
Nonlinear Analysis: Modelling and Control, Vol. 30, No. 4, 660–684
https://doi.org/10.15388/namc.2025.30.42006

Press

Global dissipativity and quasi-Mittag-Leffler
synchronization of fractional-order complex-valued
neural networks with time delays and discontinuous
activations*

Libo Wang, Guigui Xu

School of Science, Kaili University, Kaili 556011, China
wnglb@126.com; xuguigui586@163.com

Received: May 9, 2024 / Revised: April 5, 2025 / Published online: May 14, 2025

Abstract. This paper explores fractional-order complex-valued neural networks (FOCVNNs) with
time delays and discontinuous activation functions. A novel fractional-order inequality is utilized
to study this system as a whole without dividing it into different components in the complex plane.
Firstly, the existence of global Filippov solutions in the complex domain is proven by using the
theories of vector norms and fractional calculus. Next, some sufficient conditions are derived to
ensure the global dissipativity and quasi-Mittag-Leffler synchronization of FOCVNNs through the
use of nonsmooth analysis and differential inclusion theory. The error bounds of quasi-Mittag-
Leffler synchronization are also estimated without relying on the initial values. Finally, some
numerical simulations are conducted to demonstrate the effectiveness of the presented findings.

Keywords: dissipativity, fractional-order complex-valued neural networks, quasi-Mittag-Leffler
synchronization, time delays, discontinuous activations.

1 Introduction

Fractional calculus is widely recognized as the extension of conventional integer-order
differentiation to include noninteger orders [2, 17, 22]. The most crucial reward of the
fractional derivative lies in its nonlocality and possession of weakly singular kernel. It has
been proven to be a powerful tool for depicting the memory and hereditary properties of
various substances and processes. Furthermore, we have noted that fractional differential
equations exhibit infinite memory and a greater degree of freedom. Due to these advan-
tages, fractional-order derivatives offer a more comprehensive understanding of complex
systems and phenomena than their integer-order counterparts, and they possess more
intricate properties [3, 12, 14, 17–19, 25]. Thus, the dynamic analysis of fractional-order
systems is of great significance, and some excellent results have been reported [2,12,22].
In recent years, some scholars have recommended fractional calculus into neural networks
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(NNs) to form fractional-order NNs (FONNs) and discussed the dynamics of FONNs
[3, 18, 25].

However, it is worth noting that parameters may not always be compatible in the actual
implementation of synchronization. Consequently, the synchronization error cannot tend
to zero as time passes, that is, the synchronization error is unable to be eliminated, and
complete synchronization cannot be achieved in the presence of parameter mismatches.
Hence, under such circumstances, it is necessary for us to analyze the bound of the
synchronization error and know how to control it within a small range to realize the quasi-
synchronization. Recently, the issue of quasi-synchronization has garnered considerable
attention, and numerous significant findings have been reported in the literature [7, 23].

We known that most practical applications of neural networks are related to com-
plex signals, which cannot be solved by real-valued neural networks (RVNNs), however,
complex-valued neural networks (CVNNs) can be used to solve such problems [21]. So,
the investigations into the dynamical characteristics of CVNNs have become more and
more important in both theory and application fields [11, 24]. In additions, time delays
are usually encountered in the study of linear and nonlinear systems of various real-world
applications such as engineering, biological, and economical systems [10, 24]. Hence,
many researchers have focused their attention and much interest to extensively look into
the dynamical properties of CVNNs with time delays.

To the best of our knowledge, most excellent results of FONNs were established on
the premise of Lipschitz-continuous activations. However, considering the limited channel
bandwidth and the external interference, it is unrealistic to realize continuous signal out-
put and information communication between neurons. Discontinuous activation functions
are necessary to be introduced into FONNs. In fact, discontinuous activations have been
proved really useful as an ideal model of activations with very-high gain, and such models
have been frequently applied to solve constrained optimization problems via a sliding
mode approach [4, 9]. Then more and more researchers pay more attentions to studying
neural networks with discontinuous activations, e.g., [8, 16], because the fractional-order
models can describe the systems more precisely than the integer-order models in practice.
Therefore, it is necessary to consider discontinuous activations in the dynamic analysis of
FONNs. In [7], the authors are concerned with fractional-order discontinuous complex-
valued neural networks. However, time delays were not considered in their models.

Introduced in the early 1970s, dissipativity is a fundamental attribute of dynamical
systems. The concept of dissipativity expands upon the idea of a Lyapunov function and
has a broader applicability. It has been employed in diverse fields such as stability theory,
chaos and synchronization theory, system norm estimation, and robust control. Currently,
compared to the research on the dissipativity analysis of integer-order neural networks,
few authors have discussed the dissipativity of FOCVNNs [5–7, 23].

Motivated by the above discussions, in this paper, we introduce a class of FOCVNNs
with time delays and discontinuous activations. The contributions of this paper are as
follows.

(i) A novel lemma is established by constructing a suitable fractional differential
inequality. Our conclusions improve some results of the literature [7]. The ad-
vantage of the proposed lemma is that it can directly deal with the delayed terms.
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(ii) Based on the above inequality, nonsmooth analysis, differential inclusion theory,
and fractional Lyapunov stability theory, some sufficient criteria of the dissipa-
tivity and quasi-Mittag-Leffler synchronization for FOCVNNs are obtained.

(iii) FOCVNNs with time delays and discontinuous activations are investigated by
using Lyapunov direct method rather than real decomposition method.

(iv) The error bound of quasi-Mittag-Leffler synchronization is estimated without
reference to the initial values. So the results in this paper are less conservative
and more general.

Notations. Throughout this paper, let R, C stand for the real number set and the complex
number set, respectively. Rn denotes the set of n-dimensional Euclidean space, and Cn
denotes the set of n-dimensional complex space. x is the conjugate of x = a + ib ∈C,
where i =

√
−1 is the imaginary unit. “a.a.” implies “almost all”. For vector x =

(x1, x2, . . . , xn) ∈ Cn, the norm ‖x‖2 = (
∑n
i=1 |xi|2)1/2 = (

∑n
i=1 xixi)

1/2 is defined.
Cn([t0,+∞),C) is a set composed of all continuous and n-order differentiable functions
from [t0,+∞) into C. K(M) denotes the closure of the convex hull of set M . Define
‖G(x(t))‖F = supν∈G(x(t)) ‖ν‖2 for the differential inclusion C

t0D
α
t x(t) ∈ K(x(t)).

This paper is organized as follows. In Section 2, some preliminaries are introduced,
model formulation are presented. Our main results are presented in Section 3. In Section 4,
two examples are given to show the rationality of theoretical results.

2 Preliminaries and system description

In this section, we introduce some necessary knowledge with respect to fractional calcu-
lation and establish a pivotal inequality, which will be useful in proving our main result.

2.1 Preliminaries

Definition 1. (See [14, 17].) For a function f(t) : [t0,+∞)→ C, the Caputo fractional-
order integral of f(t) with order α > 0 can be defined as

t0I
α
t f(t) =

1

Γ(α)

t∫
t0

(t− s)α−1f(s) ds,

where Γ(·) is the Gamma function.

