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Abstract. Although traditional network-based models also explore higher-order interactions, they
are limited in capturing the complex impacts of multibody interactions, making it difficult to
characterize the reinforcement effect in rumor propagation. With this in mind, firstly, this study
introduces the simplicial complexes, a higher-order mathematical tool, to model rumor propagation.
Secondly, the fractional-order derivatives are employed to more accurately capture the memory
effect and anomalous diffusion phenomenon in the rumor propagation process under higher-order
interactions. Then propagation thresholds and the existence of model solutions are investigated.
Moreover, the proposed model exhibits bistability, and the Hopf bifurcation is analysed by choosing
time delay as the threshold. Numerical simulations suggest that fractional-order rumor spreading
models with higher-order interactions are more consistent with actual data than network-based
models and integer-order models.
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1 Introduction

Rumors, a typical type of misinformation, are easy to believe because of their seductive
and inflammatory content. Stepping into the new media era, people can spread rumors ex-
plosively with the help of online devices, resulting in even worse negative consequences.
Dynamic modeling of rumor propagation is an essential method for conducting theoretical
research. Through qualitative and quantitative analysis of the proposed model dynamics,
we can analyze the process of rumor propagation, reveal rumor patterns, predict trends,
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explore the causes and critical factors of rumor outbreak and diffusion, and then provide
the theoretical basis for prevention and control decisions.

By introducing the compartmental model in infectious diseases into rumor modeling,
the classical DK model was proposed [6], pointing the way to the study of rumor dynam-
ics. Drawing on their pioneering work, various novel compartmental models were applied
to elucidate the roles played by different groups in rumor spreading such as SEIR [36],
SIAR [21], SIQR [14], ILSR [23]. Besides, some individual and social factors are also
gradually introduced into rumor modeling such as forgetting mechanism [34], hesitating
mechanism [25], self-purification mechanism [30], rumor-refuting mechanism [33], and
multilingual environment [24]. But the above models are all integer-order model, which
cannot characterize the anomalous spread of rumors, i.e., rumors spread explosively in the
early stages and slow down significantly in the later stages. Besides, the memory effect is
crucial in rumor spreading as individuals often recall and share previous information,
and this affects the pattern of rumor spreading. Note that the fractional-order model
cannot only capture abnormal diffusion behaviours and describe more accurately how
rumors spread and propagate in social networks, but also reflect the memory effect of
the propagation process and provide a better understanding of how past events, historical
information, and previous states can affect rumor propagation. Given this, Shu [19] first
used fractional-order differential equations to model rumor propagation for studying the
memory effect. Some other exploration of fractional-order rumor spreading models are
shown in [20, 26, 32]. Furthermore, since the time-sensitive nature of rumors and the
lag effect in the transmission process, time delay is also an essential factor in accurately
analysing the mechanism of rumour spreading [10, 29]. Time delays are ubiquitous in
various systems, significantly affecting their dynamics and stability such as control sys-
tems [3, 4], Turing phenomenon [12], and information diffusion [18, 28]. While there is
still less literature on exploring the influence of time delay on rumor spreading dynamics
using fractional-order models. Combining the real existence of propagation delay and
recovery delay, this study will establish a fractional-order rumor propagation model with
double time delays to discuss the propagation process in more detail.

Additionally, the above models ignore the topology in the underlying social net-
works. These models only appropriately portray propagation in small-scale social net-
works; however, they become infeasible in large-scale interaction networks. With the rise
of complex networks, researchers have gradually started to pay attention to the effect
of the topological nature of social networks on the propagation process. Zanette [31]
first applied complex network theory to the study of rumor propagation by modeling
rumor propagation on small-world networks and discovered the existence of rumor prop-
agation queues. Subsequently, Moreno et al. [13] investigated the dynamics of rumor
propagation in scale-free networks, comparing computer simulations with conclusions
drawn through stochastic analysis methods. Many scholars have studied the propagation
dynamics behavior of rumors on complex networks from different perspectives, benefiting
from the advantages of complex networks in describing the process of rumor propagation
[5, 15, 17].

