(ti)

)
+

m∑
i=1

S

(
ζγ − tγi
γ

)
Ni
(
z(ti)

)
,

= z̃.

Next, to prove that W̃ is positive definite, consider some y 6= 0 such that y∗W̃y = 0.

y∗

ζ∫
0

sγ−1S

(
tγ − sγ

γ

)
BB∗S∗

(
tγ − sγ

γ

)
dsy = 0

on [0, ζ]. Then

z(t) = y = C

(
tγ

γ

)[
z0 +p(z)

]
+ S

(
tγ

γ

)[
z1 +q(z)

]
+

t∫
0

sγ−1S

(
tγ − sγ

γ

)(
b̃(s)

dW (s)

ds
+ Bu

(
s)

)
ds

+

m∑
i=1

C

(
tγ − tγi
γ

)
Mi

(
z(ti)

)
+

m∑
i=1

S

(
tγ − tγi
γ

)
Ni
(
z(ti)

)
.

Then

y∗y = y∗C

(
tγ

γ

)[
z0 +p(z)

]
+ y∗S

(
tγ

γ

)[
z1 +q(z)

]
+ y∗

t∫
0

sγ−1S

(
tγ − sγ

γ

)(
b̃(s)

dW (s)

ds
+ Bu(s)

)
ds

+ y∗
m∑
i=1

C

(
tγ − tγi
γ

)
Mi

(
z(ti)

)
+ y∗

m∑
i=1

S

(
tγ − tγi
γ

)
Ni
(
z(ti)

)
. (12)

But (12) tends to zero. Hence,

y∗y = 0 =⇒ y = 0,

which is a contradiction. Hence, the linear system (6)–(10) is controllable.
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https://doi.org/10.15388/namc.2025.30.41988


646 G. Arthi et al.

3.2 Nonlinear system

For the controllability of the impulsive stochastic integro-differential system, the follow-
ing assumptions are to be taken into account:

(H1) There exist continuous functions g̃(t), f̃(t) such that g̃ : [0,z] → B and f̃ :
[0,z] → B for all z ∈ B. Then for some positive constants G1, G2, F1, F2

and for some z,z1 ∈ B,

E
∥∥g̃(t,z)∥∥ 6 G1‖1 + z‖, E

∥∥g̃(t,z)− g̃(t,z1)
∥∥ 6 G2‖z− z1‖

and

E

∥∥∥∥∥
t∫

0

f̃
(
t, s,z(s)

)
ds

∥∥∥∥∥ 6 F1‖1 + z‖,

E

∥∥∥∥∥
t∫

0

f̃
(
t, s,z(s)

)
ds−

t∫
0

f̃
(
t, s,z1(s)

)
ds

∥∥∥∥∥ 6 F2‖z− z1‖.

(H2) The function b̃ is continuous, and there exist constants B1 and B2 such that

E
∥∥b̃(t,z)∥∥ 6 B1‖1 + z‖ and E

∥∥b̃(t,z)− b̃(t,z1)
∥∥ 6 B2‖z− z1‖.

(H3) The functions p : P̂C → B and q : P̂C → B are continuous such that for any
positive constants P1, P2 and Q1, Q2,

E
∥∥p(z)

∥∥ 6 P1|1 + z|
P̂C
, E

∥∥p(z)−p(z1)
∥∥ 6 P2|z− z1|P̂C

,

E
∥∥q(z)

∥∥ 6 Q1|1 + z|
P̂C
, E

∥∥q(z)−q(z1)
∥∥ 6 Q2|z− z1|P̂C

for every z,z1 ∈ P̂C .
(H4) For any constants M1, M2, N1, N2 > 0,

E
∥∥Mi

(
z(ti)

)∥∥ 6 M1|1 + z|
P̂C

E
∥∥Mi

(
z(ti)

)
−Mi

(
z1(ti)