Definition 2. (See [14,17].) For a function f(t) ∈ Cn([t0,+∞),C), the Caputo fractional-
order derivative of f(t) with order n− 1 < α < n is given by

C
t0D

α
t f(t) =

1

Γ(n− α)

t∫
t0

fn(s)

(t− s)α−n+1
ds,

where t > t0, and n is a positive integer.
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Definition 3. (See [14, 17].) The one-parameter and two-parameter Mittag-Leffler func-
tions are defined as

Eα(z) =

+∞∑
k=0

zk

Γ(αk + 1)
, Eα,β(z) =

+∞∑
k=0

zk

Γ(αk + β)
,

where z ∈ C, and α > 0, β > 0.

The Laplace transform of two-parameter Mittag-Leffler function is

L
{

(t− t0)β−1Eα,β
(
−λ(t− t0)α

)}
=

sα−β

sα + λ
, Re(s) > |λ|1/α.

Particularly, when β = 1, Eα,1(z) = Eα(z).

Lemma 1. (See [13].) Let t > t0, then Eα(σ(t− t0)α) is monotonically nonincreasing,
and 0 6 Eα(σ(t− t0)α) 6 1 for σ 6 0.

Lemma 2. (See [27].) For any continuous and analytic function g(t) ∈ C and any
complex number θ,

C
t0D

α
t

(
g(t)− θ

)(
g(t)− θ

)
6
(
g(t)− θ

)
C
t0D

α
t g(t) +

(
g(t)− θ

)
C
t0D

α
t g(t), 0 < α < 1.

Lemma 3. (See [26].) For any two complex numbers ξ and η and any real constant ζ > 0,
the following inequality holds:

ξη + ξη 6 ζξξ +
1

ζ
ηη.

Lemma 4. (See [1].) Given α, β ∈ [0, 1) and ε > 0, there exists a positive constant
c := c(α, β, ε) such that the following is true: if u(t) : J ⊂ R→ R satisfies

f(t) = tβu(t) ∈ L∞,loc(J)

and

u(t) 6 at−β + b

t∫
0

(t− τ)−αu(τ) dτ, a.a. t ∈ J \ {0},

where a and b are positive constants, then

u(t) 6 at−β
(
1 + cbt1−αe(1+ε)µ(a,b)t

)
, a.a. t ∈ J \ {0},

where µ(a, b) := (Γ(1− α)b)1/(1−α), m(E) is the Lebesgue measure of set E, and

L∞,loc(U) =
{
f(x): f(x) is Lebesgue-measurable on set U, and for an arbitrary

bounded closed set K ⊂ U, inf
E⊂K,mE=0

sup
x∈K\E

∣∣f(x)
∣∣ < +∞

}
.
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Lemma 5. Let v(t) ∈ C([t0 − τ,+∞), [0,+∞)) be a differential positive function such
that

C
t0D

α
t v(t) 6 −av(t) + a1v

1/2(t) + bv(t− τ) + b1v
1/2(t− τ) + c (1)

for any a > 1 + b, t > t0 > 0, and nonnegative constants a1, b, b1, c. Then

v(t) 6

{
( 1

2 + b)(a− 1− b)−1/α(t− t0)α−1ξ

Γ(α)
+

(
ξ −

( 1
2a

2
1 + 1

2b
2
1 + c)

a− 1− b

)
× Eα

[
−(a− 1− b)(t− t0)α

]}
+

1
2a

2
1 + 1

2b
2
1 + c

a− 1− b
, (2)

where 0 < α < 1, ξ = maxt∈[t0−τ, t0] |v(t)|, and 0 6 τ 6 (a− 1− b)−1/α.

Proof. From (1) we have

C
t0D

α
t v(t) 6 −

(
a− 1

2

)
v(t) +

(
1

2
+ b

)
v(t− τ) +

1

2
a2

1 +
1

2
b21 + c.

Then there exists a nonnegative function ω(t) satisfying

t0
CDα

t v(t) + ω(t) = −
(
a− 1

2

)
v(t) +

(
1

2
+ b

)
v(t− τ) +

1

2
a2

1 +
1

2
b21 + c.

According to the Laplace transform,

sαv(s)− sα−1v(t0) + ω(s) = −
(
a− 1

2

)
v(s) +

(
1

2
+ b

)
L
{
v(t− τ)

}
+

1
2a

2
1 + 1

2b
2
1 + c

s
,

L
{
v(t− τ)

}
=

+∞∫
t0

e−stv(t− τ) dt = e−stv(s) + e−sτ
t0∫

t0−τ

e−stv(t) dt,

where L{v(t)} = v(s), L{ω(t)} = ω(s).
Then one has[

sα + (a− 1− b)
]
v(s) =

[
sα−1 +

(
1

2
+ b

)
(a− 1− b)−1/α

]
ξ −W(s)

+
1
2a

2
1 + 1

2b
2
1 + c

s
,

where

W(s) = ω(s) +

(
1

2
+ b

)[
(a− 1− b)−1/αξ − e−sτ

t0∫
t0−τ

e−stv(t) dt

]

+

(
1

2
+ b

)(
1− e−sτ

)
v(s) + sα−1

[
ξ − v(t0)

]
.
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Note that τ satisfies the known condition, then we have

(a− 1− b)−1/αξ − e−sτ
t0∫

t0−τ

e−stv(t) dt > 0.

Then

v(s) =
[sα−1 + ( 1

2 + b)(a− 1− b)−1/α]ξ

sα + (a− 1− b)
− W(s)

sα + (a− 1− b)

+
( 1

2a
2
1 + 1

2b
2
1 + c)s−1

sα + (a− 1− b)
.

By the inverse Laplace transform of the above equation

v(t) 6

{(
1

2
+ b

)
(a− 1− b)−1/α(t− t0)α−1Eα,α

[
−(a− 1− b)(t− t0)α

]
+ Eα

[
−(a− 1− b)(t− t0)α

]}
ξ +

(
1

2
a2

1 +
1

2
b21 + c

)
(t− t0)α

× Eα,α+1

[
−(a− 1− b)(t− t0)α

]
for t > t0. (3)

On the one hand, we derive from the definition of Mittag-Leffler function that(
1

2
a2

1 +
1

2
b21 + c

)
(t− t0)αEα,α+1

[
−(a− 1− b)(t− t0)α

]
=

(
1

2
a2

1 +
1

2
b21 + c

)
(t− t0)α

+∞∑
k=0

[−(a− 1− b)(t− t0)α]k

Γ(αk + α+ 1)

= −
1
2a

2
1 + 1

2b
2
1 + c

a− 1− b

+∞∑
k=1

[−(a− 1− b)(t− t0)α]k

Γ(αk + 1)

= −
1
2a

2
1 + 1

2b
2
1 + c

a− 1− b
Eα
[
−(a− 1− b)(t− t0)α

]
+

1
2a

2
1 + 1

2b
2
1 + c

a− 1− b
. (4)

On the other hand, it follows from Lemma 1 that

(a− 1− b)−1/α(t− t0)α−1Eα,α
[
−(a− 1− b)(t− t0)α

]
6

(a− 1− b)−1/α(t− t0)α−1

Γ(α)
(5)

for all t > t0.
Substituting (4) and (5) into (3), we obtain that (2) is valid.