In fact, the rumor model based on complex networks still has shortcomings in portray-
ing rumor diffusion on social networks, as demonstrated by difficulty in capturing higher-
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order interactions, limited ability to handle heterogeneity, difficulty in modeling overlap-
ping communities, inability to capture multiple relationships, and so on. For example,
individual is not only influenced by neighboring nodes in the rumor spreading process,
but also by neighboring nodes as a whole, which is manifested as the Goebbels effect
and the conformity effect [35] in rumor spreading. Noting the advantages of hypergraphs
and simplicial complexes in representing higher-order interactions, some scholars have
applied them to the modeling of complex systems such as infectious disease transmission
[2] and transportation networks [1]. For instance, Jhun et al. established a simplicial SIS
model in scale-free uniform hypergraphs, finding that there has a hybrid transition while
the strength of hub effect changes in [11]. However, there are few papers that model rumor
spreading via higher-order mathematical tools—hypergraphs or simplicial complexes.
Thus, it is imperative to further explore the propagation dynamics of rumors under higher-
order interactions in depth. Meanwhile, to our knowledge, there is a gap in combining
fractional-order and higher-order interactions to analyse rumor propagation dynamics. To
that end, under the framework of higher-order interactions, this study will bridge these
points by building a simplicial SIRS fractional-order rumor propagation model to explore
rumor propagation mechanism. The main contributions of this paper are summarized as
follows.

1. A novel rumor spreading model is proposed by applying the modeling methods of
fractional derivatives and simplicial complexes, which overcomes the limitations
of pairwise interactions and integer-order models in capturing more complex dy-
namics.

2. The combined effects of propagation and recovery delays are analyzed within
a fractional-order rumor propagation model, providing a more comprehensive un-
derstanding of the dynamic behavior of rumor spreading.

3. The discovery of the bistable phenomenon induced by higher-order interactions
enriches the theoretical research on rumor propagation dynamics.

This paper is in the following organization. The rumor propagation model with higher-
order interactions is portrayed in Section 2. In Sections 3.1 and 3.2, the dynamics of
delayed-free and delayed systems are discussed, respectively. In Section 4, the feasibility
of theoretical results is verified by numerical simulation. In Section 5, the excellence of
the proposed model is demonstrated by comparing with a real case. Some conclusions are
represented in Section 6.

2 Model instruction

Definition 1. (See [26].) The Caputo’s fractional derivative of order α (0 < α < 1) of
function g(t) : [t0,+∞)→ C is defined by

C
0D

α
t g(t) =

1

Γ(1− α)

t∫
t0

g′(τ)

(t− τ)α
dτ, t > t0,

in which Γ(·) is the gamma function.
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Figure 1. Geometric diagrams of 1-dimensional and 2-dimensional simplex.

Figure 2. State transition in rumor diffusion with paired and high-order interactions.

According to the classical DK model, we divide the crowd in social networks into
three categories, namely I-state, S-state, and R-state, where I-state represents ignorant
individuals who have not yet heard the rumor; S-state represents spreaders who know and
disseminate the rumor; R-state represents removed individuals who know the rumor but
lose interest in spreading it [6].

To better present the description of the rumor propagation process, we first clarify the
geometric meaning of the simplex. 1-simplex represents the connected edges between two
points, i.e., a connected structure in an ordinary graph, which is a low-order interaction.
2-simplex represents not only the edges between two nodes but also a triangle formed by
three nodes together, shown as Fig. 1. We call the interaction between multiple individuals
a higher-order interactions. Here we use simplex-based propagation to portray higher-
order interactions. Suppose there are three interrelated individuals, one of whom is an
ignorant individual, and the other two are spreaders. The probability of the ignorant
becoming a spreader increases under the influence of these two spreaders, a situation that
can be perfectly described by the 2-simplex, i.e., the higher-order interaction in Fig. 2.

The parameter ξ1 denotes the strengthening factor based on the 1-simplex propa-
gation. Since the topological structure of 1-simplex propagation is the same as that of
pairwise propagation, no additional reinforcement effect is generated. For this reason, we
assume that ξ1 = 1. ξ2 is the strengthening factor based on the 2-simplex propagation.
η is the probability of the ignorant individuals becoming the latter after exposure of the
ignorant individuals to the spreaders. A and d denote the emigration and migration rates,
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respectively. δ is the probability of becoming an removed individual due to one’s own loss
of interest or after finding out the truth. σ is the probability that the removed individual
becomes an ignorant individual again due to forgetting effect. αij and αij1j2 stand for the
connection of individuals. If they form a 1-simplex, we have αij=1, otherwise, αij=0. If
they form a 2-simplex, we have αij1j2=1, otherwise, αij1j2=0.