)∥∥ 6 M2|z− z1|P̂C

and

E
∥∥Ni(z(ti))∥∥ 6 N1|1 + z|

P̂C

E
∥∥Ni(z(ti))− Ni

(
z1(ti)

)∥∥ 6 N2|z− z1|P̂C

for all z,z1 ∈ P̂C .
(H5) Consider a bounded linear operator W̃ : L2([0, ζ],V)→ B defined by W̃(u) =∫ ζ

0
sγ−1S((ζγ − sγ)/γ)Bu(s) ds, which has an operator W̃−1 that is induced

and inverse with the values in c = L2([0, ζ],V)/ ker(W̃) and for any positive
constants Z1 and Z2,

‖B‖ 6 Z1 and ‖W̃−1‖ 6 Z2.

https://www.journals.vu.lt/nonlinear-analysis
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Theorem 2. The stochastic impulsive integro-differential system (1)–(5) is controllable
on [0, ζ] if hypotheses (H1)–(H5) hold, provided that[
1 + 7 sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣ζγγ Z1Z2

](
7 sup
06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣

×max

(
P1 +

∑
ti∈(0,t)

M1,P2 +
∑

ti∈(0,t)

M2

)
+ 7 sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣

×max

(
Q1 +

∑
ti∈(0,t)

N1 +
ζγ

γ
(B1+G1F1), Q2 +

∑
ti∈(0,t)

N2 +
ζγ

γ
(B2+G2F2)

))
< 1.

Proof. For any arbitrary z(·), a control function uz(t) can be defined by using hypothe-
ses (H4), (H5) as follows:

uz(t) = W̃(u)−1

(
z̃− C

(
ζγ

γ

)[
z0 +p(z)

]
− S

(
ζγ

γ

)[
z1 +q(z)

]
−

t∫
0

sγ−1S

(
tγ − sγ

γ

)(
b̃
(
s,z(s)

)dW (s)

ds

)
ds

−
t∫

0

sγ−1S

(
tγ − sγ

γ

)(
g̃

(
s,z(s),

t∫
0

f̃
(
t,r,z(r)

)
dr

))
ds

−
m∑
i=1

C

(
tγ − tγi
γ

)
Mi

(
z(ti)

)
−

m∑
i=1

S

(
tγ − tγi
γ

)
Ni
(
z(ti)

))
(t). (13)

For using this control, it is necessary to define an operator Ψ̂(z)(t) as follows:

Ψ̂(z)(t) = C

(
tγ

γ

)[
z0 +p(z)

]
+ S

(
tγ

γ

)[
z1 +q(z)

]
+

t∫
0

sγ−1S

(
tγ − sγ

γ

)(
b̃
(
s,z(s)

)dW (s)

ds

)
ds

+

t∫
0

sγ−1S

(
tγ − sγ

γ

)(
g̃

(
s,z(s),

t∫
0

f̃
(
t,r,z(r)

)
dr

)
+ Bu(s)

)
ds

+

m∑
i=1

C

(
tγ − tγi
γ

)
Mi

(
z(ti)

)
+

m∑
i=1

S

(
tγ − tγi
γ

)
Ni(z

(
ti)
)
. (14)

Now, introduce Br = {z ∈ P̂C ([0, ζ],B), |z|
P̂C

6 r} with a positive radius r, and we
denote |·| as the norm in the space of bounded operators defined by B into itself. First, we
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prove that Ψ̂z(t) has a fixed point, which acts as a mild solution of system (1)–(5). For
this, it is necessary to show that there exists a positive radius β such that β(z)(t) maps
Bβ → Bβ .