Remark 1. When b = b1 = 0, Lemma 5 degenerates to Lemma 5 in [7]. With the
help of Lemma 5, the delay term can be dealt with directly, instead of applying the
fractional Razumikhin theorem in [15,22]. So, Lemma 5 can be used as a new fractional-
order differential inequality to deal with FOCVNNs with time delays and discontinuous
activation functions.
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2.2 System description

In this paper, we consider the following FOCVNNs as the drive system:

C
t0D

α
t xi(t) = −dixi(t) +

n∑
j=1

aijfj
(
xj(t)

)
+

n∑
j=1

bijgj
(
xj(t− τ)

)
+ Ii(t), (6)

where i = 1, 2, . . . , n, and n is the number of units in neural networks, t > t0 > 0,
C
t0D

α
t denotes the Caputo fractional derivative of order α, and 0 < α < 1; x(t) =

(x1(t), . . . , xn(t))T ∈ Cn is the vector of neuron states; di > 0; aij , bij ∈ C are
constants, which represent the neuron interconnection weight and the delayed neuron
interconnection weight, respectively; Ii(t) ∈ C denotes the external input, |Ii(t)| 6 Ii.
xi(s) = ϕi(s) ∈ C([t0 − τ, t0],C) is the initial condition of system (6), where
C([t0 − τ, t0],C) is Banach space of all continuous functions, and time delay τ > 0;
fj(xj(t)), gj(xj(t− τ)) : C→ C are vector-valued activation functions.

The functions fj(·) and gj(·) are required to satisfy the following assumptions:

(H1) The activation function fj (and gj) is continuous and have at most a finite
number of jump discontinuities ρl (and %l) in every bounded interval. Moreover,
there exist finite right and left limits fj(ρ+

l ) (and gl(%−l )), respectively.
(H2) For all j = 1, 2, . . . , n, suppose there exist constants Fj , Gj , Lj > 0 and

Mj > 0 such that for all ιj(t) ∈ K[fj(xj(t))], κj(t) ∈ K[fj(yj(t))], ι′j(t) ∈
K[gj(xj(t))], κ′j(t) ∈ K[gj(yj(t))], the following holds:

sup
∣∣ιj(t)− κj(t)∣∣ 6 Fj

∣∣xj(t)− yj(t)∣∣+ Lj ;

sup
∣∣ι′j(t)− κ′j(t)∣∣ 6 Gj

∣∣xj(t)− yj(t)∣∣+Mj .

Definition 4. FOCVNNs (6) is said to be dissipative if there exist a compact set Ω ⊂ Cn
and T > 0 such that for all z0 ∈ Cn, z(t, t0, z0) ⊂ Ω when t > t0 + T and z(t, t0, z0)
denotes the solution of FOCVNNs from initial state z0 and initial time t0. In this case,
Ω is called a globally attractive set.

Remark 2. In FOCVNNs (6), complex-valued activation functions are assumed to be
discontinuous and satisfy a growth condition, which include the continuous activation
functions as a special case when Lj = Mj = 0 of assumption (H2).

Notice that assumption (H1) is satisfied, that is, there exist discontinuous activations
fj and gj (j = 1, 2, . . . , n), system (6) exhibits discontinuities, and as a result, a classical
solution does not exist. In this context, we examine the solutions of the system within the
Filippov framework. According to the conclusion about the existence of Filippov solution
in [8], we know that the solution x(t) of system (6) with initial condition exists.

We refer to (6) as the drive system, and the corresponding response system is

C
t0D

α
t yi(t) = −diyi(t) +

n∑
j=1

aijfj
(
yj(t)

)
+

n∑
j=1

bijgj
(
yj(t−τ)

)
+ Ii(t) + ui(t), (7)

where ui(t) is the control input.
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In this paper, we choose the linear controller to deal with our system:

ui(t) = −ki
(
yi(t)− xi(t)

)
, ki ∈ C. (8)

We apply the theories of differential inclusions and set-valued maps [8] to deal with
above systems (6) and (7). From (6)

C
t0D

α
t xi(t) ∈ −dixi(t) +

n∑
j=1

aijK
[
fj
(
xj(t)

)]
+

n∑
j=1

bijK
[
gj
(
xj(t− τ)

)]
+ Ii(t) (9)

for a.a. t > t0. By the measurable selection theorem, if xi(t) is a solution of FOCVNNs (9),
then there exist measurable functions γi(t) ∈ K[fj(xj(t))], ηj(t) ∈ K[gj(xj(t))] such
that

C
t0D

α
t xi(t) = −dixi(t) +

n∑
j=1

aijγj(t) +

n∑
j=1

bijηj(t− τ) + Ii(t). (10)

Similarly, from (7) we have

C
t0D

α
t yi(t) ∈ −diyi(t) +

n∑
j=1

aijK
[
fj
(
yj(t)

)]
+

n∑
j=1

bijK
[
gj
(
yj(t− τ)

)]
+ Ii(t) + ui(t), (11)

C
t0D

α
t yi(t) = −diyi(t) +

n∑
j=1

aijγ
′
j(t) +

n∑
j=1

bijη
′
j(t− τ) + Ii(t) + ui(t) (12)

for a.a. t > t0, and there exist γ′j(t) ∈ K[fj(yj(t))], η′j(t) ∈ K[gj(yj(t)].

3 Main results

3.1 Existence of Filippov solutions

In this section, we prove that under some conditions, there exists solution for FOCV-
NNs (6) in the sense of Filippov.

Theorem 1. Suppose that assumptions (H1) and (H2) hold, then there exists at least
one solution x(t) with initial condition x(s) = ϕ(s)(s ∈ [t0 − τ, t0]) of system (6) on
[t0,+∞).

Proof. The local existence of a solution x(t) of system (6) can be guaranteed in [8], so
we obtain that system (6) with initial condition x(s) = ϕ(s)(s ∈ [t0 − τ, t0]) has at
least a local solution x(t) defined on a maximal interval [t0, T ) for T > t0. Next, we
investigate whether it exists at least one solution of system (6) on [t0,+∞).

For simplicity, we denote G(x(t)) = (G1(x(t)), G2(x(t)), . . . , Gn(x(t)))T and

Gi
(
x(t)

)
= −dixi(t) +

n∑
j=1

aijK
[
fj
(
xj(t)

)]
+

n∑
j=1

bijK
[
gj
(
xj(t− τ)

)]
+ Ii(t).
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Next, we will prove that for the differential inclusion C
t0D

α
t x(t) ∈ G(x(t)), there exists at

least one solution x(t) with initial condition x(s) = ϕ(s)(s ∈ [t0 − τ, t0]) on [t0,+∞).
For x(t) ∈ Cn, there exists some $(t) ∈ G(x(t)), which is equivalent to $i ∈

Gi(x(t)) (i = 1, 2, . . . , n). By the measurable selection theorem, then there exist mea-
surable functions γj ∈ K[fj(xj(t))] and ηj ∈ K[gj(xj(t))] such that

$i = −dixi(t) +

n∑
j=1

aijγj(t) +

n∑
j=1

bijηj(t− τ) + Ii(t) (13)

for a.a. t > t0, i = 1, 2, . . . , n.
Then, basing on (13), we have∥∥G(x(t)

)∥∥
F

= sup
$∈G(x(t))

‖$‖2 6 sup
$∈G(x(t))

‖$‖1

6 sup
x(t)∈Cn

n∑
i=1

{
di
∣∣xi(t)∣∣+

n∑
j=1

∣∣aij∣∣∣∣γj(t)∣∣+

n∑
j=1

∣∣bij∣∣∣∣ηj(t− τ)
∣∣+ Ii

}
. (14)

According to assumption (H2), for all γj(t) ∈ K[fj(xj(t))], γ′j(t) ∈ K[fj(xj(t0))],
ηj(t) ∈ K[gj(xj(t))], η′j(t) ∈ K[gj(xj(t0))], the following inequalities hold:∣∣γj(t)∣∣ 6 Fj