We assume that the total number of individuals is N . We regard each individual i
(i = 1, 2, . . . , N ) as a node and the communication relations among individuals as the
edges in the topological structure. Let Ii(t), Si(t), and Ri(t) represent the probabili-
ties that individual i is in the ignorant state, spreading the rumor, and removed state,
respectively, at time t. When a 1-simplex structure is formed between individual i and
individual j, that is, aij 6= 0, and if one of them is a rumor spreader and the other is
an ignorant individual, then the ignorant individual will turn into a rumor spreader with
probability η. If a 2-simplex structure is formed among individual i and j1, j2, that is,
aij1j2 6= 0, and both j1 and j2 are rumor spreaders, then the ignorant individual i will be
affected by the high-order interaction shown in the dashed box at the bottom of Fig. 2,
and thus will turn into a rumor spreader with probability η ξ2. The Caputo’s fractional
derivative of order α (0 < α < 1) is utilized to capture the memory effect and anomalous
diffusion during the rumor propagation process. Specifically, the equations C

0D
α
t Ii(t),

C
0D

α
t Si(t), and C0D

α
t Ri(t), describe the rate of change of the states of ignorant individuals,

spreaders, and removed individuals over time.
Based on the above description and Fig. 2, we can establish a SIRS rumor spreading

model from the individual perspective as follows:

C
0D

α
t Ii(t) = A− ηIi(t)

[
ξ1

N∑
j=1

αijSj(t) + ξ2
∑
j1,j2

αi,j1,j2Sj1(t)Sj2(t)

]
− dIi(t) + σRi(t),

C
0D

α
t Si(t) = ηIi(t)

[
ξ1

N∑
j=1

αijSj(t) + ξ2
∑
j1,j2

αi,j1,j2Sj1(t)Sj2(t)

]
− dSi(t)− δSi(t),

C
0D

α
t Ri(t) = δSi(t)− dRi(t)− σRi(t)

(1)

with the initial conditions Ii(0) > 0, Si(0) > 0, Ri(0) > 0, i = 1, 2, . . . , N .

Remark 1. Note that when ξ2 = 0, rumors can only spread through the connecting edge
between two nodes in the social network. Therefore, model (1) is an extension of the
previous model based on simple graphs. In this paper, ξ2, as the enhancement factor,
should take a value greater than one to fit the realistic context.

Model (1) can help us to understand the based-simplex rumor propagation form in the
framework of the proposed model. Nextly, we assume that every individual in the system
interacts uniformly with all other individuals. Under this assumption, the specific con-
nection details between individuals can be ignored, and the dynamics of the system can
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be described by the average connection strength. Therefore, 〈k〉 and 〈k∆〉 representing
the global average connection states replace the specific connection parameters αij and
αij1j2 , respectively. 〈k∆〉 is the number of triangles formed by each individual through
2-simplex on average, 〈k〉 is the average degree in complex networks. Then the following
mean-field model can be obtained:

C
0D

α
t I(t) = A− ηI(t)

[
〈k〉S(t) + ξ2〈k∆〉S2(t)

]
− dI(t) + σR(t),

C
0D

α
t S(t) = ηI(t)

[
〈k〉S(t) + ξ2〈k∆〉S2(t)

]
− dS(t)− δS(t),

C
0D

α
t R(t) = δS(t)− dR(t)− σR(t).

(2)

Remark 2. Compared with reference [22] that only takes into account the propagation
delay in higher-order rumor spreading, this research innovatively incorporates both the
propagation delay and the recovery delay into the higher-order rumor propagation model.
This improvement is of great significance because it can more precisely mirror the real
situation. Specifically, the model captures both the time delay from receiving to spreading
rumor and the time for spreaders to lose interest or change behavior, thus allowing for
a more comprehensive grasp of the rumor propagation dynamics.