Then from (14), for any z ∈ P̂C ([0, ζ],B) and t ∈ [0, ζ], we have

E
∥∥Ψ̂(z)(t)∥∥
6 7E sup

06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣‖z0 +p(z)

∥∥+ 7E sup
06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣
[∥∥z1 +q(z)

∥∥
+

t∫
0

sγ−1

∥∥∥∥∥
(
b̃
(
s,z(s)

)dW (s)

ds
+ g̃

(
s,z(s),

t∫
0

f̃
(
t,r,z(r)

)
dr

)

+ Buz(s)

)∥∥∥∥∥
]
ds

+ 7E sup
06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣ m∑

i=1

∥∥Mi

(
z(ti)

)∥∥+ 7E sup
06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣ m∑

i=1

∥∥Ni(z(ti))∥∥.
From hypotheses (H1)–(H5)

E‖Ψ̂(z)(t)‖

6 7 sup
06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣[‖z0‖+ P1|1 + z|

P̂C
+

∑
ti∈(0,t)

M1|1 + z|
P̂C

]

+ 7 sup
06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣[‖z1‖+Q1|1 + z|

P̂C
+

∑
ti∈(0,t)

N1|1 + z|
P̂C

+
ζγ

γ
(B1 +G1F1)|1 + z|

P̂C

]
+ 7 sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣(ζγγ Z1

∥∥uz(s)
∥∥
c

)
.

Now, for the control function using Eq. (13), we obtain

E
∥∥uz(t)

∥∥
c

6 7E

[∥∥W̃(u)−1
∥∥∥∥∥∥∥
(
z̃− C

(
ζγ

γ

)[
z0 +p(z)

]
− S

(
ζγ

γ

)[
z1 +q(z)

]
−

t∫
0

sγ−1S

(
tγ − sγ

γ

)(
b̃
(
s,z(s)

)dW (s)

ds

)
ds

−
t∫

0

sγ−1S

(
tγ − sγ

γ

)
g̃

(
s,z(s),

t∫
0

f̃
(
t,r,z(r)

)
dr

)
ds

−
m∑
i=1

C

(
tγ − tγi
γ

)
Mi

(
z(ti)

)
−

m∑
i=1

S

(
tγ − tγi
γ

)
Ni
(
z(ti)

))
(t)

∥∥∥∥∥
]
.
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From hypotheses (H1)–(H5) we have

E
∥∥uz(t)

∥∥
c

6 7Z2

[
‖z̃‖+ sup

06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣(‖z0‖+ P1|1 + z|

P̂C

+
∑

ti∈(0,t)

M1|1 + z|
P̂C

)
+ sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣(‖z1‖+Q1|1 + z|

P̂C

+
∑

ti∈(0,t)

N1|1 + z|
P̂C

+ (B1 +G1F1)|1 + z|
P̂C

ζγ

γ

)]
.

Substituting the control function ‖uz(t)‖c in (18), we get

E
∥∥Ψ̂(z)(t)∥∥
6 7 sup

06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣[‖z0‖+ P1|1 + z|

P̂C
+

∑
ti∈(0,t)

M1|1 + z|
P̂C

]

+ 7 sup
06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣[‖z1‖+Q1|1 + z|

P̂C
+

∑
ti∈(0,t)

N1|1 + z|
P̂C

+
ζγ

γ
(B1 +G1F1)|1 + z|

P̂C

]
+ 49 sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣(ζγγ Z1Z2

[
‖z̃‖

+ sup
06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣(‖z0‖+ P1|1 + z|

P̂C
+

∑
ti∈(0,t)

M1|1 + z|
P̂C

)

+ sup
06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣(‖z1‖+Q1|1 + z|

P̂C
+

∑
ti∈(0,t)

N1|1 + z|
P̂C

+ (B1 +G1F1)|1 + z|
P̂C

ζγ

γ

))]
.

