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Abstract. In this paper, we introduce and investigate a new class of Hadamard fractional differential
equation with integral-multipoint boundary conditions on a positive semiinfinite domain. We use
the contraction mapping principle and the fixed point index theorem, respectively, to prove the
uniqueness and the existence of at least two positive solutions to the given problem. Our results
are new and enrich the literature on Hadamard-type fractional differential equations on unbounded
domains. Some examples illustrating the main results are presented.
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1 Introduction

Fractional differential equations have been widely studied due to their numerous ap-
plications in a variety of areas. Examples include mathematical modeling of physical
and chemical phenomena such as pseudoplastic flow [18], non-Newtonian fluids [20],
heterogeneous chemical catalysts [26], infectious models [25], neural networks [27],
chemostat model [31], fractal–fractional reaction diffusion models [28], fractional
Monge–Ampère operators [24], financial economics [8], etc. For the theoretical aspects
of fractional calculus and more applications; see, for example, [14].

In addition to the popular Riemann–Liouville and Caputo fractional derivatives, there
exist other types of fractional derivatives such as Hadamard, Hilfer, Grünwald–Letnikov,
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Hilfer–Hadamard, and so on. In 1892, Hadamard [12] introduced a fractional derivative
with its kernel containing a logarithmic function with an arbitrary exponent, which is now
known as the Hadamard fractional derivative. For details on initial and boundary value
problems involving Hadamard-type fractional differential equations and inclusions, we
refer the reader to a recent text [1].

During the past few decades, many authors investigated the existence of solutions for
fractional differential equations on unbounded domains; see, for instance, [4,5,16,22,23,
30] and the references cited therein. In [16], Liu applied the Schauder fixed point theorem
to prove the existence of at least one positive solution for the following boundary value
problem of Riemann–Liouville fractional differential equations:

Dζ1
0+x(t) = f1

(
t, y(t), Dp

0+y(t)
)
, t ∈ (0,∞),

Dζ2
0+y(t) = f2

(
t, x(t), Dq

0+x(t)
)
, t ∈ (0,∞),

lim
t→0

t2−ζ1x(t) = a0, lim
t→0

Dζ1−1
0+ x(t) = a1,

lim
t→0

t2−ζ2y(t) = b0, lim
t→0

Dζ2−1
0+ y(t) = b1,

where ζ1, ζ2 ∈ (1, 2), p ∈ (ζ2 − 1, ζ2), q ∈ (ζ1 − 1, ζ1), a0, b0, a1, b1 ∈ R, D0+ is the
standard Riemann–Liouville fractional derivative operator, and f1, f2∈C((0,∞)×R2,R).

The authors in [5] applied the monotone iterative technique to establish the existence
of at least two positive solutions for the following problem:

Dζ
0+ω(z) + h

(
z, ω(z)

)
= 0, z ∈ (0,∞),

lim
t→0

t2−ζω(z) = lim
t→∞

Dζ−1
0+ ω(z) =

∞∫
0

g(s)ω(s) ds,

where Dζ
0+ is the Riemann–Liouville fractional derivative of order 1 < ζ < 2, h :

(0,∞)× R→ R is a given function, and g ∈ L1([0,∞)).
In [3], the authors studied the existence and uniqueness of solutions for the following

nonlinear nonlocal Hadamard-type fractional boundary value problem:

HD
ζω(z) = h

(
z, ω(z)

)
= 0, z ∈ [1, T ],

ω(z) = 1, HD
pω(T ) =

n∑
i=1

γiHD
pω(µi), 0 < p < 1,

where n > 2, 1 < ζ 6 2, µi ∈ (1, T ], and γi ∈ R for i = 1, 2, . . . , n.
Zhang and Liu [29], by using the monotone iterative technique, studied the following

Hadamard fractional differential equation with integral boundary conditions:

HD
ζω(z) + ϑ(z)g

(
z, ω(z)

)
= 0, z ∈ (1,∞),

ω(j)(1) = 0, 0 6 j 6 n− 2, HD
ζ−1ω(∞) =

∞∫
1

g(s)ω(s)
ds

s
,

where HDζ is the Hadamard fractional derivative of order n− 1 < ζ 6 n with n > 3.
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In [23], the authors applied the monotone iterative method to study the following non-
linear Hadamard fractional differential equation complemented with nonlocal multipoint
discrete and Hadamard integral boundary conditions:

HD
ζω(z) + ϑ(z)g

(
z, ω(z)

)
= 0, z ∈ (1,∞), 2 < ζ 6 3,

ω(1) = ω′(1) = 0, HD
ζ−1ω(∞) = aHI

βω(ξ) + b

m−2∑
i=1

γiHD
βiω(ηi),

where a and b are real constants, 1 < ξ < η1 < η2 < · · · < ηm−2 < +∞, and γi,
i = 1, 2, . . . ,m − 2, are positive real constants. For some more results concerning the
Hadamard fractional differential equations on an unbounded domain, see, for example,
[4, 30].

It is well known that boundary value problems on the half-line formulate certain
situations arising from physics, chemistry, engineering, biology, and dynamical systems.
For example, the following problem

−ξ′′ + cξ′ + λξ = f
(
t, ξ(t)

)
, t ∈ (0,∞),

ξ(0) = 0, ξ(+∞) = 0
(1)

extends the classical Fisher–Kolmogorov model equation [9] when λ = 0. It is imperative
to mention that the generalized Fisher equation (1) arises in the modelling of the epidemi-
ological issues [17] and wave fronts in combustion theory [2]. In [7], a boundary value
problem on the half-line dealing with propagation of epidemics through given populations
is discussed via the generalized Fisher equation (1) when f(t, ξ(t)) = ξh(ξ). In [13], the
authors used Krasnosel’skiı̆–Guo fixed point theorem in a cone to investigate the existence
of positive solutions for the following second-order boundary value problem on the half-
line:

y′′(ω)− %2y(ω) +m(t)h
(
ω, y(ω)

)
= 0, ω ∈ (0,∞),

y(0) = 0, lim
ω→+∞

y(ω) = 0,
(2)

wherem and h are given functions, and % is a positive constant. Also, Djebali and Mebarki
[6] studied problem (2) by using the Krasnosel’skiı̆ and Leggett–Williams fixed point
theorems in cones.