∣∣xj(t)∣∣+ Fj
∣∣xj(t0)

∣∣+ Lj +
∣∣γ′j(t)∣∣;∣∣ηj(t− τ)

∣∣ 6 Gj
∣∣xj(t− τ)

∣∣+Gj
∣∣xj(t0)

∣∣+Mj +
∣∣η′j(t)∣∣. (15)

From (14) and (15) we obtain∥∥G(x(t)
)∥∥
F

6 sup
x(t)∈Cn

n∑
i=1

{
di
∣∣xi(t)∣∣+

n∑
j=1

|aij |
(
Fj
∣∣xj(t)∣∣+ Fj

∣∣xj(t0)
∣∣+ Lj +

∣∣γ′j(t)∣∣)
+

n∑
i=1

|bij |
(
Gj
∣∣xj(t− τ)

∣∣+Gj
∣∣xj(t0)

∣∣+Mj +
∣∣η′j(t)∣∣)+ Ii

}

6 sup
x(t)∈Cn

n∑
i=1

(
di +

n∑
j=1

|aji||Fi|

)∣∣xi(t)∣∣+

n∑
i=1

(
n∑
j=1

|bji||Gi|

)∣∣xi(t− τ)
∣∣

+

n∑
i=1

{
n∑
j=1

|aij |
(
Lj +

∣∣γ′j(t)∣∣+ |Fj |
∣∣xj(t0)

∣∣)
+

n∑
j=1

|bij |
(
Mj +

∣∣η′j(t)∣∣+ |Gj |
∣∣xj(t0)

∣∣)+ Ii

}
. (16)
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For t ∈ [t0,+∞), we have∣∣xi(t− τ)
∣∣ 6 sup

t0−τ6s6t

∣∣xi(s)∣∣ 6 sup
t0−τ6s6t0

∣∣xi(s)∣∣+ sup
t06s6t

∣∣xi(s)∣∣
=
∣∣ϕi(s)∣∣+

∣∣xi(t)∣∣. (17)

Based on (17), inequality (16) can be turned into the following inequality:∥∥G(x(t)
)∥∥
F

6 sup
x(t)∈Cn

n∑
i=1

(
di +

n∑
j=1

|aji||Fi|+
n∑
j=1

|bji||Gi|

)
|xi(t)|

+

n∑
i=1

{
n∑
j=1

|aij |
(
Lj +

∣∣γ′j(t)∣∣+ |Fj |
∣∣xj(t0)

∣∣)
+

n∑
j=1

|bij |
(
Mj +

∣∣η′j(t)∣∣+ |Gj |
∣∣xj(t0)

∣∣)+

n∑
j=1

|bji||Gi|
∣∣ϕi(s)∣∣+ Ii

}
. (18)

We denote

p1 = max
16i6n

n∑
i=1

(
di +

n∑
j=1

|aji||Fi|+
n∑
j=1

|bji||Gi|

)
> 0, p =

√
np1;

q =

n∑
i=1

{
n∑
j=1

|aij |
(
Lj +

∣∣γ′j(t)∣∣+ |Fj |
∣∣xj(t0)

∣∣)
+

n∑
j=1

|bij |
(
Mj +

∣∣η′j(t)∣∣+ |Gj |
∣∣xj(t0)

∣∣)+

n∑
j=1

|bji||Gi|
∣∣ϕi(s)∣∣+ Ii

}
> 0,

then ∥∥G(x(t)
)∥∥
F
6 p1

n∑
i=1

∣∣xi(t)∣∣+ q 6 p1

√
n
∥∥x(t)

∥∥
2

+ q = p
∥∥x(t)

∥∥
2

+ q.

When fix $(t) ∈ Cn, Ct0D
α
t x(t) = $(t), taking fractional integral on both sides of

above equation, we have

x(t) = x(t0) +
1

Γ(α)

t∫
t0

(t− h)$(h) dh.

Then ∥∥x(t)
∥∥

2
=
∥∥x(t0)

∥∥
2

+
1

Γ(α)

t∫
t0

(t− h)α−1
∥∥$(h)

∥∥
2

dh

6
∥∥x(t0)

∥∥
2

+
1

Γ(α)

t∫
t0

(t− h)α−1
(
p
∥∥x(h)

∥∥
2

+ q
)

dh. (19)
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Let S(t) = p‖x(t)‖2 + q, from (19)

S(t) 6 p
∥∥x(t0)

∥∥
2

+ q +
p

Γ(α)

t∫
t0

(t− h)α−1
∥∥S(h)

∥∥dh, (20)

where a = p‖x(t0)‖2+q > 0, b = p/Γ(α) > 0. By applying Lemma 4, given α ∈ (0, 1),
β = 0, and ε > 0, there exists a positive constant c := c(α, β, ε) such that

S(t) 6
(
p
∥∥x(t0)

∥∥
2

+ q
)(

1 +
cp

Γ(α)
tαe(1+ε)µ(1−α, p/Γ(α))t

)
, (21)

where

µ

(
1− α, p

Γ(α)

)
:=

(
Γ
(
1− (1− α)

) p

Γ(α)

)1/α

= p1/α.

So, (21) can be converted to the following inequality:

S(t) 6
(
p
∥∥x(t0)

∥∥
2

+ q
)(

1 +
cp

Γ(α)
tαe(1+ε)p1/αt

)
.

Based on above inequality, we can express x(t) as

∥∥x(t)
∥∥

2
=
S(t)− q

p
6
∥∥x(t0)

∥∥
2

+
(
p
∥∥x(t0)

∥∥
2

+ q
) c

Γ(α)
tαe(1+ε)p1/αt. (22)

Suppose that there exists t0 < T1 < +∞ such that the maximal interval of existence
of the solution x(t) is [t0, T1), then∥∥x(t)

∥∥
2
6
∥∥x(t0)

∥∥
2

+
(
p‖x(t0)‖2 + q

) c

Γ(α)
Tα1 e(1+ε)p1/αT1 . (23)

Choose sufficiently small constant σ > 0 and denote

Ξ =

{
x(t) ∈ Cn:

∥∥x(t)
∥∥

2
6
∥∥x(t0)

∥∥
2

+
(
p
∥∥x(t0)

∥∥
2

+ q
) c

Γ(α)
Tα1 e(1+ε)p1/αT1 + σ

}
as a bounded domain. Based on continuation theorem [8], each solution x(t) can be
continued on both sides up to the boundary of the domain Ξ , which contradicts with (23).
Hence, x(t) is bounded for any positive time, and it is defined on [t0,+∞). That is, for
FOCVNNs (6), there exists at least one solution x(t) with initial condition x(s) = ϕ(s)
(s ∈ [t0 − τ, t0]) on [t0,+∞).

3.2 Dissipativity of FOCVNNs with time delays and discontinuous activations

In this section, we will analyze the dissipativity of FOCVNNs (6).
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Theorem 2. FOCVNNs (6) is globally dissipative when

λ = min
16i6n

{
di + di −

n∑
j=1

aijaij −
n∑
j=1

bijbij − 1−
n∑
j=1

rj
ri
F 2
i

}
> χ+ 1,

0 6 τ 6 (λ− χ− 1)−1/α.