By simple computations

E
∥∥Ψ̂(z)(t)∥∥
6 7 sup

06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣[‖z0‖+ P1|1 + z|

P̂C
+

∑
ti∈(0,t)

M1|1 + z|
P̂C

]

×
(
1 + 7

ζγ

γ
Z1Z2 sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣)+ 7 sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣[‖z1‖

+Q1|1 + z|
P̂C

+
∑

ti∈(0,t)

N1|1 + z|
P̂C

+
ζγ

γ
(B1 +G1F1)|1 + z|

P̂C

]

×
(
1 + 7

ζγ

γ
Z1Z2 sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣)+ 49 sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣ζγγ Z1Z2‖z̃‖.
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Separating the terms, we obtain

E
∥∥Ψ̂(z)(t)∥∥
6

(
1 + 7

ζγ

γ
Z1Z2 sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣)[[7 sup

06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣(P1 +

∑
ti∈(0,t)

M1

)
+ 7 sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣(Q1 +

∑
ti∈(0,t)

N1 + (B1 +G1F1)

)]
|1 + z|

P̂C

+ 7 sup
06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣‖z1‖+ 7 sup

06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣‖z0‖

]
+ 49

ζγ

γ
Z1Z2 sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣‖z̃‖.

Hence, we can choose β such that it suffices to consider β as a solution in radius r of the
following inequality:

E
∥∥Ψ̂(z)(t)∥∥
6

(
1 + 7

ζγ

γ
Z1Z2 sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣)[[7 sup

06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣(P1 +

∑
ti∈(0,t)

M1

)
+ 7 sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣(Q1 +

∑
ti∈(0,t)

N1 + (B1 +G1F1)

)]
|1 + z|

P̂C

+ 7 sup
06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣‖z1‖+ 7 sup

06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣‖z0‖

]
+ 49

ζγ

γ
Z1Z2 sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣‖z̃‖

6 r.

Therefore Bβ maps into itself, that is Bβ → Bβ . Next, we prove that the operator Ψ̂(z)(t)
is a contraction operator on Bβ . Consider some z,z1 ∈ P̂C ([0, ζ],B), then

Ψ̂(z)(t)− Ψ̂(z1)(t)

= C

(
tγ

γ

)[
p(z)−p(z1)

]
+ S

(
tγ

γ

)[
q(z)−q(z1)

]
+

t∫
0

sγ−1S

(
tγ − sγ

γ

)((
b̃
(
s,z(s)

)
− b̃

(
s,z1(s)

))dW (s)

ds

)
ds

+

t∫
0

sγ−1S

(
tγ − sγ

γ

)(
g̃

(
s,z(s),

t∫
0

f̃
(
t,r,z(r)

)
dr

)
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− g̃

(
s,z1(s),

t∫
0

f̃
(
t,r,z1(r)

)
dr

)
+ B

(
uz(s)−uz1

(s)
))

ds

+

m∑
i=1

C

(
tγ − tγi
γ

)(
Mi

(
z(ti)

)
−Mi

(
z1

(
ti)
))

+

m∑
i=1

S

(
tγ − tγi
γ

)(
Ni
(
z(ti)

)
− Ni

(
z1

(
ti)
))
.

Now

E
∥∥Ψ̂(z)(t)− Ψ̂(z1)(t)

∥∥
6 7E sup

06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣∥∥p(z)−p(z1)

∥∥+ sup
06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣∥∥q(z)−q(z1)

∥∥
+ 7E sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣

t∫
0

sγ−1
∥∥∥∥(b̃(s,z(s))− b̃

(
s,z1(s)

))dW (s)

ds

∥∥∥∥ds
+ 7E sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣

t∫
0

(
sγ−1

∥∥∥∥∥g̃
(
s,z(s),

t∫
0

f̃
(
t,r,z(r)

)
dr

)

− g̃

(
s,z1(s),

t∫
0

f̃
(
t,r,z1(r)

)
dr

)∥∥∥∥∥+ ∥∥B(uz(s)−uz1(s)
)∥∥)ds

+ 7E sup
06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣ m∑

i=1

[∥∥Mi

(
z(ti)

)
−Mi

(
z1(ti)

)∥∥]
+ 7E sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣ m∑

i=1

[∥∥Ni(z(ti))− Ni
(
z1(ti)

)∥∥].
From hypotheses (H1)–(H5) we have

E
∥∥Ψ̂(z)(t)− Ψ̂(z1)(t)

∥∥
6 7 sup

06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣[P2|z− z1|P̂C

+
∑

ti∈(0,t)