In a more recent work [19], the authors investigated the existence of solutions for
a Hadamard fractional differential equation equipped with integro-intial data on an un-
bounded domain

HD
ζx(t) = g

(
t, x(t)

)
, t ∈ (1,∞),

lim
t→1

(log t)2−ζx(t) = lim
t→1

HD
ζ−1x(t) =

∞∫
1

k(s)x(s)
ds

s
,

where 1<ζ62, HDζ is the Hadamard fractional derivative of order ζ, g : (1,∞)×R→R
is continuous function, and k ∈ L1(1,∞).
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Inspired by the aforementioned work, in this paper, we introduce and investigate a new
class of Hadamard fractional differential equations with integral-multipoint boundary
conditions on a positive semiinfinite domain given by

−
(

1

p(ω)
HD

ζ+2x(ω)

)
+ %

(
1

p(ω)
HD

ζx(ω)

)
+ a(ω)G

(
ω, x(ω)

)
= 0,

HD
ζx(1) = 0, lim

ω→∞

1

p(ω)
HD

ζx(ω) = 0, lim
ω→1

(logω)2−ζx(ω) = λ,

lim
ω→∞HD

ζ−1x(ω) =

∞∫
1

k(s)x(s)
ds

s
+

m∑
i=1

γiHD
βix(ηi),

(3)

where HDζ is the Hadamard fractional derivative of order ζ ∈ (1, 2], βi ∈ (0, 1], γi > 0,
ω ∈ (1,∞), ηi ∈ (0,∞), i = 1, 2, . . . ,m, λ, % > 0 are two positive constants, G :
(1,∞) × R → R, p, a : (1,∞) → [1,∞) are continuous functions such that 0 <∫∞
1
p(s)/sds <∞, 0 <

∫∞
1
p2(s)/sds <∞, and k ∈ L1(1,∞) with

Ω1 = Γ(ζ) +

m∑
i=1

γiΓ(ζ)

Γ(ζ − βi)
(log ηi)

ζ−βi−1 > 0,

Ω2 = Ω1 −
∞∫
1

k(s)(log s)ζ−1
ds

s
> 0.

The key idea of the present work is to develop the existence theory for the proposed
problem. As a first result, we establish the existence of a unique solution to problem (3),
while the second one deals with the existence of its at least two positive solutions. The
application of these results is also discussed. We make use of the standard tools of the
fixed point theory (Banach’s contraction mapping principle and the fixed point index
theorem) to derive the desired results. However, we prove several subsidiary lemmas
before applying the chosen fixed point theorems. It is well known that the fixed point
technique is an effective and fruitful method for developing a variety of existence results
for boundary value problems under different criteria.

It is imperative to mention that much of the literature on Hadamard-type fractional
differential equations is concerned with bounded domains. Our objective in this study is to
solve a Hadamard fractional differential equation with integral-multipoint boundary con-
ditions on a positive semiinfinite domain. It is worthwhile to mention that the multipoint
and integral boundary conditions provide a more practical platform (than the one with
classical boundary conditions) to take into account the changes happening on nonlocal
positions and substrips within the domain or full domain of the given problem. The cou-
pling of integral and Hadamard-type multipoint boundary conditions in the formulation
of the given problem makes our study more interesting as one can obtain the results for
problem (3) subject to a purely integral condition by letting γi = 0, i = 1, 2, . . . ,m,
in the results of this paper. Here we emphasize that our proposed problem in the given
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configuration is novel and contribute usefully to the existing literature on Hadamard-type
fractional boundary value problems; see, for instance, [19, 23, 29].

In passing, we remark that the present study is motivated by the application of Ha-
damard fractional derivative operators in the study of Lomnitz logarithmic creep law,
fractional telegraph-type equations, probability [11], fractional relaxation models with
power law time-varying coefficients [10], fractional cumulative entropy [21], etc.

The rest of the manuscript is arranged as follows. Section 2 contains some basic
definitions and subsidiary results, while the main results (Theorems 1 and 2) are proven
in Section 3. Illustrative examples for the abstract results are presented in Section 4. Our
results in the given configuration are new and useful for further study on the topic.

2 Preliminaries

In this section, we present some preliminary concepts of fractional calculus related to our
work and establish an auxiliary lemma that plays a fundamental role in converting the
given problem into a fixed point problem.

Definition 1. (See [14].) The Hadamard derivative of fractional order ζ ∈ (n− 1, n] for
a function h : [1,∞) −→ R is defined as

HD
ζh(ω) =

1

Γ(n− ζ)

(
ω

d

dω

)n ω∫
1

(
log

ω

s

)n−ζ−1
h(s)

s
ds,

where n = [ζ] + 1, [ζ] denotes the integer part of the real number ζ, and log(·) = loge(·).

Definition 2. (See [14].) The Hadamard fractional integral of order ζ > 0 for a function
h is defined as

HI
ζh(ω) =

1

Γ(ζ)

ω∫
1

(
log

ω

s

)ζ−1
h(s)

s
ds,

provided the integral exists.

Lemma 1. (See [14].) If 0 < a <∞ and ζ, β > 0, then(
HI

ζ
a+

(
log

ω

a

)β−1)
(x) =

Γ(β)

Γ(β + ζ)

(
log

x

a

)β+ζ−1
,(

HD
ζ
a+

(
log

ω

a

)β−1)
(x) =

Γ(β)

Γ(β − ζ)

(
log

x

a

)β−ζ−1
.

In particular, (HD
ζ
a+(log(t/a))ζ−1)(x) = 0 when 0 < ζ < 1.

Next, we introduce the space X related to our work as follows:

X :=

{
x ∈ C(1,∞):

(logω)2−ζ

1 + (logω)σ+2
x(ω), σ > −1, is bounded on (1,∞)

}
,
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where C(1,∞) denotes the set of all continuous functions defined on (1,∞). For x ∈ X ,
we define the norm by

‖x‖X := sup
ω∈(1,∞)

(
(logω)2−ζ

1 + (logω)σ+2

∣∣x(ω)
∣∣).

It is easy to show that X endowed with the above norm is a real Banach space.

Remark 1. One can notice that the Banach space (X, ‖·‖X) is a weighted space, which
is defined to ensure the boundedness of solutions to the given problem on [1,∞). Observe
that the last term in (7) is unbounded at ω = 1 as 1 < ζ 6 2. Even the solution of the
form (logω)2−ζx(ω) may be unbounded on [1,∞), and thus, it needs to be scaled by
a multiplicative factor like 1/(1 + (logω)σ+2) with σ > −1. The assumption σ > −1 is
also required to keep the terms like logω/(1 + (logω)σ+2) bounded in our analysis for
ω ∈ [1,∞); see, for instance, (15).

