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1 Introduction

The mathematical analysis of biomathematical systems, such as the reaction—diffusion
predator—prey system with prey-taxis, is an active and represents a novel area of explo-
ration. The word “taxis”, originated from the Greek language, refers to the response of
a living organism towards the environment in which it lives. It can be a motion in response
to an external stimulus, which can involve either approaching or distancing from it. Thus
the term “prey-taxis” describes a situation where a predator moves directly in response to
changes in the variation of the prey [1, 18].

Classical predator—prey models assume instantaneous interactions, but real-world pop-
ulations exhibit memory effects such as past food availability influencing predator be-
havior. Fractional-order derivatives provide a more accurate framework for modeling
these effects, offering greater flexibility and a more realistic description of population
dynamics. A model that describes the reaction—diffusion predator—prey system is given
in [18]. In this article, the first-order partial derivatives of the model have been replaced
by fractional-order derivatives. It involves two unknown functions, » and v, that denote
the population density of prey and predator, respectively. The vector z lies in the bounded
domain {2 C R™ with smooth boundary 9¢2. This model also includes parameters related
to the intrinsic growth and death rates of the predator as well as a bifurcation parameter x.
The —xV(vVu) denotes the prey-taxis term. Crandall-Rabinowitz’s bifurcation theory
suggests that all of the remaining coefficients are positive constants. This model was
first established by [1], and its properties have been investigated by many researchers;
see, for example, [6, 17]. There are numerous readings available that analyze the non-
linear mathematical model describing the reaction—diffusion predator—prey system; see
[4,5,7,12,13,19, 23,24, 29, 30, 37]. However, there is little research available on the
aforementioned model incorporating prey-taxis. From a biological perspective, fractional
derivatives are particularly useful for constructing mathematical models. By incorporating
fractional-order derivatives, dynamic systems can effectively capture hereditary properties
and memory effects, which are fundamental features of many biological processes; see
[3,16,26,33].

The primary goal is to obtain the exact solutions for the mentioned model. These kinds
of nonlinear mathematical models can be solved using various techniques. For instance,
one can see [8-10, 14, 15,20,22,25,27,28,31,32,34,35] for more information. Here we
apply the ¢%-model expansion method for finding the exact solutions. This method has
been chosen because the obtained solutions are Jacobi elliptic functions whose modulus
approaches 0 or 1, resulting in hyperbolic or trigonometric solutions.

Our paper is organised as follows: Section 2 discusses the problem statement as
well as the existence and uniqueness of its solution. Many important results of fixed
point theory have been implemented for this kind of analysis. Section 3 describes the
methodology. The methodology given in this section has been applied to the said model,
and solutions have been obtained, which are presented in Section 4. The interpretation
and simulations of the solutions are presented and discussed in Section 5. These graphical
depictions are elucidated as periodic kink solutions, periodic solitary, symmetric peri-
odic and periodic waves, and dark solitons. These types of solutions frequently arise in
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mathematical models of biological processes, including neural activity, cellular transport,
population dynamics, and cardiovascular flows.

2 Problem statement

The reaction—diffusion predator—prey model [18] involving fractional-order derivative
(0 < a < 1)is given by

0%*u u cuv
— =d;A 1—— |Ju— ——
oo~ “‘LT( K)“ m+bu’

@ Becuv
ot~ m+bu’

ey
= dyAv — xV - (vVu) — av +

Since V-V = A, it can be written as follows:
6L — d @ + @ +r 1— ﬁ u — cuv
ot~ "\ ox2 T 9y2 K m+bu’

@_d @_’_8721} _ @@—l—@aj—i-v @_’_827” (2)
ot~ o2 T 82) " N\ ozar " oy oy 9z2 " ay?

Beuv

IS

In the above model, x € {2 C R™ and ¢t > 0. The population density of prey and
predator is denoted by u and v, respectively. The diffusion rates of the prey and predator
are denoted by d; and ds, respectively. The intrinsic growth rate of the prey and the
mortality rate of the predator are denoted by 7 and a, respectively.

The main goal is to acquire exact solutions and the simulations of the model described
above. We will apply the ¢® methodology to find its exact solutions.

Existence results. The existence and uniqueness of the solutions of model (1) (without
fractional derivative) and the initial conditions u(0,z) = wug(x), v(0,2) = vo(x) have
been investigated in [1,21]. The only difference is that our purposed model is a fractional
order with @ € (0,1]. Since 1 — @ < n (= 2), a weak singularity exists and thus the
integral is bounded. Therefore, the prior knowledge and weak singularity imply that the
solutions exist and are unique.

The fixed point reduction and unique existence results related to fractional-order non-
linear PDEs; one can see the literature [2, 11].