Remark 3. There already exist some fractional-order rumor models [19, 20, 26, 32].
However, these models omit the time-delay effects in the process of rumor spreading. In
this paper, model (2) considers the impact of both propagation delay and recovery delay
on rumor diffusion, making the model more in line with real-world propagation scenarios.

3 Theoretical analysis

In this section, we will attend to the dynamical behavior of model (2). Obviously, model
(2) is equivalent to the following system by decoupling I-state:

C
0D

α
t S(t) = η

(
1− S(t)−R(t)

)[
〈k〉S(t) + ξ2〈k∆〉S(t)2

]
− dS(t)− δS(t),

C
0D

α
t R(t) = δS(t)− dR(t)− σR(t).

(3)

Firstly, we give propagation thresholds as well as discuss the existence of equilibrium
of model (3). Apparently, model (3) has a rumor-free equilibrium E0 =(S0, R0)=(0, 0).
Then R0 = η〈k〉/(δ + d) can be acquired by the next generation matrix method [8].

Remark 4.

R0 =
η〈k〉
δ + d

< 1 ⇐⇒ η < ηc =
δ + d

〈k〉
;

R0 > 1 ⇐⇒ η > ηc.

We are concerned about the existence of the rumor-prevailing equilibrium E∗ =
(S∗, R∗) of model (3), which is equivalent to whether the following equation has positive
solutions in the interval (0,min(1, (d+ σ)/δ)]:

h(S∗) = M1S
∗2 +M2S

∗ +M3 = 0, (4)
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where
M1 = ηξ2〈k∆〉(δ + d+ σ),

M2 = η〈k〉(δ + d+ σ)− (d+ σ)ηξ2〈k∆〉,
M3 =

[
(δ + d)− η〈k〉

]
(d+ σ).

Define the two positive solutions of Eq. (4) as S∗1 = (−M2 +
√
∆)/(2M1) and

S∗2 = (−M2 −
√
∆)/(2M1) when ∆ > 0. It is obvious that Eq. (4) has a positive

solution S∗1 when η > ηc. We invert ξ2 by ∆ = (M2)2 − 4M1M3 = 0 and bring
ηc to obtain a new propagation threshold ξc2 = (δ + d + σ)〈k〉/((d + σ)〈k∆〉). Thus,
for ξ2 6 ξc2, Eq. (4) does not have a positive solution if η < ηc. Then we analyze the
situation where ξ2 > ξc2. To this end, we have the another propagation threshold η0 =
4ξ2〈k∆〉(d+ σ)(δ + d)(d+ δ + σ)/([〈k〉(d+ σ + δ) + ξ2〈k∆〉(d+ σ)]2) from ∆ = 0
when ξ2 > ξc2. According to the expressions of η0 and ηc, we can easily derive η0 < ηc

in a situation where ξ2 > ξc2. Moreover, we have the following equivalent expressions in
that case:

η0 < η < ηc ⇐⇒ ∆ > 0;

η = η0 ⇐⇒ ∆ = 0;

0 < η < η0 ⇐⇒ ∆ < 0.

Hence, it can be obtained that model (3) admits two rumor-prevailing equilibria E∗1 =
(S∗1 , δ/(d + σ)S∗1 ) and E∗2 = (S∗2 , δ/(d + σ)S∗2 ) if η0 < η < ηc, where E∗1 = E∗2 if
η = η0.

3.1 Dynamics of delayed-free system

Next, we will provide the stability of the delayed-free system to set the stage for dis-
cussing the effect of time delays on the stability of the system.

Theorem 1. The rumor-free equilibriumE0 is locally asymptotically stable whenR0 < 1
and unstable when R0 > 1.

Proof. We calculate the Jacobian matrix of model (3) at E0 and then derive its character-
istic equation as (λα+d+σ)[λα−(η〈k〉−(δ+d))] = 0. Clearly, both eigenvalues satisfy
| arg(λi)| > π/2 > απ/2 (i = 1, 2) if η < ηc. Thus, the rumor-free equilibrium E0 is
locally asymptotically stable if R0 < 1 based on the Routh–Hurwitz criteria. Similarly,
E0 is unstable if R0 > 1.