Next, we consider the linear variant of (3):

−
(

1

p(ω)
HD

ζ+2x(ω)

)
+ %

(
1

p(ω)
HD

ζx(ω)

)
+ h(ω) = 0, ω ∈ (1,∞),

HD
ζx(1) = 0, lim

ω→∞

1

p(ω)
HD

ζx(ω) = 0,

(4)

where h : (1,∞)→ R+ is a given function such that
∫∞
1
h(s) ds/s <∞. Substituting

Z(ω) = − 1

p(ω)
HD

ζx(ω)

in (4), we obtain the following problem:

−Z ′′ + %Z = h(ω), ω ∈ (1,∞),

Z(1) = Z(∞) = 0.
(5)

The general solution of the homogeneous equation in problem (5) is c1e%(ω−1) +
c2e−%(ω−1). So we can take Z1(ω) = e−%(ω−1) and Z2(ω) = e%(ω−1) − e−%(ω−1) as
the solutions of the homogeneous equation satisfying the boundary conditions at ω =∞
and ω = 1, respectively. Hence, the Green’s function of problem (5) can be written as

K(ω, s) =
1

2
√
%

{
e−
√
%s(e

√
%ω − e−

√
%(ω−2)), 1 < ω 6 s <∞,

e−
√
%ω(e

√
%s − e−

√
%(s−2)), 1 < s 6 ω <∞.

Thus, problem (5) has a unique solution given by

Z(ω) =

∞∫
1

K(ω, s)h(s) ds.

Remark 2. By the straightforward calculation, we know thatK(ω, s) > 0 andK(ω, s) 6
1/(2
√
%) for all ω, s ∈ [0,∞).

https://www.journals.vu.lt/nonlinear-analysis
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Lemma 2. Suppose that Z : (1,∞) → R is a given function such that |Z(ω)| 6 M ,
where M > 0 and δ > −1. Then the solution of the following Hadamard fractional
differential equation with logarithmic-type integro-initial conditions

HD
ζx(ω) + Z(ω)p(ω) = 0, 1 < ζ < 2, ω ∈ (1,∞),

lim
ω→1

(logω)2−ζx(ω) = λ,

lim
ω→∞HD

ζ−1x(ω) =

∞∫
1

k(s)x(s)
ds

s
+

m∑
i=1

γiHD
βix(ηi)

(6)

is given by

x(ω) =

∞∫
1

Σ(ω, s)Z(s)p(s)
ds

s
+
λ(logω)ζ−1

Ω2

∞∫
1

k(s)(log s)ζ−2
ds

s

+ λ(logω)ζ−2, (7)

where
Σ(ω, s) = Σ1(ω, s) +Σ2(ω, s)

with

Σ1(ω, s) = Λ1(ω, s) +

m∑
i=1

γi(logω)ζ−1

Ω1
Λ2(ηi, s),

Σ2(ω, s) =
(logω)ζ−1

Ω2

∞∫
1

Σ1(ω, s)k(s)
ds

s
,

Λ1(ω, s) =
1

Γ(ζ)

{
(logω)ζ−1 − (log ω

s )ζ−1, 1 6 s 6 ω 6∞,
(logω)ζ−1, 1 6 ω 6 s 6∞,

and

Λ2(ηi, s) =
1

Γ(ζ − βi)

{
(log ηi)

ζ−βi−1 − (log ηi
s )ζ−βi−1, 1 6 s 6 ηi 6∞,

(log ηi)
ζ−1, 1 6 ηi 6 s 6∞.

Proof. As argued in [1], the solution of the Hadamard fractional differential equation
in (6) can be written as

x(ω) = −HIζZ(ω)p(ω) + c1(logω)ζ−1 + c2(logω)ζ−2 (8)

for some arbitrary constants c1, c2 ∈ R. By Hölder’s inequality, we have that∣∣∣∣∣(logω)2−ζ
ω∫

1

(
log

ω

s

)ζ−1
Z(s)p(s)

s
ds

∣∣∣∣∣
6M(logω)2−ζ

ω∫
1

(
log

ω

s

)ζ−1
p(s)

s
ds
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6M(logω)2−ζ

( ω∫
1

(
log

ω

s

)2ζ−2
ds

s

)1/2( ω∫
1

p2(s)

s
ds

)1/2

=
M√

2ζ − 1
(logω)3/2

( ω∫
1

p2(s)

s
ds

)1/2

→ 0 as t→ 1. (9)

Combining (8) and (9) with the condition limω→1(logω)2−ζx(ω) = λ, we find that
c2 = λ. By Lemma 1, we have

HD
ζ−1x(ω) = −

ω∫
1

Z(s)p(s)

s
ds+ c1Γ(ζ). (10)

Using (10) in the condition

lim
ω→∞HD

ζ−1x(ω) =

∞∫
1

k(s)x(s)
ds

s
+

m∑
i=1

γiHD
βix(ηi),

we get

c1 =
1

Ω1

{ ∞∫
1

Z(s)p(s)
ds

s
+

∞∫
1

k(s)x(s)
ds

s

+

m∑
i=1

γi
Γ(ζ − βi)

ηi∫
1

(
log

ηi
s

)ζ−βi−1
Z(s)p(s)

ds

s

}
,

where we used the fact that∣∣∣∣∣
∞∫
1

Z(s)p(s)

s
ds

∣∣∣∣∣ 6M
∞∫
1

p(s)
ds

s
.

Thus, by a straightforward calculation, we get

x(ω) = − 1

Γ(ζ)

ω∫
1

(
log

ω

s

)ζ−1
Z(s)p(s)

ds

s

+
(logω)ζ−1

Ω1

{ ∞∫
1

Z(s)p(s)
ds

s
+

∞∫
1

k(s)x(s)
ds

s

+

m∑
i=1

γi
Γ(ζ − βi)

ηi∫
1

(
log

ηi
s

)ζ−βi−1
Z(s)p(s)

ds

s

}
+ λ(logω)ζ−2

https://www.journals.vu.lt/nonlinear-analysis
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= − 1

Γ(ζ)

ω∫
1

(
log

ω

s

)ζ−1
Z(s)p(s)

ds

s

+
(logω)ζ−1

Ω1

{ ∞∫
1

Z(s)p(s)(s)
ds

s
+

∞∫
1

k(s)x(s)
ds

s

+

m∑
i=1

γi
Γ(ζ − βi)

ηi∫
1

(
log

ηi
s

)ζ−βi−1
Z(s)p(s)

ds

s

}
+ λ(logω)ζ−2

± (logω)ζ−1

Γ(ζ)

∞∫
1

Z(s)p(s)
ds

s

=

∞∫
1

Σ1(ω, s)Z(s)p(s)
ds

s
+

(logω)ζ−1

Ω1

∞∫
1

k(s)x(s)
ds

s
+ λ(logω)ζ−2.