In addition,

Ω =

{
x: ‖x‖2 6

( 1
2 (µ2 + ζ2) + ν

min16i6n{ri}(λ− χ− 1)

)1/2}
is a globally attractive set, where

χ = max
16i6n

{
n∑
j=1

rj
ri
G2
i

}
,

µ =
(
n max

16i6n
{ri}

)1/2

max
16i6n

{
n∑
j=1

rj
ri

(
2FiLi + 2F 2

i

∣∣xi(t0)
∣∣+ 2Li

∣∣γ′i(t)∣∣)
}
,

ζ =
(
n max

16i6n
{ri}

)1/2

max
16i6n

{
n∑
j=1

rj
ri

(
2GiMi + 2G2

i

∣∣xi(t0)
∣∣+ 2Gi

∣∣η′i(t)∣∣)
}
,

ν =

n∑
i=1

n∑
j=1

ri
(
Fj
∣∣xj(t0)

∣∣+ Lj +
∣∣γ′j(t)∣∣)2

+

n∑
i=1

n∑
j=1

ri
(
Gj
∣∣xj(t0)

∣∣+Mj +
∣∣η′j(t)∣∣)2 +

n∑
i=1

riI
2
i .

Proof. Consider the following nonnegative function:

V (t) =
n∑
i=1

rixi(t)xi(t), (24)

where ri ∈ R. By means of Lemma 2

C
t0D

α
t V (t) 6

n∑
i=1

ri
(
xi(t)

C
t0D

α
t x(t) + xi(t)

C
t0D

α
t xi(t)

)
=

n∑
i=1

ri
[
−(di+di)xi(t)xi(t)

]
+

n∑
i=1

n∑
j=1

ri
[
aijxi(t)γj(t)+aijxi(t)γj(t)

]
+

n∑
i=1

n∑
j=1

ri
[
bijxi(t)ηj(t− τ) + bijxi(t)ηj(t− τ)

]
+

n∑
i=1

ri
[
Ii(t)xi(t) + Ii(t)xi(t)

]
. (25)
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For all γ′j(t) ∈ K[fj(xj(t0))], η′j(t) ∈ K[gj(xj(t0))], we can obtain the following
inequality based on Lemma 3 and assumption (H2):

aijxi(t)γj(t) + aijxi(t)γj(t)

6 aijaijxi(t)xi(t) + γj(t)γj(t)

6 aijaijxi(t)xi(t) +
(
Fj
∣∣xj(t)∣∣+ Fj

∣∣xj(t0)
∣∣+ Lj +

∣∣γ′j(t)∣∣)2
6 aijaijxi(t)xi(t) + F 2

j xj(t)xj(t)

+
(
2FjLj + 2F 2

j

∣∣xj(t0)
∣∣+ 2Fj

∣∣γ′j(t)∣∣)∣∣xj(t)∣∣
+
(
Fj
∣∣xj(t0)

∣∣+ Lj +
∣∣γ′j(t)∣∣)2. (26)

Similarly,

bijxi(t)ηj(t− τ) + bijxi(t)ηj(t− τ)

6 bijbijxi(t)xi(t) + ηj(t− τ)ηj(t− τ)

6 bijbijxi(t)xi(t) +
(
Gj
∣∣xj(t− τ)

∣∣+Gj
∣∣xj(t0)

∣∣+Mj +
∣∣η′j(t)∣∣)2

= bijbijxi(t)xi(t) +G2
jxj(t− τ)xj(t− τ)

+
(
2GjMj + 2G2

j

∣∣xj(t0)
∣∣+ 2Gj

∣∣η′j(t)∣∣)∣∣xj(t− τ)
∣∣

+
(
Gj
∣∣xj(t0)

∣∣+Mj +
∣∣η′j(t)∣∣)2 (27)

and

Ii(t)xi(t) + Ii(t)xi(t) 6 xi(t)xi(t) + Ii(t)Ii(t) 6 xi(t)xi(t) + I2
i . (28)

Submitting (26)–(28) into (25), we have

C
t0D

α
t V (t) 6

n∑
i=1

ri

[
− (di + di) +

n∑
j=1

(aijaij + bijbij) + 1

]
xi(t)xi(t)

+

n∑
i=1

n∑
j=1

riF
2
j xj(t)xj(t) +

n∑
i=1

n∑
j=1

riG
2
jxj(t− τ)xj(t− τ)

+

n∑
i=1

n∑
j=1

ri
(
2FjLj + 2F 2

j

∣∣xj(t0)
∣∣+ 2Lj

∣∣γ′j(t)∣∣)∣∣xj(t)∣∣
+

n∑
i=1

n∑
j=1

ri
(
2GjMj + 2G2

j

∣∣xj(t0)
∣∣+ 2Gj

∣∣η′j(t)∣∣)∣∣xj(t− τ)
∣∣

+

n∑
i=1

n∑
j=1

ri
(
Fj
∣∣xj(t0)

∣∣+ Lj +
∣∣γ′j(t)∣∣)2

+

n∑
i=1

n∑
j=1

ri
(
Gj
∣∣xj(t0)

∣∣+Mj +
∣∣η′j(t)∣∣)2 +

n∑
i=1

riI
2
i
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= −
n∑
i=1

ri

[
di + di −

n∑
j=1

(aijaij + bijbij)−
n∑
j=1

rj
ri
F 2
i − 1

]
× xi(t)xi(t)

+

n∑
i=1

n∑
j=1

ri

(
rj
ri
G2
i

)
xi(t− τ)xi(t− τ) +

n∑
i=1

riI
2
i

+

n∑
i=1

n∑
j=1

ri

[
rj
ri

(
2FiLi + 2F 2

i

∣∣xi(t0)
∣∣+ 2Li

∣∣γ′i(t)∣∣)∣∣xi(t)∣∣]

+

n∑
i=1

n∑
j=1

ri

[
rj
ri

(
2GiMi + 2G2

i

∣∣xi(t0)
∣∣+ 2Gi

∣∣η′i(t)∣∣)∣∣xi(t− τ)
∣∣]

+

n∑
i=1

n∑
j=1

ri
(
Fj
∣∣xj(t0)

∣∣+ Lj +
∣∣γ′j(t)∣∣)2

+

n∑
i=1

n∑
j=1

ri
(
Gj
∣∣xj(t0)

∣∣+Mj +
∣∣η′j(t)∣∣)2. (29)

Let

µ1 = max
16i6n

{
n∑
j=1

rj
ri

(
2FiLi + 2F 2

i

∣∣xi(t0)
∣∣+ 2Li

∣∣γ′i(t)∣∣)
}
,

ζ1 = max
16i6n

{
n∑
j=1

rj
ri

(
2GiMi + 2G2

i

∣∣xi(t0)
∣∣+ 2Gi

∣∣η′i(t)∣∣)
}
,

µ = µ1

(
n max

16i6n
{ri}

)1/2

, ζ = ζ1

(
n max

16i6n
{ri}

)1/2

.