Theorem 2. The rumor-prevailing equilibrium E∗1 = (S∗1 , δ/(d + σ)S∗1 ) is locally
asymptotically stable when R0 > 1 and (ηδ〈k〉)2 < 4ηξ2〈k∆〉(d + σ)2(η〈k〉 + σ − δ).
The rumor-prevailing equilibrium E∗2 = (S∗2 , δ/(d+ σ)S∗2 ) is never stable.

Proof. First, the Jacobian matrix of model (2) at E∗1 is

J(E∗1 ) =

(
−η〈k〉S∗1 + η〈k∆〉ξ2S∗1 (1− 2S∗1 − δ

d+σS
∗
1 ) −η〈k〉S∗1 − η〈k∆〉ξ2S∗21

δ −(d+ σ)

)
.

Nonlinear Anal. Model. Control, 30(4):747–770, 2025
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Accordingly, we have

det
(
J(E∗1 )

)
=

√
M2

2 − 4M1M3(
√
M2

2 − 4M1M3 −M2)

2M1

and

tr
(
J(E∗1 )

)
= −ηξ2〈k∆〉(S∗1 )2 + η〈k〉 δ

d+ σ
S∗1 +

(
δ − σ − η〈k〉

)
, g(S∗1 ).

It is possible to conclude that det(J(E∗1 )) > 0 according to η > ηc. Besides, we can
get tr(J(E∗1 )) < 0 by the assumption (ηδ〈k〉)2 − 4ηξ2〈k∆〉(d+ σ)2(η〈k〉+ σ− δ) < 0.
Therefore, the rumor-prevailing equilibrium E∗1 is locally asymptotically stable for
η > ηc, that is, R0 > 1 when the assumption is hold.

Likewise, we can get det(J(E∗2 )) and J(E∗2 ). Following from the existence condition
of rumor-prevailing equilibrium E∗2 , that is, ξ2 > ξc2 and η0 < η < ηc, we can draw that
0 <
√
∆ < −M2. Thus, we have det(J(E∗2 )) < 0, suggesting that model (3) has positive

roots, i.e., E∗2 is never stable.

Remark 5. From Theorems 1 and 2, the higher-order interactions have no effect on the
stability of the rumor-free equilibrium, but make a difference in the stability of the rumor-
prevailing equilibrium.

Remark 6. It can be inferred that model (2) will exhibit a bistable state when η ∈ [η0, ηc].

3.2 Dynamics of delayed system

Influenced by various real-world factors, individuals cannot spread rumors immediately
after acquiring spreadability, and it takes time for spreaders to verify the information after
gaining debunking information, leading them not to stop spreading rumors immediately
either, so it is reasonable to introduce propagation time delay and recovery time delay into
model (2). τ1 represents the time lag between an individual becoming aware of the rumor
and starting to spread it. In real life, when people receive information, they may need time
to verify and understand it before deciding to spread it. The recovery time delay τ2 refers
to the time it takes for a spreader to stop spreading the rumor after realizing its inaccuracy
or losing interest. This could be due to the spreader finding reliable refuting information
or simply forgetting about the rumor. Then we get the following delayed rumor spreading
model:

C
0D

α
t I(t) = A− ηI

(
t− τ1

)[
〈k〉S

(
t− τ1

)
+ ξ2〈k∆〉S

(
t− τ1

)2]
− dI(t) + σR(t),

C
0D

α
t S(t) = ηI

(
t− τ1

)[
〈k〉S

(
t− τ1

)
+ ξ2〈k∆〉S

(
t− τ1

)2]
− dS(t)− δS(t− τ2),

C
0D

α
t R(t) = δS

(
t− τ2

)
− dR(t)− σR(t).

(5)

Noting that the rumor-prevailing equilibrium E∗2 is always unstable, thus we should
consider only the effect of time delay on the rumor-prevailing equilibrium E∗1 . In this
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section, we select the propagation time delay τ1 and the recovery time delay τ2 as
bifurcation parameters. The bifurcation result caused by time delay is divided into four
cases to discuss, which will be elaborated separately by the following four theorems.