Consequently,
∞∫
1

k(s)x(s)
ds

s
=

∞∫
1

k(ω)

∞∫
1

Σ1(t, s)Z(s)p(s)
ds

s

dω

ω

+
1

Ω1

∞∫
1

k(s)(log s)ζ−1
ds

s

∞∫
1

k(s)x(s)
ds

s

+ λ

∞∫
1

k(s)(log s)ζ−2
ds

s
.

Therefore,

x(ω) =

∞∫
1

Σ1(ω, s)Z(s)p(s)
ds

s
+

∞∫
1

Σ2(ω, s)Z(s)p(s)
ds

s

+
(logω)ζ−1

Ω1

∞∫
1

k(s)x(s)
ds

s
+ λ(logω)ζ−2,

which leads to the desired conclusion.

We need the following lemmas to prove our main results.

Lemma 3. The function Σ(ω, s) satisfies the following properties:

(i) Σ(ω, s) > 0 is a continuous function for ω, s ∈ (1,∞);
(ii) For ω, s ∈ (1,∞),

(logω)2−ζ

1 + (logω)σ+2
Σ(ω, s) 6

1

Ω2
;
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(iii) For any ϑ > 1 and s ∈ (1,∞),

min
η16ω6ϑη1

(logω)2−ζ

1 + (logω)σ+2
Σ(ω, s) >

m∑
i=1

γi(log η1)

Ω1(1 + (log ϑη1)σ+2)
Λ2(ηi, s).

Proof. We do not provide the proofs for (i) and (ii) as one can obtain them in a straight-
forward manner. To prove (iii), for ω, s ∈ (1,∞), we have

min
η16ω6ϑη1

(logω)2−ζ

1 + (logω)σ+2
Σ(ω, s)

= min
η16ω6ϑη1

(logω)2−ζ

1 + (logω)σ+2

{
Λ1(ω, s) +

m∑
i=1

γi(logω)ζ−1

Ω1
Λ2(ηi, s)

+
(logω)ζ−1

Ω2

∞∫
1

Σ1(ω, s)k(s)
ds

s

}

> min
η16ω6ϑη1

(logω)2−ζ

1 + (logω)σ+2

m∑
i=1

γi(logω)ζ−1

Ω1
Λ2(ηi, s)

>
m∑
i=1

γi(log η1)

Ω1(1 + (log ϑη1)σ+2)
Λ2(ηi, s). �

Lemma 4. The functions K(ω, s) satisfies the following property:

K(ω, s) > Π0K(s, s)e−
√
%s, ω ∈ [η1, ϑη1], s ∈ (1,∞),

Π0 = min
{

e−ϑη1
√
%, eη1

√
% − e−

√
%(η1−2)

}
.

Proof. By the definition of K(ω, s), for the case 0 < ω 6 s < ∞, since %1 < 0 < %2
and η1 6 ω 6 ϑη1, we get

0 < 1− e−2
√
%(s−1) 6 1, 0 < e−2

√
%(s−1) 6 1, (11)

e
√
%ω − e−

√
%(ω−2) > eη1

√
% − e−

√
%(η1−2),

and
K(ω, s)

K(s, s)
= e−

√
%s e
√
%ω − e−

√
%(ω−2)

1− e−2
√
%(s−1) > e−

√
%s
(
eη1
√
% − e−

√
%(η1−2)

)
. (12)

For the case 0 < s < ω <∞, it follows by (11) that

K(ω, s)

K(s, s)
=

e−
√
%ω

e−
√
%s

=
e−
√
%ωe−

√
%s

e−2
√
%s

> e−ϑη1
√
%e−
√
%s. (13)

Hence, from (12) and (13) we have the conclusion.
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3 Main results

This section is concerned with the existence results for problem (3). In view of Lemma 2,
we define an operator F : P → X by

Fx(ω) =

∞∫
1

Σ(ω, s)p(s)

∞∫
1

K(s, r)a(r)G
(
r, x(r)

)
dr

ds

s

+
λ(logω)ζ−1

Ω2

∞∫
1

k(s)(log s)ζ−2
ds

s
+ λ(logω)ζ−2,

where P ⊂ X is a cone given by P := {ξ ∈ X: ξ(ω) > 0, ω ∈ (1,+∞)}. We know that
the existence of fixed points of F in P are equivalent to the existence of positive solutions
to problem (3).

In the subsequent analysis, we need the following assumptions:

(G1) There exists a real positive function φ on (1,∞) with
∫∞
1
a(r)φ(r) dr < ∞

such that for all x, y ∈ R, ω ∈ (1,∞),∣∣∣∣G(ω, 1 + (logω)σ+2

(logω)2−ζ1
x(ω)

)
− G

(
ω,

1 + (logω)σ+2

(logω)2−ζ1
y(ω)

)∣∣∣∣∣
6 φ(ω)|x− y|;

(G2) There exists a number Υ such that %0 6 Υ < 1, ω ∈ (1,∞), where

%0 =
1

2Ω2
√
%

∞∫
1

p(s)
ds

s

∞∫
1

a(r)φ(r) dr.

Theorem 1. Suppose that G ∈ C((1,∞)×R,R) satisfies conditions (G1) and (G2) and
that there exists a number M > 0 such that |G(ω, x(ω))| 6 M . Then problem (3) has
a unique solution when %0 < 1 (%0 is defined in (G2)).