3 Methodology

Consider the two unknown functions as u(x,y;t) and v(x,y;t). The partial derivatives
with respect to the independent variables z, y, and ¢, including both first and higher-order
derivatives, are: Uy, Uy, U, Vg, Uy, Vi, Uz, Vzas Uyy, Vyys Uzy, Vzy, and so on.

Let F'(u, v, Uy, Vg, Uy, Uy, Ut, Vs, Ugg, Uga, - - -) be a polynomial. We obtain a nonlin-
ear partial differential equation if we set this polynomial equal to zero.

https://www.journals.vu.lt/nonlinear-analysis
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The following steps describe the ¢ methodology.
By assuming £ = ki1 + koy — (v/a)t®, u(z,y;t) = U(E), and v(x, y;t) = V(£),
we obtain a nonlinear ordinary differential equation

GU, v, u. v, u"v", ...)=0.
Let

2N ) 2N .
UE©) =Y sg'(€), V(€)=Y tg"®),
=0 1=0

where s; and t; are the constants that need to be evaluated first. The function g*(¢) satisfies
the following equations for real numbers fo, fo, f4, fo:

9%(€) = fo + f202 (&) + f29*(&) + fe9°(€),
9" (&) = f29(&) + 2f29°(€) + 3fs9°(£).

Equation (3) has the solution

3)

9(&) = &)
V() + 17

provided that the denominator is a real number. The function ¢(§) is the solution of the
Jacobian elliptic equation; for details, see [36].

q” = ji + j20°(€) + jaq* (€),

where j;, ¢ = 1,2, 3, are constants with their specific values provided in reference [34].
The values for the constants h and [ are provided as follows:

b fa(j2 — f2)
(J2 — f2)? + 3j1js — 2j2(j2 — f2)’
| 371fa

(2 — f2)? 4 3j1J3 — 272(j2 — f2)
under the constraint conditions?
filG2 = f2)[950ja — (G2 — f2) (242 + f2)] + 3fs[3d0ja — (45 — f3)]” = 0.

A lot of literature exists that discusses limiting values and multiple exact solutions using
¢% method: for instance, one can refer to [34].

4 Utilization of the approach and obtained solutions

By introducing the transformation £ = kix + koy — (y/a)t®, we express u(z,y;t) as
U(€) and v(x, ;) as V(€).

2The solution of a partial differential equation must satisfy the PDE and the additional conditions as well.
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Since 9%u/0t* = —~T(a))dUdE, the ordinary differential equations corresponding
to (2) are

rb 3 m 2 ! /

?U —r|b— Ve U —rmU + UV —mT'(a)U" — AT (a)bUU
—mdy (k] + k3)U" — bdy (k3 + k3)UU” =0, )

amV —mAL(a)V' — dom (ki + k3) V" — iy T()V'U — bds (ki + k3)V"'U
+mx (kT + k3)U'V' +bx (k? + k3)U'V'U + mx (ki + k3)VU"
+ xb(k} + k3)VUU" + abUV — BcUV = 0. (5)

Using the homogeneous balance principle, we get N = 1 for both equations. Equa-
tions (4) and (5) have the following solutions:

U(€) = so + s19(&) + s29°(8), V(&) =to + t19(§) + t2g° (). (6)
After completing tedious calculations, we have so =ty =51 =t1 =0. Thus (6) reduces to
- 7> () L P©)
U = sy i VO = by

By choosingr =1,7=0.5, K =0.5,¢c= 0.8, a = 0.005, m» = 1, b = 0.003, 8 = 0.3,
di =dy = 1,f4=8,f6 =5,k =4, ko 21,f0:22,f2 =12, we got

S9 = 348.3437368, —111.0064432.

For sy = 348.3437368, we get to = 3351.897195 — 0.43602302741'2 (), and for sy =
—111.0064432, we get to = 1226.898862 + 0.019949577650'%(r). We simulate the
family of solutions by choosing o = 0.4, 0.7, or 0.9.

By considering the different values of j1, j2, and j5 and evaluating the ¢(£) at limiting
values 0 and 1, the following family of solutions has been obtained.

Case 1. The following possibilities arise if j; = 1, jo = —(1 + n?), and j3 = n?.

(@) ¢(&) = sn(§). By considering n — 0 and n — 1, we obtain the following
solutions, respectively:

-2 . 9
Vool = SQ}%’ Vo () = tthiSrIE(S)—H
and
tanh’(€) tanh?(¢)
Ua(€) = Vi () =t

Sg———————, _—
*htanh?(€) + 1 ?htanh®(€) + 1

(b) q(&) = cd(&). By letting m — 0, we obtain the following solutions:

cos?(€) cos®(§)

Ug,0)(€) = 52 cos?(6) + 1 = hcos(6) + 1

Vi2,0)(§)

https://www.journals.vu.lt/nonlinear-analysis
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Case 2. The following possibilities arise if we consider j; = 1 — n?, j, = 2n? — 1,
and j3 = —n?. It yields ¢(¢) = cn(€). Now, by taking the limiting values n — 0 and
n — 1, respectively, We obtain the following solutions:

cos®(¢)