We provide two symbols for the description of the following theorem:

B2
2 =

[
(d+ δ)(d+ σ)

]2
and

B2
4 = (S∗1 )2

{
(d+ σ)

[
η〈k〉 − η〈k∆〉ξ2

(
1− 2S∗1 −

δ

d+ σ
S∗1

)]
+ δ
(
η〈k〉+ η〈k∆〉ξ2S∗1

)}2

.

Theorem 3. If τ1 > 0, τ2 = 0, and (B2)2 < (B4)2, the rumor-prevailing equilibrium
E∗1 is locally asymptotically stable when τ1 ∈ [0, τ1

01) and unstable when τ1 > τ1
01.

Model (5) with

τ1 = τ1
01 = min

k=0,1,...

{
1

w1

[
arccos

(
−C1C3 − C2C4

C2
1 + C2

2

)
+ 2kπ

]}
undergoes a Hopf bifurcation at the rumor-prevailing equilibrium point E∗1 .

Proof. For this purpose, we calculate the Jacobian matrix at the rumor-prevailing equilib-
rium point E∗1 :

J1(E∗1 ) =

(
[−η〈k〉+ η〈k∆〉ξ2(1− 2S∗1 − δ

d+σS
∗
1 )]S∗1e−sτ

1 − (d+ δ) QS∗1e−sτ
1

δ −(d+ σ)

)
,

where Q = −(η〈k〉+ η〈k∆〉ξ2S∗1 ). This yields the following characteristic equation:

s2α +B1s
α +B2 +B3s

αe−sτ
1

+B4e−sτ
1

= 0, (6)

where

B1 = 2d+ δ + σ, B2 = (d+ δ)(d+ σ),

B3 =

[
η〈k〉 − η〈k∆〉ξ2

(
1− 2S∗1 −

δ

d+ σ
S∗1

)]
S∗1 − d− δ,

B4 = S∗1 (d+ σ)

[
η〈k〉 − η〈k∆〉ξ2

(
1− 2S∗1 −

δ

d+ σ
S∗1

)]
+ δ
(
η〈k〉+ η〈k∆〉ξ2S∗1

)
S∗1 .

Suppose that Eq. (6) has a pure imaginary root s = iw1 and w1 > 0, it follows that

(iw1)2α +B1(iw1)α +B2 +B3(iw1)αe−iw1τ
1

+B4e−iw1τ
1

= 0.
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Then separating the real and imaginary parts yields(
B3w

α
1 cos

απ

2
+B4

)
cos τ1w1 +B3w

α
1 sin

απ

2
sin τ1w1

= B2 +B1w
α
1 cos

απ

2
+ w2α

1 cosαπ,

B3w
α
1 sin

απ

2
cos τ1w1 −

(
B3w

α
1 cos

απ

2
+B4

)
sin τ1w1

= w2α
1 sinαπ +B1w

α
1 sin

απ

2
.

Let

C1 =

(
B3w

α
1 cos

απ

2
+B4

)
cos τ1w1,

C2 = B3w
α
1 sin

απ

2
,

C3 = w2α
1 cosαπ +B1w

α
1 cos

απ

2
+B2,

C4 = w2α
1 sinαπ +B1w

α
1 sin

απ

2
.

Thus, we have sin τ1w1 = (C1C4 − C2C3)/(C2
1 + C2

2 ), cos τ1w1 = (−C1C3 − C2C4)/
(C2

1 + C2
2 ). According to sin2 w1τ

1 + cos2 w1τ
1 = 1, we can see that there is a positive

real root w1 if B2
2 < B2

4 . Then the bifurcation point can be expressed as

τ1
01 = min

k=0,1,...

{
τ1
k

}
= min
k=0,1,...

{
1

w1

[
arccos

−C1C3 − C2C4

C2
1 + C2

2

+ 2kπ

]}
.