Proof. Let us set supω∈(1,∞) ‖G(ω, 0)‖ = Λ,

Q1 =
1

2Ω2
√
%

∞∫
1

p(s)
ds

s

∞∫
1

a(r) dr,

Q2 =
λ

Ω2

∞∫
1

k(s)(log s)ζ−2
ds

s
sup

ω∈(1,∞)

logω

1 + (logω)σ+2
,

Q3 = λ sup
ω∈(1,∞)

1

1 + (logω)σ+2
,

and choose ρ > |ω1Λ+ω2 +ω3|/(1−Υ ), where %0 6 Υ < 1. Introduce Bρ = {x ∈ X:
‖x‖X 6 ρ}. For any x ∈ Bρ and ω ∈ (1,∞), by the triangle inequality and (G1), we
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obtain ∣∣G(ω, x(ω)
)∣∣ =

∣∣∣∣G(ω, 1 + (logω)σ+2

(logω)2−ζ
(logω)2−ζ

1 + (logω)σ+2
x(ω)

)∣∣∣∣
6

∣∣∣∣G(ω, 1 + (logω)σ+2

(logω)2−ζ
(logω)2−ζ

1 + (logω)σ+2
x(ω)

)
− G(ω, 0)

∣∣∣∣
+
∣∣G(ω, 0)

∣∣
6 φ(ω)

(logω)2−ζ

1 + (logω)σ+2
|x|+ Λ 6 φ(ω)‖x‖X + Λ. (14)

Now, we will show that FBρ ⊂ Bρ. For any x ∈ Bρ, by Remark 2, Lemma 3(ii),
(G1), (G2), and (14), we have∥∥(Fx)

∥∥ 6 sup
ω∈(1,∞)

(logω)2−ζ

1 + (logω)σ+2

×

[ ∞∫
1

Σ(ω, s)p(s)

∞∫
1

K(s, r)a(r)
[
φ(r)ρ+ Λ

]
dr

ds

s

+
λ(logω)ζ−1

Ω2

∞∫
1

k(s)(log s)ζ−2
ds

s
+ λ(logω)ζ−2

]

6
1

2Ω2
√
%

∞∫
1

p(s)
ds

s

∞∫
1

a(r)φ(r) dr · ρ+
1

2Ω2
√
%

∞∫
1

p(s)
ds

s

∞∫
1

a(r) dr · Λ

+
λ

Ω2

∞∫
1

k(s)(log s)ζ−2
ds

s
sup

ω∈(1,∞)

logω

1+(logω)σ+2
λ sup
ω∈(1,∞)

1

1+(logω)σ+2

6
1

2Ω2
√
%

∞∫
1

p(s)
ds

s

∞∫
1

a(r)φ(r) dr · ρ+Q1Λ+Q2 +Q3

6 %0ρ+ (1− Υ )ρ 6 ρ. (15)

Therefore, ‖(Fx)‖ 6 ρ.
Next, we show that F is a contraction. For x, y ∈ X and ω ∈ (1,∞), it follows by

(G1) and (G2) that∥∥(Fx)− (Fy)
∥∥

6 sup
ω∈(1,∞)

(logω)2−ζ

1 + (logω)σ+2

×
∞∫
1

Σ(ω, s)p(s)

∞∫
1

K(s, r)a(r)
∣∣G(r, x(r)

)
− G

(
r, y(r)

)∣∣ dr ds

s
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6 sup
ω∈(1,∞)

(logω)2−ζ

1 + (logω)σ+2

∞∫
1

Σ(ω, s)p(s)

∞∫
1

K(s, r)a(r)φ(r)‖x− y‖X dr
ds

s

6
1

2Ω2
√
%

∞∫
1

p(s)
ds

s

∞∫
1

a(r)φ(r) dr t‖x− y‖X = %0‖x− y‖X ,

where %0 is given in (G2). Since %0 < 1, therefore F is a contraction. Hence, the assump-
tions of the contraction mapping principle are satisfied. This leads to the conclusion.

Lemma 5. Suppose that Q ⊂ X is a bounded set. Then Q is relatively compact in X if
the following conditions hold:

(i) (logω)2−ζx(ω)/(1 + (logω)σ+2) is equicontinuous on any compact interval of
(1,∞) for any x ∈ Q;

(ii) For any ε > 0, there exists a positive constant MQ > 0 such that∣∣∣∣ (logω1)2−ζx(ω1)

1 + (logω1)σ+2
− (logω2)2−ζx(ω2)

1 + (logω2)σ+2

∣∣∣∣ < ε ∀t1, t2 >MG , x ∈ Q.

Proof. The proof is similar to that of [9, Lemma 3.1] and is omitted.

We need the following lemmas to establish our next main result (Theorem 2).

Lemma 6. Suppose that the following condition hold:

(G3) G : (1,∞) × R → R is a continuous function with G(ω, x) ∈ X . Also, if x is
bounded, then G(ω, (1 + (logω)σ+2)x/(logω)2−ζ) be bounded on (1,∞).

Then the operator F : P → P is completely continuous.

Proof. We first establish that F is uniformly bounded in P . Let ∆ ⊂ X be bounded
subset, then by (G3) there exists a plosive constant ς0 such that ‖x‖ 6 ς0 for all x ∈ ∆.
Using (G3), we have

M̃ = sup

{
G
(
ω,

1 + (logω)σ+2

(logω)2−ζ
x

)
: (ω, x) ∈ (1,∞)× [0, ς0]

}
<∞.

For any x ∈ ∆, we get

G(ω, x) =

∣∣∣∣G(ω, 1 + (logω)σ+2

(logω)2−ζ
(logω)2−ζ

1 + (logω)σ+2
x

)∣∣∣∣ 6 M̃.

Consequently, by Remark 2, Lemma 3(ii), we have

‖Fx‖X 6 sup
ω∈(1,∞)

(logω)2−ζ

1 + (logω)σ+2

[
M̃

∞∫
1

Σ(ω, s)p(s)

∞∫
1

K(s, r)a(r) dr
ds

s

+
λ(logω)ζ−1

Ω2

∞∫
1

k(s)(log s)ζ−2
ds

s
+ λ(logω)ζ−2

]
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6 M̃
1

2Ω2
√
%

∞∫
1

p(s)
ds

s

∞∫
1

a(r) dr +
λ

Ω2

∞∫
1

k(s)(log s)ζ−2
ds

s

× sup
ω∈(1,∞)

logω

1 + (logω)σ+2
+ λ sup

ω∈(1,∞)

1

1 + (logω)σ+2

:= K.