M2|z− z1|P̂C

]

+ 7 sup
06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣
[
Q2|z− z1|P̂C

+

t∫
0

sγ−1
(
B2|z− z1|P̂C

+G2F2|z− z1|P̂C
+ Z1

∥∥uz(s)−uz1
(s)
∥∥
c

)
ds

+
∑

ti∈(0,t)

N2|z− z1|P̂C

]
.
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Then

E
∥∥Ψ̂(z)(t)− Ψ̂(z1)(t)

∥∥
6 7 sup

06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣[P2|z− z1|P̂C

+
∑

ti∈(0,t)

M2|z− z1|P̂C

]

+ 7 sup
06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣[Q2|z− z1|P̂C

+
∑

ti∈(0,t)

N2|z− z1|P̂C

+
ζγ

γ
(B2 +G2F2)|z− z1|P̂C

+
ζγ

γ
Z1‖uz −uz1

‖c
]
. (15)

From Eq. (13) we have

uz(t)−uz1(t)

= W̃(u)−1

(
−C
(
ζγ

γ

)[
p(z)−p(z1)

]
− S

(
ζγ

γ

)[
q(z)−q(z1)

]
−

ζ∫
0

sγ−1S

(
ζγ − sγ

γ

)((
b̃
(
s,z(s)

)
− b̃

(
s,z1(s)

))dW (s)

ds

)
ds

−
ζ∫

0

sγ−1S

(
ζγ − sγ

γ

)(
g̃

(
s,z(s),

t∫
0

f̃
(
t,r,z(r)

)
dr

)

− g̃

(
s,z1(s),

t∫
0

f̃
(
t,r,z1(r)

)
dr

))
ds

−
m∑
i=1

C

(
tγ − tγi
γ

)(
Mi

(
z(ti)

)
−Mi

(
z1

(
ti)
))

−
m∑
i=1

S

(
tγ − tγi
γ

)(
Ni
(
z(ti)

)
− Ni

(
z1

(
ti)
)))

.

Taking norm and using hypotheses (H1)–(H5), we get

E
∥∥uz(t)−uz1

(t)
∥∥
c

6 7

[
Z2

(
sup

06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣[P2|z− z1|P̂C

+
∑

ti∈(0,t)

M2|z− z1|P̂C

]

+ sup
06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣[Q2|z− z1|P̂C

+
∑

ti∈(0,t)

N2|z− z1|P̂C

+
ζγ

γ
(B2 +G2F2)|z− z1|P̂C

]

)]
. (16)

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Controllability of stochastic impulsive integro-differential systems 653

Substituting (16) in (15), we have

E‖Ψ̂(z)(t)− Ψ̂(z1)(t)‖

6 7 sup
06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣[P2|z− z1|P̂C

+
∑

ti∈(0,t)

M2|z− z1|P̂C

]

+ 7 sup
06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣[Q2|z− z1|P̂C

+
∑

ti∈(0,t)

N2|z− z1|P̂C

+
ζγ

γ
(B2 +G2F2)|z− z1|P̂C

]
+ 49 sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣[ζγγ Z1Z2

×
(

sup
06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣[P2|z− z1|P̂C

+
∑

ti∈(0,t)

M2|z− z1|P̂C

]

+ sup
06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣[Q2|z− z1|P̂C

+
∑

ti∈(0,t)

N2|z− z1|P̂C

+
ζγ

γ
(B2 +G2F2)|z− z1|P̂C

])]
.

By simple computations

E
∥∥Ψ̂(z)(t)− Ψ̂(z1)(t)

∥∥
6

[
1 + 7 sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣ζγγ Z1Z2

](
7 sup
06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣[P2 +

∑
ti∈(0,t)

M2

]

+ 7 sup
06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣[Q2 +

∑
ti∈(0,t)

N2 +
ζγ

γ
(B2 +G2F2)

])
|z− z1|P̂C

.