From (29)

C
t0D

α
t V (t) 6 −

n∑
i=1

riλxi(t)xi(t) +

n∑
i=1

riχxi(t− τ)xi(t− τ)

+

n∑
i=1

riµ1

∣∣xi(t)∣∣+

n∑
i=1

riζ1
∣∣xi(t− τ)

∣∣+ ν

6 −
n∑
i=1

riλxi(t)xi(t) +

n∑
i=1

riχxi(t− τ)xi(t− τ)

+ µ1

(
n

n∑
i=1

r2
i xi(t)xi(t)

)1/2

+ ζ1

(
n

n∑
i=1

r2
i xi(t− τ)xi(t− τ)

)1/2

+ ν

6 −
n∑
i=1

riλxi(t)xi(t) +

n∑
i=1

riχxi(t− τ)xi(t− τ) + ν
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+ µ1

(
n max

16i6n
{ri}

)1/2
(

n∑
i=1

rixi(t)xi(t)

)1/2

+ ζ1

(
n max

16i6n
{ri}

)1/2
(

n∑
i=1

rixi(t− τ)xi(t− τ)

)1/2

= −λV (t) + χV (t− τ) + µV 1/2(t) + ζV 1/2(t− τ) + ν. (30)

Since λ > χ + 1 and χ, µ, ζ, ν > 0, the following inequality can be obtained with the
help of Lemma 5:

min
16i6n

{ri}
n∑
i=1

xi(t)xi(t)

6 V (t) 6 Eα
[
−(λ− χ− 1)(t− t0)α

](
ξ −

1
2µ

2 + 1
2ζ

2 + ν

λ− χ− 1

)
+

( 1
2 + χ)(λ− χ− 1)−1/α(t− t0)α−1ξ

Γ(α)
+

µ2

2 + ζ2

2 + ν

λ− χ− 1
, (31)

where ξ = maxt∈[t0−τ, t0] |x(t)|.
Then ∥∥x(t)

∥∥
2
6

{
Eα[−(λ− χ− 1)(t− t0)α]

min16i6n{ri}

(
ξ −

1
2µ

2 + 1
2ζ

2 + ν

λ− χ− 1

)
+

( 1
2 + χ)(λ− χ− 1)−1/α(t− t0)α−1ξ

min16i6n{ri}Γ(α)

+
µ2

2 + ζ2

2 + ν

min16i6n{ri}(λ− χ− 1)

}1/2

. (32)

Then, by using the monotonicity of (t− t0)α−1 and Lemma 1,

lim sup
t→+∞

∥∥x(t)
∥∥

2
6

( µ2

2 + ζ2

2 + ν

min16i6n{ri}(λ− χ− 1)

)1/2

.

Therefore, for any sufficiently small number ε > 0, there is T > 0 so that

∥∥x(t)
∥∥

2
6

( µ2

2 + ζ2

2 + ν

min16i6n{ri}(λ− χ− 1)

)1/2

+ ε.

Therefor, for x0 ∈ Cn, there exists T > 0 such that x(t, t0, x0) ⊂ Ω, which implies
that system (6) is dissipative.

The conditions of Theorem 2 can be simplified when ri = 1, the following result is
derived.
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Corollary 1. FOCVNNs (6) is globally dissipative when

λ1 = min
16i6n

{
di + di −

n∑
j=1

aijaij −
n∑
j=1

bijbij − 1−
n∑
j=1

F 2
i

}
> χ1 + 1,

0 6 τ 6 (λ1 − χ1 − 1)−1/α.

Besides,

Ω1 =

{
x: ‖x‖2 6

( 1
2

(
µ′2 + ζ ′2

)
+ ν1

λ1 − χ1 − 1

)1/2}
is a globally attractive set, where

χ1 = max
16i6n

{
n∑
j=1

G2
i

}
,

µ′ =
√
n max

16i6n

{
n∑
j=1

(
2FiLi + 2F 2

i

∣∣xi(t0)
∣∣+ 2Li

∣∣γ′i(t)∣∣)
}
,

ζ ′ =
√
n max

16i6n

{
n∑
j=1

(
2GiMi + 2G2

i

∣∣xi(t0)
∣∣+ 2Gi

∣∣η′i(t)∣∣)
}
,

ν1 =

n∑
i=1

n∑
j=1

(
Fj
∣∣xj(t0)

∣∣+ Lj +
∣∣γ′j(t)∣∣)2

+

n∑
i=1

n∑
j=1

(
Gj
∣∣xj(t0)

∣∣+Mj +
∣∣η′j(t)∣∣)2 +

n∑
i=1

I2
i .

When the activation functions fi, gi are Lipschitz-continuous, assumption (H2) can
be replaced by the following condition.

(H3) For all j = 1, 2, . . . , n, suppose there exist constants Fj , Gj > 0 such that∣∣fj(x1)− fj(x2)
∣∣ 6 Fj |x1 − x2| ∀x1, x2 ∈ C;∣∣gj(x1)− gj(x2)
∣∣ 6 Gj |x1 − x2| ∀x1, x2 ∈ C.

Corollary 2. FOCVNNs (6) is global asymptotically stable if assumption (H3) holds and

λ2 = min
16i6n

{
di + di −

n∑
j=1

aijaij −
n∑
j=1

bijbij −
n∑
j=1

rj
ri
F 2
i

}
> χ2,

χ2 = max
16i6n

{
n∑
j=1

(
rj
ri
G2
i

)}
, 0 6 τ 6 (λ2 − χ2)−1/α.

Proof. Assume that x(t) = (x1(t), x2(t), . . . , xn(t))T and ỹ(t) = (ỹ1(t), ỹ2(t), . . . ,
ỹn(t))T are any two solutions of system (6) with the different initial condition xi(s) =
ϕi(s) (s ∈ [t0 − τ, t0]), ỹi(s) = φi(s) (s ∈ [t0 − τ, t0]) for i = 1, . . . , n.
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Denote zi(t) = ỹi(t)− xi(t), and we have

C
t0D

α
t zi(t) = −dizi(t) +

n∑
j=1

aij
(
fj
(
ỹj(t)

)
− fj

(
xj(t)

))
+

n∑
j=1

bij
(
gj
(
ỹj(t− τ)

)
− gj

(
xj(t− τ)

))
.

Let us construct the function V (t) =
∑n
j=1 rizi(t)zi(t), then

C
t0D

α
t V (t) 6

n∑
j=1

ri
(
zi(t)

C
t0D

α
t zi(t) + zi(t)

C
t0D

α
t zi(t)

)
= −

n∑
i=1

ri

(
di + di −

n∑
j=1

(
aijaij + bijbij

)
−

n∑
j=1

rj
ri
F 2
i

)
zi(t)zi(t)

+

n∑
i=1

n∑
j=1

ri

(
rj
ri
G2
i

)
zi(t− τ)zi(t− τ)

6 −λ2V (t) + χ2V (t− τ).

Obviously, similar to Theorem 2, ‖z(t)‖2 = ‖ỹ(t) − x(t)‖2 → 0 (t → +∞) when
µ = ζ = ν = 0, and the solution of system (6) is globally asymptotically stable. In
addition, the existence and uniqueness of equilibrium point for system (6) can be proved
by contraction mapping principle. Thus, all the solutions of system (6) converge to the
unique equilibrium point.

3.3 Quasi-Mittag-Leffler synchronization

Define ei(t) = yi(t) − xi(t) as the synchronization error, from systems (6) and (7), we
obtain the error system

C
t0D

α
t ei(t) = −(di + ki)ei(t) +

n∑
j=1

aij
(
γj(t)− γ′j(t)

)
+

n∑
j=1

bij(ηj
(
t− τ)− η′j(t− τ)

)
(33)

for a.a. t > t0.