Thus, ‖Fx‖X 6 K, and hence, F is uniformly bounded.
Next, we show that F is equicontinuous. Let ω1, ω2 ∈ (1,∞) with ω1 < ω2 and

x ∈ ∆. Then we obtain∣∣∣∣ (logω2)2−ζ

1 + (logω2)σ+2
(Fx(ω2)− (logω1)2−ζ

1 + (logω1)σ+2
(Fx(ω1)

∣∣∣∣
6 M̃

∞∫
1

∣∣∣∣ (logω2)2−ζ

1 + (logω2)σ+2
Σ(ω2, s)−

(logω1)2−ζ

1 + (logω1)σ+2
Σ(ω1, s)

∣∣∣∣
× p(s)

∞∫
1

K(s, r)a(r) dr
ds

s

+
λ

Ω2

∞∫
1

k(s)(log s)ζ−2
ds

s

[
logω2

1 + (logω2)σ+2
− logω1

1 + (logω1)σ+2

]

+ λ

[
1

1 + (logω2)σ+2
− 1

1 + (logω1)σ+2

]

6 M̃

∞∫
1

∣∣∣∣ (logω2)2−ζ

1 + (logω2)σ+2
Σ(ω2, s)−

(log t1)2−ζ

1 + (logω1)σ+2
Σ(ω1, s)

∣∣∣∣
× p(s)

∞∫
1

K(s, r)a(r) dr
ds

s

+
λ

Ω2

∞∫
1

k(s)(log s)ζ−2
ds

s

[
logω2

1 + (logω2)σ+2
− logω1

1 + (logω1)σ+2

]

+ λ

[
1

1 + (logω2)σ+2
− 1

1 + (logω1)σ+2

]

6 M̃

ω2∫
1

∣∣∣∣ (logω2)2−ζ

1 + (logω2)σ+2
Σ(ω2, s)−

(logω1)2−ζ

1 + (logω1)σ+2
Σ(ω1, s)

∣∣∣∣
× p(s)

∞∫
1

K(s, r)a(r) dr
ds

s
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+ M̃

∞∫
ω2

∣∣∣∣ (logω2)2−ζ

1 + (logω2)σ+2
Σ(ω2, s)−

(logω1)2−ζ

1 + (logω1)σ+2
Σ(ω1, s)

∣∣∣∣
× p(s)

∞∫
1

K(s, r)a(r) dr
ds

s

+
λ

Ω2

∞∫
1

k(s)(log s)ζ−2
ds

s

[
logω2

1 + (logω2)σ+2
− logω1

1 + (logω1)σ+2

]

+ λ

[
1

1 + (logω2)σ+2
− 1

1 + (logω1)σ+2

]

6 M̃

ω2∫
1

∣∣∣∣ (logω2)2−ζ

1 + (logω2)σ+2
Σ(ω2, s)−

(logω1)2−ζ

1 + (logω1)σ+2
Σ(ω1, s)

∣∣∣∣
× p(s)

∞∫
1

K(s, r)a(r) dr
ds

s

+ M̃

∞∫
ω2

∣∣∣∣∣ (logω2)2−ζ

1 + (logω2)σ+2

{
Λ1(ω2, s) +

m∑
i=1

γi(logω2)ζ−1

Ω1
Λ2(ηi, s)

+
(logω2)ζ−1

Ω2

∞∫
1

Σ1(ω2, s)k(s)
ds

s

}

− (logω1)2−ζ

1 + (logω1)σ+2

{
Λ1(ω1, s) +

m∑
i=1

γi(logω1)ζ−1

Ω1
Λ2(ηi, s)

+
(logω1)ζ−1

Ω2

∞∫
1

Σ1(ω1, s)k(s)
ds

s

}∣∣∣∣∣p(s)
∞∫
1

K(s, r)a(r) dr
ds

s

+
λ

Ω2

∞∫
1

k(s)(log s)ζ−2
ds

s

[
logω2

1 + (logω2)σ+2
− logω1

1 + (logω1)σ+2

]

+ λ

[
1

1 + (logω2)σ+2
− 1

1 + (logω1)σ+2

]

6 M̃

ω2∫
1

∣∣∣∣∣ (logω2)2−ζ

1 + (logω2)σ+2
Σ(ω2, s)−

(logω1)2−ζ

1 + (logω1)σ+2
Σ(ω1, s)

∣∣∣∣
× p(s)

∞∫
1

K(s, r)a(r) dr
ds

s
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+
M̃

Ω2

∞∫
ω2

∣∣∣∣ logω2

1 + (logω2)σ+2
− logω1

1 + (logω1)σ+2

∣∣∣∣∣p(s)
∞∫
1

K(s, r)a(r) dr
ds

s

+
λ

Ω2

∞∫
1

k(s)(log s)ζ−2
ds

s

[
logω2

1 + (logω2)σ+2
− logω1

1 + (logω1)σ+2

]

+ λ

[
1

1 + (logω2)σ+2
− 1

1 + (logω1)σ+2

]
.

Since ((logω)2−ζ/(1 + (logω)σ+2))Σ(ω, s) and logω/(1 + (logω)σ+2) are uniformly
continuous on any compact set [1, a0], so we get

∣∣∣∣ (logω2)2−ζ

1 + (logω2)σ+2
Fx(ω2)− (logω1)2−ζ

1 + (logω1)σ+2
Fx(ω1)

∣∣∣∣→ 0 as ω1 → ω2.

Hence, F is equicontinuous on [1, a0].
We now show that F is equiconvergence at∞. For ant x ∈ P , we obtain

lim
ω→∞

∣∣∣∣ (logω)2−ζ

1 + (logω)σ+2
Fx(ω)

∣∣∣∣ 6 M̃

Ω2
lim
ω→∞

∞∫
1

p(s)

∞∫
1

K(s, r)a(r) dr
ds

s
<∞.

Finally, we show that F is continuous. Let xn → x as n → ∞ in P . Hence, {x} is
bounded in P . Therefore, there exists a plosive constant ς1 such that ‖xn‖ 6 ς1 for all
x ∈ P . Using (G3), we have

M̃1 = sup

{
G
(
ω,

1 + (logω)σ+2

(logω)2−ζ
x

)
: (ω, x) ∈ (1,∞)× [0, ς1]

}
<∞.

So, by the argument similar to the one employed in (15), we get

∣∣∣∣ (logω)2−ζ

1 + (logω)σ+2
Fxn(ω)

∣∣∣∣ 6 M̃1

Ω2
lim
ω→∞

∞∫
1

p(s)

∞∫
1

K(s, r)a(r) dr
ds

s

+
λ

Ω2

∞∫
1

k(s)(log s)ζ−2
ds

s
sup

ω∈(1,∞)

logω

1 + (logω)σ+2

+ λ sup
ω∈(1,∞)

1

1 + (logω)σ+2

<∞.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


A new class of integral-multipoint boundary value problems 17

Consequently, it follows by the Lebesgue dominated convergence theorem and continuity
of G, K, and Σ that

∞∫
1

Σ(ω, s)p(s)

∞∫
1

K(s, r)a(r)G
(
r, xn(r)

)
dr

ds

s

→
∞∫
1

Σ(ω, s)p(s)

∞∫
1

K(s, r)a(r)G
(
r, x(r)

)
dr

ds

s
as n→∞.