Taking supremum, we get

E
∣∣Ψ̂(z(t))− Ψ̂(z1)(t)

∣∣
P̂C

6

[
1 + 7 sup

06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣ζγγ Z1Z2

](
7 sup
06t6ζ

∣∣∣∣C( tγγ
)∣∣∣∣[P2 +

∑
ti∈(0,t)

M2

]

+ 7 sup
06t6ζ

∣∣∣∣S( tγγ
)∣∣∣∣[Q2 +

∑
ti∈(0,t)

N2 +
ζγ

γ
(B2 +G2F2)

])
|z− z1|P̂C

< 1.

Hence, |Ψ̂(z(t))− Ψ̂(z1)(t)|P̂C
< 1, which implies that Ψ̂ is a contraction on Bβ .

Therefore there exists an unique element zβ(t) ∈ Bβ such that

Ψ̂zβ(t) = zβ(t) ∀t ∈ [0, ζ].
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To show that zβ(ζ) = z̃, consider zβ(ζ) = Ψ̂zβ(ζ):

Ψ̂zβ(ζ) = C

(
ζγ

γ

)[
z0 +p(zβ)

]
+ S

(
ζγ

γ

)[
z1 +q(zβ)

]
+

ζ∫
0

sγ−1S

(
ζγ − sγ

γ

)(
b̃
(
s,z(s)

)dW (s)

ds

)
ds

+

ζ∫
0

sγ−1S

(
ζγ − sγ

γ

)
g̃

(
s,z(s),

t∫
0

f̃
(
t,r,z(r)

)
dr

)
ds

+

ζ∫
0

sγ−1S

(
ζγ − sγ

γ

)
Buzβ(s) ds

+
∑

ti∈(0,t)

C

(
ζγ − sγ

γ

)
Mi

(
zβ(ti)

)
+

∑
ti∈(0,t)

S

(
ζγ − sγ

γ

)
Ni
(
zβ(ti)

)
= −W̃(uzβ) + z̃+

ζ∫
0

sγ−1S

(
ζγ − sγ

γ

)
Buzβ(s) ds

= −W̃(uzβ) + z̃+ W̃(uzβ) = z̃.

Hence, zβ(ζ) = Ψ̂zβ(ζ) = z̃, and system (1)–(5) is controllable on [0, ζ].

Remark 2. Khalil et al. [22] introduced the conformable derivative and stated certain
properties relating to the same. Later on new properties of conformable derivatives was
given by the authors in [5]. Since then, the study of system with conformable derivatives
has been a topic of interest for many authors worldwide. Bouaouid et al. [9] have studied
the nonlocal behaviour of conformable equations with a measure of noncompactness in
Banach spaces. For a second-order system, the sequential evolution using conformable
derivatives has been proposed by the authors in [10]. The relative controllability of im-
pulsive-delay conformable differential equations was investigated by Luo et al. [25]. On
comparing the earlier works, controllability study on a second-order system involving
conformable derivatives with impulsive and nonlocal conditions is studied firstly. Hence,
it is vital to consider the study of controllability of conformable integro-differential sys-
tem exhibiting stochastic behaviour with nonlocal and impulsive conditions.

4 Example

Consider the impulsive stochastic integro-differential system as follows:

D4/5
(
D4/5

(
z(t)

))
= Az(t) + Bu(t) + b̃

(
t, s,z(t)

)dW (t)

dt

+ g̃

(
t,z(t),

π∫
0

f̃
(
t, s,z(s)

)
ds

)
, t ∈ [0, π], (17)
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z(t, 0) = z(t, π) = 0, (18)

z(0) = z0 +

m∑
j=1

pjz(tj), z′(0) = z1 +

m∑
j=1

qjz(tj), (19)

Mj

(
z(tj)

)
=

∑
tj∈(0,t)

C

(
5

4

(
t4/5 − t4/5j

))
Mj

(
z(tj)

)
, j = 1, 2 . . . , n, (20)

Nj
(
z(tj)