Theorem 3. System (6) and (7) are quasi-Mittag-Leffler synchronization with control-
ler (8) if

λ3 = min
16i6n

[
di + di + ki + ki −

n∑
j=1

aijaij −
n∑
j=1

bijbij −
n∑
j=1

rj
ri
F 2
j

]
> 1 + χ3,

0 6 τ 6 (λ3 − χ3 − 1)−1/α.
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Moreover, the error bound is

lim sup
t→+∞

∥∥e(t)∥∥
2
6

( 1
2µ

2
3 + 1

2ζ
2
3 + ν3

min16i6n{ri}(λ3 − 1− χ3)

)1/2

,

where

χ3 = max
16i6n

{
n∑
j=1

rj
ri
G2
i

}
, ν3 =

n∑
i=1

n∑
j=1

ri
(
L2
j +M2

j

)
,

µ3 =
(
n max

16i6n
{ri}

)1/2

max
16i6n

{
n∑
j=1

rj
ri

2FiLi

}
,

ζ3 =
(
n max

16i6n
{ri}

)1/2

max
16i6n

{
n∑
j=1

rj
ri

2GiMi

}
.

Proof. Define the following nonnegative function:

V (t) =

n∑
j=1

riei(t)ei(t), (34)

where ri ∈ R. By virtue of Lemma 2, we can get

C
t0D

α
t V (t) 6

n∑
i=1

ri
(
ei(t)

C
t0D

α
t ei(t) + ei(t)

C
t0D

α
t ei(t)

)
=

n∑
i=1

ri
[
−(di + di + ki + ki)ei(t)ei(t)

]
+

n∑
i=1

n∑
j=1

ri
[
aijei(t)

(
γj(t)− γ′j(t)

)
+ aijei(t)

(
γj(t)− γ′j(t)

)]
+

n∑
i=1

n∑
j=1

ri
[
bijei(t)

(
ηj(t− τ)− η′j(t− τ)

)
+ bijei(t)

(
ηj(t− τ)− η′j(t− τ)

)]
. (35)

According to Lemma 3 and assumption (H2),

n∑
i=1

n∑
j=1

ri
[
aijei(t)

(
γj(t)− γ′j(t)

)
+ aijei(t)

(
γj(t)− γ′j(t)

)]
6

n∑
i=1

n∑
j=1

ri
[
aijaijei(t)ei(t) +

(
γj(t)− γ′j(t)

)(
γj(t)− γ′j(t)

)]
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6
n∑
i=1

n∑
j=1

ri
[
aijaijei(t)ei(t) +

(
Fj
∣∣ej(t)∣∣+ Lj

)2]
=

n∑
i=1

n∑
j=1

ri
[
aijaijei(t)ei(t) + F 2

j ej(t)ej(t) + 2FjLj
∣∣ej(t)∣∣+ L2

j

]
. (36)

Similarly, we have
n∑
i=1

n∑
j=1

ri
[
bijei(t)

(
ηj(t− τ)− η′j(t− τ)

)
+ bijei(t)

(
ηj(t− τ)− η′j(t− τ)

)]
6

n∑
i=1

n∑
j=1

ri
[
bijbijei(t)ei(t) +

(
ηj(t− τ)− η′j(t− τ)

)(
ηj(t− τ)− η′j(t− τ)

)]
6

n∑
i=1

n∑
j=1

ri
[
bijbijei(t)ei(t) +

(
Gj
∣∣ηj(t− τ)

∣∣+Mj

)2]
=

n∑
i=1

n∑
j=1

ri
[
bijbijei(t)ei(t) +G2

jηj(t− τ)ηj(t− τ)

+ 2GjMj

∣∣ηj(t− τ)
∣∣+M2

j

]
. (37)

From (35), (36), and (37) we have
C
t0D

α
t V (t)

6
n∑
i=1

ri
[
−(di + di + ki + ki)ei(t)ei(t)

]
+

n∑
i=1

n∑
j=1

ri
[
aijaijei(t)ei(t) + F 2

j ej(t)ej(t) + 2FjLj
∣∣ej(t)∣∣+ L2

j

]
+

n∑
i=1

n∑
j=1

ri
[
bijbijei(t)ei(t) +G2

jηj(t−τ)ηj(t−τ) + 2GjMj

∣∣ηj(t− τ)
∣∣+M2

j

]
6 −

n∑
i=1

ri

[
di + di + ki + ki −

n∑
j=1

aijaij −
n∑
j=1

bijbij −
n∑
j=1

rj
ri
F 2
j

]
ei(t)ei(t)

+

n∑
i=1

n∑
j=1

ri

(
rj
ri

2FiLi

)∣∣ei(t)∣∣+

n∑
i=1

n∑
j=1

ri

(
rj
ri
G2
i

)
ei(t− τ)ei(t− τ)

+

n∑
i=1

n∑
j=1

ri

(
rj
ri

2GiMi

)∣∣ei(t− τ)
∣∣+

n∑
i=1

n∑
j=1

ri
(
L2
j +M2

j

)
. (38)

Let

µ′3 = max
16i6n

{
n∑
j=1

rj
ri

2FiLi

}
, ζ ′3 = max

16i6n

{
n∑
j=1

rj
ri

2GiMi

}
.
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From (38) we have

C
t0D

α
t V (t)

6 −
n∑
i=1

riλ3ei(t)ei(t) +

n∑
i=1

riχ3ei(t− τ)ei(t− τ)

+

n∑
i=1

riµ
′
3

∣∣ei(t)∣∣+

n∑
i=1

riζ
′
3

∣∣ei(t− τ)
∣∣+ ν3

6 −
n∑
i=1

riλ3ei(t)ei(t) +

n∑
i=1

riχ3ei(t− τ)ei(t− τ)

+ µ′3

(
n

n∑
i=1

r2
i ei(t)ei(t)

)1/2

+ ζ ′3

(
n

n∑
i=1

r2
i ei(t− τ)ei(t− τ)

)1/2

+ ν3. (39)

Denote

µ3 = µ′3

(
n max

16i6n
{ri}

)1/2

, ζ3 = ζ ′3

(
n max

16i6n
{ri}

)1/2

.

The following inequality is given from (39):

C
t0D

α
t V (t) 6 −λ3V (t) + χ3V (t− τ) + µ3V

1/2(t) + ζ3V
1/2(t− τ) + ν3. (40)

Since λ3 > (1 + χ3) and χ3, µ3, ζ3, ν3 > 0, according to Lemma 5, we have

min
16i6n

{ri}
n∑
j=1

ei(t)ei(t)

6 V (t)

6
( 1

2 + χ3)(λ3 − 1− χ3)−1/α(t− t0)α−1ξ

Γ(α)

+

(
ξ −

1
2µ

2
3 + 1

2ζ
2
3 + ν3

λ3 − 1− χ3

)
Eα
[
−(λ3 − 1− χ3)(t− t0)α

]
+

1
2µ

2
3 + 1

2ζ
2
3 + ν3

λ3 − 1− χ3
, (41)

where ξ = maxt∈[t0−τ, t0].
Then∥∥e(t)∥∥

2
6

{
( 1

2 + χ3)(λ3 − 1− χ3)−1/α(t− t0)α−1ξ

min16i6n{ri}Γ(α)

+

(
ξ −

1
2µ

2
3 + 1

2ζ
2
3 + ν3

min16i6n{ri}(λ3 − 1− χ3)

)
Eα
[
−(λ3 − 1− χ3)(t− t0)α

]
+

1
2µ

2
3 + 1

2ζ
2
3 + ν3

min16i6n{ri}(λ3 − 1− χ3)

}1/2

.
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Similarly deal with (32),

lim sup
t→+∞

∥∥y(t)− x(t)
∥∥

2
= lim sup

t→+∞

∥∥e(t)∥∥
2
6

( 1
2µ

2
3 + 1

2ζ
2
3 + ν3

min16i6n{ri}(λ3 − 1− χ3)

)1/2

,

which implies that systems (6) and (7) are quasi-Mittag-Leffler synchronized.