Thus, we obtain∥∥(Fxn)− (Fx)
∥∥

6 sup
ω∈(1,∞)

(logω)2−ζ

1 + (logω)σ+2

×
∞∫
1

Σ(ω, s)p(s)

∞∫
1

K(s, r)a(r)
∣∣G(r, xn(r)

)
− G

(
r, x(r)

)∣∣dr ds

s

6 sup
ω∈(1,∞)

(logω)2−ζ

1 + (logω)σ+2

∞∫
1

Σ(ω, s)p(s)

∞∫
1

K(s, r)a(r)φ(r)‖xn − x‖X dr
ds

s

6
1

2Ω2
√
%

∞∫
1

p(s)
ds

s

∞∫
1

a(r)φ(r) dr ‖xn − x‖X → 0 as n→∞.

So, F is continuous, and by Lemma 5 we deduce that F is completely continuous.

Our next main result (Theorem 2) is based on a well-known fixed point index result
[15], which is stated below.

Lemma 7. (See [15].) Let X be a Banach space and P a cone in X . For ξ > 0, let
Bξ = {x ∈ X: ‖x‖X < ξ}. Suppose that F : Bξ → P is completely continuous such
that Fx 6= 0 for x ∈ ∂Bξ = {x ∈ X: ‖x‖X = ξ}.

(i) If ‖Fx‖X > ‖x‖X for x ∈ ∂Bξ, then i(F , Bξ,P) = 0;
(ii) If ‖Fx‖X 6 ‖x‖X for x ∈ ∂Bξ, then i(F , Bξ,P) = 1.

Now, we present our next main result.

Theorem 2. Let condition (G3) and the following conditions hold:

(G4) lim
x→0

min
ω∈(1,∞)

G(ω, 1+(logω)σ+2

(logω)2−ζ
x)

|x|
=∞;
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(G5) There exists a positive constant %1 > 0 such that

G
(
ω,

1 + (logω)σ+2

(logω)2−ζ
x

)
< m0%1 ∀ω ∈ (1,∞), x ∈ [0, %1],

where

Θ0 := m0
1

2Ω2
√
%

∞∫
1

p(s)
ds

s

∞∫
1

a(r) dr < 1;

(G6) There exists a positive constant %2 > %1 > 0 such that

G
(
ω,

1 + (logω)σ+2

(logω)2−ζ
x

)
> $%2 ∀ω ∈ (1,∞), x ∈ [%1, %2],

where

$ >

(
m∑
i=1

γi(log η1)

Ω1(1 + (log ϑη1)σ+2)

×
ϑη1∫
η1

Λ2(ηi, s)p(s)
ds

s

ϑη1∫
η1

Π0K(r, r)e−%2ra(r) dr

)−1
. (16)

Then problem (3) has at least two positive solutions x̂1 and x̂2 such that 0 < ‖x̂1‖X <
%1 < ‖x̂2‖X .

Proof. By Lemma 6, we have that F : P → P is completely continuous. By condi-
tion (G4), for any $ satisfying inequality (16), there exists R1 ∈ (0, %1) such that

G
(
ω,

1 + (logω)σ+2

(logω)2−ζ
x

)
> $|x|, ω ∈ (1,∞), 0 < |x| 6 R1.

Consequently, for ω ∈ [1,∞), we get

G(ω, x) = G
(
ω,

1 + (logω)σ+2

(logω)2−ζ
(logω)2−ζ

1 + (logω)σ+2
x

)
> $‖x‖X , (17)

0 < ‖x‖X = sup
ω∈(1,∞)

(
(logω)2−ζ

1 + (logω)σ+2

∣∣x(ω)
∣∣) 6 |x| 6 R1.

Let BR1 = {x ∈ P: ‖x‖X < R1}. Then, for any x ∈ ∂BR1 , from (17), Lemma 3(iii),
Lemma 4, and the fact Π0K(r, r)e−%2ra(r) > 0 we obtain∥∥Fx(ω)

∥∥
X

= sup
ω∈(1,∞)

(logω)2−ζ

1 + (logω)σ+2

[ ∞∫
1

Σ(ω, s)p(s)

∞∫
1

K(s, r)a(r)G
(
r, x(r)

)
dr

ds

s

+
λ(logω)ζ−1

Ω2

∞∫
1

k(s)(log s)ζ−2
ds

s
+ λ(logω)ζ−2

]
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> min
η16ω6ϑη1

(logω)2−ζ

1 + (logω)σ+2

[ ∞∫
1

Σ(t, s)p(s)

∞∫
1

K(s, r)a(r)G
(
r, x(r)

)
dr

ds

s

+
λ(logω)ζ−1

Ω2

∞∫
1

k(s)(log s)ζ−2
ds

s
+ λ(logω)ζ−2

]

> $R1

m∑
i=1

γi(log η1)

Ω1(1 + (log ϑη1)σ+2)

×
ϑη1∫
η1

Λ2(ηi, s)p(s)
ds

s

∞∫
1

Π0K(r, r)e−%2ra(r) dr

> $R1

m∑
i=1

γi(log η1)

Ω1(1 + (log ϑη1)σ+2)

×
ϑη1∫
η1

Λ2(ηi, s)p(s)
ds

s

ϑη1∫
η1

Π0K(r, r)e−%2ra(r) dr

> R1 = ‖x‖X . (18)

So, Lemma 7 implies that
i(F , BR1

,P) = 0. (19)

Let ρ1 < R2 < %2 and assume that BR2 = {x ∈ P: ‖x‖X < R2}. So, for any x ∈ BR2 ,
we obtain

0 6
(logω)2−ζ

1 + (logω)σ+2
x(ω) 6 R2

for ω ∈ (1,∞). Hence, assumption (G6) implies that

G(ω, x) = G
(
ω,

1 + (logω)σ+2

(logω)2−ζ
(logω)2−ζ

1 + (logω)σ+2
x

)
> $R2 (20)

for ω ∈ (1,∞). So, for any x ∈ ∂BR2 , by argument in (18), (17), Lemma 3(iii), and
Lemma 4, we obtain∥∥Fx(ω)

∥∥
X
> $R2

m∑
i=1

γi(log η1)

Ω1(1 + (log ϑη1)σ+2)

×
ϑη1∫
η1

Λ2(ηi, s)p(s)
ds

s

ϑη1∫
η1

Π0K(r, r)e−%2ra(r) dr

> R2 = ‖x‖X .