_ cos?(§)
-2 hcos2(&) + 17

Us.0(€) = hcos?(6) 11

Vis,0)(&)

and
sech?(€)

sech?(€)
2 sech2(€) + 1’

Us,(€) = ?hsech®(€) + 1

Vis(§) =t

Case 3. If j1=n? —1, jo=2—n?, and j3=—1, we can express ¢(£) as ¢(£) =dn(&).
Upon taking the limit as n — 1, we derive the following results:

sech? ©) sech? €3
U, =S5, . Vi =l N T
1) (8) = s2 hsech?(€) 1 1 (a8 =12 hsech®(€) +1
Case 4. Assuming that j; =n?, jo = —1 — n?, and j3 = 1, we can express ¢(£) as
q(&) =ns(§). Now, by considering n — 0 and n — 1, respectively, solutions are as follows:
csc2 ©) csc? (&)
U, =Sy Vi = hes() 11
(5,0)(§) SQhCSCZ(g) vk 5.0)(&) zhcscz(f) +1
and
coth? ©) coth2(§)
U, =S——s ), Vi =l RO 1
e RN G P o

Case 5. Consider j; = —n?, jo = 2n? — 1, and j3 = 1 — n?. The function ¢(£) can
be expressed as nc(£). Now, by considering n — 0 and n — 1, respectively, we derive
the following outcomes:

sec?(€) sec?(€)
U = §g— V =ty
6,0)(§) 52 e (€) +1 6,0)(§) 2hrsec?(6) 11
and
cosh? (&) cosh? (&)
U —gg— TSy =y,
©6.1)(&) SzhcoshQ(g) "y (6,1)(&) 2 cosh?(€) 11
Case 6. Assume that j; = —1, jo = 2 — n?, and j3 = —(1 — n?). In this case,

it follows that ¢(¢) equals nd(&). Now, taking the limiting cases as n — 0, we obtain
nd(¢) =1, and as n — 1, we obtain nd(§) = cosh(&), respectively.

Case 7. Assume that j; = 1, jo = 2 — n?, and j3 = 1 — n?. The function ¢(¢) can
be expressed as (£). Now, by considering n — 0 and n — 1, respectively, we obtain the
following solutions:

tan?(€)

tan?(€) _y
*htan?(€) + 1

U(?,O) (5) = SQW(O*F

Viz,0)(6)
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and
sinh?(¢)

. h2
82m, V(7,1)(§) =1 = (5)

U, - _ SIS
) * hsinh?(€) + 1
Case 8. Suppose j; = 1, jo = 2n? — 1, and j3 = —n?(1 — n?). Then we have
q(§) = sd(€). Now, by taking the limiting cases n — 0 and n — 1, respectively, we
derive the following outcomes:

sin”(€)

sin?(¢)
P sin(€) + 1

U0 (&) = m

Vis,0)(§) = t2

and
sinh?(¢)

sinh?(€)
P sinh2(6) + 1

U(S,l)(f) = 2hsiT(§)+l.

V(8,1)(§) =t

Case 9. Assuming that j; = 1 —n?, j, = 2 — n?, and j3 = 1, we can express ¢(£)
as cs(€). Now, by considering n — 0 and n — 1, respectively, we obtain the following
solutions:

cot?(€) cot?(€)
U LA TR ity )
0.0/(8) "2 cot?(€) + 1 008 *heot?(¢) + 1
and
esch?(€) esch?(€)
U, —sp—— )y, —tg——
(&) =2y ow(©) =te3 e 11
Case 10. Consider j; = fn2(1 — n2), jo = 2n% — 1, and j3 = 1. The function

q(§) can be expressed as ds(£). Now, by taking the limiting cases n — 0 and n — 1,
respectively, we obtain the following solutions:

2 2
Voo (€) = SziLch:Z(f))H’ Vii0,0)(§) = tzhc(s:zg(g)ﬂ
and
csch?(€) csch?(€)
U(lo,l)(f) = V(lo,l)(f) =

Sg——e S tg—— S
“heseh®(€) +1 “hesch®(€) + 1

Case 11. Consider j; = (1 — n?)/4, jo = (1 + n?)/2, and j3 = (1 — n?)/4.
The function ¢(§) can be expressed as nc(€) £ sc(§). Alternatively, we can write it as
en(€)/(1 £sn(€)). Now, by taking the limiting cases n — 0 and n — 1, respectively, we
obtain the following solutions:

Uni,0)(&) = s201(8), Vi11,0)(§) = t261()

or

Unz2,0)(§) = s202(8), Vi12,0)(§) = t2¢2(§),

https://www.journals.vu.lt/nonlinear-analysis
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where
b1(6) = 1+ 2tan(§)(tan(€) £ sec(§))
! h + 2htan(€) (tan(€) & sec(€)) + 1
and
ba(€) = cos”(£)

~ hcos?(€) +I(1 £5sin(€))?”