Remark 3. In Theorem 3, the sufficient conditions are only related to the parameters
of the system and the controller. In particular, the error bounds of quasi-Mittag-Leffler
synchronization have nothing with initial values. No matter what the initial values of the
drive-response systems (6) and (7) are, the upper bound of the synchronization error can
be obtained by adjusting the controller parameters. This not only provides a research
framework for synchronization, but also extends earlier findings in fractional-order sys-
tems [6, 7]. Thus, our results are less conservative and can be considered a meaningful
extension of previous synchronization work.

Let ri = 1 in Theorem 3, we can obtain the following corollary.

Corollary 3. Based on controller (8), system (6) and (7) are quasi-Mittag-Leffler syn-
chronization if assumptions (H1) and (H2) hold and

λ4 = min
16i6n

[
di + di + ki + ki −

n∑
j=1

aijaij −
n∑
j=1

bijbij −
n∑
j=1

F 2
j

]
> 1 + χ4,

0 6 τ 6 (λ4 − χ4 − 1)−1/α. Moreover, the error bound is

lim sup
t→+∞

∥∥e(t)∥∥
2
6

( 1
2µ

2
4 + 1

2ζ
2
4 + ν4

(λ4 − 1− χ4)

)1/2

,

where

χ4 = max
16i6n

{
n∑
j=1

G2
i

}
, µ4 =

√
n max

16i6n

{
n∑
j=1

2FiLi

}
,

ζ4 =
√
n max

16i6n

{
n∑
j=1

2GiMi

}
, ν4 =

n∑
i=1

n∑
j=1

(
L2
j +M2

j

)
.

Remark 4. Note that in [3, 20, 23], the authors studied the dynamic behaviors of
FOCVNNs by dividing the complex-valued systems into their real parts and imaginary
parts. Unlike those methods, in this paper, we deal with such system as a compact entirety
without any decomposition in complex domain, which better reflects the characteristics of
complex-valued systems, this makes our method more efficient and compact. If assume
that the imaginary part of FOCVNNs (6) is zero, then FOCVNNs (6) can be deduced
to fractional-order RVNNs with discontinuous activation functions, the results for such
system in [5] could be extended to the complex domain. Li et al. [15] investigated quasi-
projective synchronization of FOCVNNs, whose activation functions have not only the
bounded modulus, but also satisfy Lipschitz condition. However, such conditions are not
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needed and our activation functions are discontinuous, and the Lipschitz-continuous acti-
vation functions can be as a special case when Lj = 0 and Mj = 0 of assumption (H2).
In [7], the authors investigated global Mittag-Leffler synchronization of FONNs, note that
time delay is not considered in their model. Thus our results extent and complement the
existing literature [5, 7, 15], to some extent, and achieve a valuable improvement.

When the activation functions satisfy assumption (H3), the globally Mittag-Leffler
synchronization result is given as special case of Theorem 3.

Corollary 4. System (6) and (7) are globally Mittag-Leffler synchronization with the
controller (8) if assumption (H3) holds and

λ5 = min
16i6n

[
di + di + ki + ki −

n∑
j=1

aijaij −
n∑
j=1

bijbij −
n∑
j=1

rj
ri
F 2
j

]
> 1 + χ5,

0 6 τ 6 (λ5 − χ5 − 1)−1/α,

where

χ5 = max
16i6n

{
n∑
j=1

rj
ri
G2
i

}
.

4 Numerical simulations

In this section, we give two numerical examples to show the effectiveness of our main
results.

Example 1. Consider the two-dimensional FOCVNNs (6) with time delays and discon-
tinuous activations, where

A =

(
0.5 + i0.3 −0.5 + i0.5
2.2 + i0.7 0.5 + i0.2

)
, D =

(
7 0
0 7

)
,

B =

(
0.4 + i1.5 −0.5 + i1.5
0.5− i0.8 0.3 + i0.6

)
, I =

(
0.6− i0.4
−0.5 + i0.3

)
,

α = 0.9, τ = 0.1, the discontinuous activation function is taken as

fj
(
xj(t)

)
= gj

(
xj(t)

)
= tanh

(
xRj (t)

)
+ 0.05 sign

(
xRj (t)

)
+ i
[
sin
(
xIj (t)

)
+ 0.05 sign

(
xIj (t)

)]
.

Then from assumption (H2) we have Fj = Gj = 1 and Lj = Mj = 0.1 for j = 1, 2.
From Corollary 1 λ1 = 5.04, µ′ = 1.8278, ζ ′ = 2.8825, χ1 = 1, ν1 = 8.2524, 0 6 τ =
0.1 6 (λ1 − χ1 − 1)−1/α = 0.2907, and

‖S‖2 6

( 1
2 (ζ ′2 + µ′2) + ν1

λ1 − χ1 − 1

)1/2

6 2.1519.

Thus, the attractive set is Ω = {x: ‖S‖2 6 2.1519}.
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Example 2. Consider the two-dimensional FOCVNNs (6) with time delays and discon-
tinuous activations, where

A =

(
0.05 + i0.3 0.5 + i0.1
0.1 + i0.7 0.5 + i0.2

)
, D =

(
3 0
0 3

)
,

B =

(
0.6 + i0.5 0.9 + i0.5
0.5− i0.8 0.9 + i0.6

)
, I =

(
0.6− i0.4
0.5 + i0.3

)
,

α = 0.96, τ = 0.01, the discontinuous activation function is taken as

fj
(
xj(t)

)
= tanh

(
xRj (t)

)
+ 0.3 sign

(
xRj (t)

)
+ i
[
tanh

(
xIj (t)

)
+ 0.2 sign

(
xIj (t)

)]
,

gj
(
xj(t)

)
= sin

(
xRj (t)

)
+ 0.3 sign

(
xRj (t)

)
+ i
[
sin
(
xIj (t)

)
+ 0.2 sign

(
xIj (t)

)]
.

Then from assumption (H2) we have Fj = 1, Lj = 0.6, Gj = 1, and Mj = 0.4 for
j = 1, 2. Choose the control gains k1 = 11 + i, k2 = 8 + i. Under the control scheme (8),
we can obtain λ4 = 17.15, µ4 = 1.69705, ζ4 = 0.2828, χ4 = 1, ν4 = 1.0417, 0 6 τ =
0.01 6 (λ1 − χ1 − 1)−1/α = 0.0589. From Corollary 3 the error is bounded:

lim sup
t→+∞

‖e‖2 6

( 1
2 (µ2

4 + ζ2
4 ) + ν4

λ1 − χ4 − 1

)1/2

=

( 1
2 (1.69752 + 0.28282) + 1.0417

17.15− 1− 1

)1/2

= 0.4080.

Systems (6) and (7) are quasi-Mittag-Leffler synchronization.

5 Conclusions and future works

In this paper, the authors have considered the global dissipativity and quasi-Mittag-Leffler
synchronization of FOCVNNs with time delays and discontinuous activations. Some new
sufficient conditions are obtained with the use differential inclusions. Moreover, without
decomposing the system into two real-valued systems, we utilize a novel fractional-
order inequality to derive criteria that ensure dissipativity and quasi-Mittag-Leffler syn-
chronization of FOCVNNs. Two numerical examples are presented to demonstrate the
effectiveness and usefulness of our main results. In future work, we aim to analyze diverse
synchronization behaviors of FOCVNNs through the design of various control strategies
and to explore their applications in pattern recognition and signal processing.
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