)
=

∑
tj∈(0,t)

S

(
5

4

(
t4/5 − t4/5j

))
Nj
(
z(tj)

)
, j = 1, 2 . . . , n. (21)

The infinitesimal operator is defined as Az = (D4/5)2C(0)z in the domain D(A) = {z ∈
B(0, π): z(t, 0) = y(t, π) = 0}, and A is given by A : B → B. For every z ∈ D(A),
A(z) = −

∑∞
n=1 n

2〈z,zn〉zn. Also, A is a cosine family generator that is strongly
continuous and defined on B by (C(t))t∈R, which has a sequence of eigenvalues {−n2},
where n ∈ N, as it has eigenfunctions that are normalised as zn = (2 sin(nz)/π)1/2

and is a discrete spectrum.
For every z ∈ B,

C(t)(z) =
∞∑

n=1

cos(nt)〈z,zn〉zn, D(t)(z) =
∞∑

n=1

sin(nt)

n
〈z,zn〉zn.

Let B = V = L2([0, 1]) be equipped with inner product defined by

〈u,zn〉2 =

1∫
0

u(r)zn(r) dr.

For any bounded linear control operator B and control function u, we have∥∥B(u)
∥∥ =

∞∑
n=1

e−2/(n
2+1)

〈
u(r),zn(r)

〉2
6 ‖u‖ 6 1,

where ‖u‖ = (
∫ 1

0
|u|2dr)1/2.

Consider

W̃(u) =

1∫
0

rγ−1C

(
ζγ − rγ

γ

)
Bu(r) dr

=

∞∑
n=1

1− sin(nγ)

n2
e−1/(n

2+1)〈u,zn〉zn.

The inverse of the control operator W̃−1(u) : D(A)→ L2([0, 1],L2[0, 1]) is taken as

W̃−1(u) =

∞∑
n=1

n2e1/(n
2+1)

1− sin(nγ)
〈u,zn〉zn.
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Then ∥∥W̃−1(u)
∥∥ =

e1/2√
3π
‖u‖, u ∈ D(A).

Now define the integro-differential function

g̃

(
t,z(t),

t∫
0

f̃
(
t, s,z(s)

)
ds

)
=

4|z(t)|e−t

1 + |z(t)|(50 + et)
.

Then

g̃

(
t,z(t),

t∫
0

f̃
(
t, s,z(s)

)
ds

)
− g̃

(
t,z1(t),

t∫
0

f̃
(
t, s,z1(s)

)
ds

)

=
4

50 + et

(
|z(t)|

1 + |z(t)|
− |z1(t)|

1 + |z1(t)|

)
,∥∥∥∥∥g̃

(
t,z(t),

t∫
0

f̃
(
t, s,z(s)

)
ds

)
− g̃

(
t,z1(t),

t∫
0

f̃
(
t, s,z1(s)

)
ds

)∥∥∥∥∥
6

4

50
‖z− z1‖.

Now W (t) is the Wiener process, and the function b̃ is given by

b̃ =
(
2t2 + 1

)
e−2t =⇒ ‖b̃‖ = −3

2
e−4.

Define the functions p and q as

p(z) =

n∑
j=1

pjz(tj), q(z) =

n∑
j=1

qjz(tj), tj ∈ [0, 1],

where
n∑
j=1

|pj | =
n∑
j=1

|qj | 6
4

50
.

Now, with the assumptions and hypotheses under Theorem 2, it can be easily concluded
that the considered system (17)–(21) is controllable.

5 Conclusion

Controllability results of stochastic impulsive nonlinear integro-differential system in-
volving nonlocal conditions and conformable derivatives have been proved by using con-
traction principle and fixed point techniques. Duhamel’s formula has been used to derive
the solution of the considered systems. The controllability of the linear stochastic system
is studied by using controllability Grammian matrix. An example that shows the applica-
bility of the derived result is given. Further, the proposed result can be extended to system
with various delays for both state and control function.
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