Case 12. Assume that j; = (1 — n?)2/4, jo = (1 +n?)/2, and j3 = —1/4. We can
express ¢(§) as men(€) + dn(§). Now, by considering n — 0 and n — 1, respectively,
we obtain the following solutions:

(mcos(€) £ 1)2
h(mecos(§) £1)2+1°

(mcos(§) £1)2
h(mcos(§) £1)2+1

Uns,0)(§) = s2

Vi13,0)(§) = t2

and
Uz, (&) = s203(8), Viis,)(§) = tads(§),
where
(msech(€) + sech(€))?
h(msech(€) +sech(€))2 +1°

Case 13. Assume that j; = 1/4, jo = (1 — 2n?)/2, and j3 = 1/4. Then we have
q(&) = sn(€)/(1 £ cn(€)). Now, by considering n — 0 and n — 1, respectively, we
obtain the following solutions:

$3(§) =

sin?(€)

hsin®(€) + 1(1 + cos(€))?’
sin?(8)

hsin®(€) +1(1 + cos(€))?2

U14,0) = s2

Vi14,0)(§) = t2

and
Una,1)(§) = s204(8), Viaa,1)(§) = t204(8),
where
tanh?(¢)
B htanh?(€) + I(1 4 sech(€))2
Case 14. Consider j; = 1/4, jo = (1 +n?)/2, js = (1 — n?)?/4. Then we have

q(&) = sn(§)/(en(§) £+ dn(€)). Now, by taking the limiting cases n — 0 and n — 1,
respectively, we obtain the following solutions:

$a(§)

sin®(€)
“hsin?(€) + I(1 £ cos(€))?’
. sin”(£)
hsin®(€) +1(1 = cos(€))?2

Uns,0) (&) =s

Vs, () =t

Nonlinear Anal. Model. Control, 30(4):732-746, 2025
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and

Unis,1)(&) = s205(8), Viis,1)(€) = tads(§),
where
7 tanh?(€)
" htanh?(€) + I(sech(€) + sech(€))?

¢5(8)

Remark. In the limit as n — 0, periodic wave solutions emerge, while as n — 1, solitary
wave solutions can be observed.

5 Simulations

The following section showcases simulations of the derived solutions. The y-dimension
is maintained at a constant value, and the specifics are outlined as follows:

e Figure 1, y = 0.1. It emerges the periodic kink solution.

e Figure 2, y = 1. The figure shows the periodic solitary wave for o = 0.4, 0.7 and
the periodic wave solutions for o = 0.9.

e Figure 3, y = 1. Dark solitons are depicted in the provided figure.

e Figure 4, y = 1. In this plot, we have displayed a periodic wave for & = 0.4 and
symmetric periodic waves for « = 0.7 and 0.9.

e Figure 5, y = 0.5. It represents the periodic kink solution.

6 Conclusion

In this research work, we have focused on a system of nonlinear partial differential
equations, which is drawn from existing literature. Our investigation primarily revolves
around establishing the existence, uniqueness, and exact solutions for this system. Specif-
ically, the partial differential equations we have chosen belong to the realm of reaction—
diffusion models, which describe predator—prey dynamics in the presence of prey-taxis.
Importantly, we have introduced a fractional-order element into this model by employing
the linear operator D, where 0 < o < 1. To unravel exact solutions, we have effectively
applied the ¢° technique.

Upon conducting simulations and analyzing the results, our study has yielded a diverse
range of graphical representations. These graphical depictions are elucidated below:

o Periodic kink solutions: Figs. 1 and 5 exhibit compelling evidence of periodic kink
solutions, which are prominent patterns in our findings.

e Periodic solitary, symmetric periodic, and periodic waves: Fig. 2 showcases the
presence of periodic solitary waves and other periodic wave solutions, which offer
valuable insights into the system’s behavior. Symmetric periodic wave solutions
have been displayed in Fig. 4.

e Dark solitons: in Fig. 3, we have visually depicted dark solitons.

This diverse set of graphical representations underscores the richness and complexity of
solutions in our fractional-order predator—prey model with prey-taxis.

https://www.journals.vu.lt/nonlinear-analysis
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Figure 2. Surface and contour representations of v(z, y; t) at « = 0.4, 0.7, 0.9 in Case 1.
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(b)a=0.9

(a)a=04

Figure 3. Surface and contour representations of u(x, y; t) at « = 0.4, 0.9 in Case 5.
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Figure 4. Surface and contour representations of u(x, y; t)
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Figure 5. Surface and contour representations of v(x, y; t) at « = 0.4, 0.7, 0.9 in Case 7.
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