Thus, Lemma 7 implies that
i(F , BR2

,P) = 0. (21)
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Finally, set Bρ1 = {x ∈ P: ‖x‖X < ρ1}, where ρ1 < %1. So, for any x ∈ ∂Bρ1 , it
follows by (G5) that

‖Fx‖X < sup
ω∈(1,∞)

(logω)2−ζ

1 + (logω)σ+2

[
m0%1

∞∫
1

Σ(ω, s)p(s)

∞∫
1

K(s, r)a(r) dr
ds

s

+
λ(logω)ζ−1

Ω2

∞∫
1

k(s)(log s)ζ−2
ds

s
+ λ(logω)ζ−2

]

< m0%1
1

2Ω2
√
%

∞∫
1

p(s)
ds

s

∞∫
1

a(r) dr +
λ

Ω2

∞∫
1

k(s)(log s)ζ−2
ds

s

× sup
ω∈(1,∞)

logω

1 + (logω)σ+2
+ λ sup

ω∈(1,∞)

1

1 + (logω)σ+2

6 Θ0ρ1 +Q2 +Q3,

whereQ2 andQ3 are the same as defined in Theorem 1. Letting ρ1 > |Q2+Q3|/(1−Υ̃ ),
with Θ0 6 Υ̃ < 1, we have

‖Fx‖X < Θ0%1 + (1− Υ̃ )ρ1 6 ρ1 = ‖x‖X .

In consequence, Lemma 7 implies that

i(F , Bρ1 ,P) = 1. (22)

Since R1 < ρ1 < R2, therefore, it follows by the fixed point index (Lemma 7) and
(19)–(22) that

i(F , Bρ1 \BR1
,P) = i(F , Bρ1 ,P)− i(F , BR1

,P) = 1,

i(F , BR2
\Bρ1 ,P) = i(F , BR2 ,P)− i(F , Bρ1 ,P) = −1.

Thus, F has two fixed points x̂1 ∈ Bρ1 \BR1
and x̂2 ∈ BR2

\Bρ1 , which are the distinct
positive solutions to problem (3).

4 Application

Example 1. Consider the following Hadamard-type fractional boundary value problem:

−
(

1

p(ω)
HD

ζ+2x(ω)

)
+ 2

(
1

p(ω)
HD

ζx(ω)

)
=

e−2ω(logω)1/2

8(1 + (logω)2)
sin

|x(ω)|
1 + |x(ω)|

,

HD
ζx(1) = 0, lim

ω→∞

1

p(ω)
HD

ζx(ω) = 0, lim
ω→1

(logω)2−ζx(ω) = λ,

lim
ω→∞HD

ζ−1x(ω) =

∞∫
1

se−s

30
√

log s
x(s)

ds

s
+

1

2
HD

1/2x(e2) +
1

2
HD

3/4x
(
e2
)
.

(23)
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Here ω ∈ (1,∞), ζ = 3/2, a(ω) = e−ω , p(ω) = ωe−ω , k(ω) = ωe−ω/(30
√

logω),
γ1 = γ2 = 1/10, β1 = 1/2, β2 = 3/4, η1 = η2 = e2, m = 2, and % = 2. Choosing
σ = 0, it follows by direct calculations that∣∣∣∣G(ω, 1 + (log t)σ+2

(logω)2−ζ1
x(ω)

)
− G

(
ω,

1 + (logω)σ+2

(logω)2−ζ1
y(ω)

)∣∣∣∣ 6 e−ω

8
|x− y|

for all x, y ∈ R, ω ∈ (1,∞) with φ(ω) = e−ω/8. Moreover, we find that Ω1 ≈ 0.14943,
Ω2 ≈ 0.116102, and %0 ≈ 0.011755 < 1. Clearly, all the conditions of Theorem 1 are
satisfied. So, Theorem 1 yields that problem (23) has a unique solution on (1,∞).

Example 2. Consider the following boundary value problem for Hadamard fractional
differential equations:

−
(

1

p(ω)
HD

ζ+2x(ω)

)
+2

(
1

p(ω)
HD

ζx(ω)

)
=

e−ωexp{(logω)
1/2(x(ω))2

1+(logω)2 }(logω)1/2

8(1 + (logω)2)(1 + |x|)
,

HD
ζx(1) = 0, lim

ω→∞

1

p(ω)
HD

ζx(ω) = 0, lim
ω→1

(logω)2−ζx(ω) = λ,

lim
ω→∞HD

ζ−1x(ω) =

∞∫
1

se−s

30
√

log s
x(s)

ds

s
+

1

2
HD

1/2x(e2) +
1

2
HD

3/4x
(
e2
)
,

(24)

where ω ∈ (1,∞), ζ = 3/2, a(ω) = e−ω , p(ω) = ωe−ω , k(ω) = ωe−ω/(30
√

logω),
γ1 = γ2 = 1/10, β1 = 1/2, β2 = 3/4, η1 = η2 = e2, m = 2, and % = 2. Letting σ = 0
and %1 = 1, m0 = 1, and %1 = 2, we find by direct calculation that Θ0 ≈ 0.17372 < 1
and

lim
x→0

min
ω∈(1,∞)

G(ω, 1+(logω)2

(logω)1/2
x)

|x|
= lim
x→0

min
t∈(1,∞)

ex
2

8|x|(1 + |x|)
=∞.

Also,

G
(
ω,

1 + (logω)2

(logω)1/2
x

)
≈ 0.33978 < m0%1 ∀ω ∈ (1,∞), x ∈ [0, %1].

Moreover,

G
(
ω,

1 + (logω)2

(logω)1/2
x

)
> 0.11326174 ∀ω ∈ (1,∞), x ∈ [%1, %2],

and $ ≈ 0.5663 > 0.009665. Thus, the hypothesis of Theorem 2 holds true. Hence, by
the conclusion of Theorem 2, problem (24) has at least two positive solutions x̂1 and x̂2
such that 0 < ‖x̂1‖X < 1 < ‖x̂2‖X .

5 Conclusions

We discussed the existence of a unique solution and at least two positive solutions for
a new class of Hadamard fractional differential equations on an unbounded domain com-
plemented with integral-multipoint boundary conditions. The main tools of our study
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include the contraction mapping principle and the fixed point index theorem. The results
established in this study are new, useful and enrich the existing material on the topic. In
our future work, we plan to study a coupled system of Hadamard-type fractional differ-
ential equations of different orders on a half-line equipped with coupled and uncoupled
integral-multipoint boundary conditions.
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