Next, by taking the derivative of τ1 on both sides of Eq. (6), we obtain

ds

dτ1

∣∣∣∣
s=iw1, τ1=τ1

01

=
E1 + iE2

F1 + iF2
,

where

E1 = w1

[
B4 sinw1τ

1
0 +B3w

α
1 sin

(
w1τ

1
0 −

απ

2

)]
,

E2 = w1

[
B4 cosw1τ

1
0 +B3w

α
1 cos

(
w1τ

1
0 −

απ

2

)]
,

F1 = wα1

[
2αwα−1

1 sinαπ + αB1w
−1
1 sin

απ

2
+ αB3w

−1
1 sin

απ

2
− w1τ

1
0

−B3w
−1
1 τ1

0 cos

(
απ

2
− w1τ

1
0

)]
−B4τ

1
0 cosw1τ

1
0 ,

F2 = wα1

[
2αwα−1

1 cosαπ + αB1w
−1
1 cos

απ

2
+ αB3w

−1
1 cos

(
απ

2
− w1τ

1
0

)
−B3w

−1
1 τ1

0 sin

(
απ

2
− w1τ

1
0

)]
−B4τ

1
0 sinw1τ

1
0 .
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Then we have Re(ds/dτ1|τ1=τ1
01, w=w1

) = (E1F1 + E2F2)/(F 2
2 + F 2

1 ) 6= 0 under the
condition E1F1 + E2F2 > 0, which suggests that a Hopf bifurcation will occur at τ1 =
τ1
01, w = w1.

Theorem 4. If τ1 = 0, the rumor-prevailing equilibrium E∗1 is locally asymptotically
stable when τ2 ∈ (0, τ2

01) and unstable when τ2 > τ2
01. Model (5) undergoes a Hopf

bifurcation at the rumor-prevailing equilibrium point E∗1 when

τ2 = τ2
01 = min

k=0,1,...

{
τ2
k

}
= min
k=0,1,...

{
1

w2

[
arccos

−D1D3 −D2D4

D2
1 +D2

2

+ 2kπ

]}
,

where

D1 = w2α
2 cos(απ)− (B1 +B4)wα cos

απ

2
+B2B4,

D2 = sin(απ)w2α
2 − wα(B1 +B4) sin

απ

2
,

D3 = wα2B2 cos
απ

2
−B2(B4 −B3), D4 = wαB2 sin

απ

2
.

Proof. The proof is similar to that of Theorem 3 and is therefore omitted.

Theorem 5. If τ1 ∈ T ∗1 = {τ1 = τ̃1, 0 < τ̃1 < τ1
01}, the rumor-prevailing equilibrium

E∗1 is locally asymptotically stable when 0 < τ2 < τ2
02 and unstable when τ2 > τ2

02.
Model (5) undergoes a Hopf bifurcation at the rumor-prevailing equilibrium point E∗1
when

τ2 = τ2
02 = min

k=0,1,...

{
1

w3

[
arccos

−L1L3 − L2L4

L2
1 + L2

2

+ 2kπ

]}
.

Proof. Analogously, we get the characteristic equation at E∗1 for this case as

s2α +H1s
α +H2e−sτ̃

1

+H3e−sτ
2

+H4e−sτ̃
1

e−sτ
2

= 0, (7)

where H1 = 2d + σ, H2 = (d + σ + sα)B3, H3 = δ(d + σ + sα), H4 = B5 =
δ(η〈k〉 + η〈k∆〉ξ2S∗1 )S∗1 . Suppose that Eq. (7) has a pure imaginary root s = iw3 and
w3 > 0, then

(iw3)2α +H1(iw3)α +
(
d+ σ + (iw3)α

)[
e−iw3τ̃

1

+ δe−iw3τ
2]

+H4e−iw3τ̃
1

e−iw3τ
2

= 0.

Separating the real and imaginary parts, we get

L1 cos τ2w3 + L2 sin τ2w3 = −L3,

L2 cos τ2w3 − L1 sin τ2w3 = −L4,

where

L1 = δB5 cosw3τ̃
1 + wα4 δ cos

απ

2
+ δ(d+ σ),

L2 = wα4 δ sin
απ

2
− δB5 sinw4τ̃

1,
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L3 = w2α
3 cosαπ + wα3 (2d+ σ) cos

απ

2
+ cosw3τ̃

1B3

[
wα3 cos

απ

2
+ (d+ σ)

]
+B3w

α
3 sin

απ

2
sinw3τ̃

1,

L4 = w2α
3 sinαπ + wα3 (2d+ σ) sin

απ

2
− sinw3τ̃

1B3

[
wα3 cos

απ

2
− (d+ σ)

]
+B3w

α
3 sin

απ

2
cosw3τ̃

1.

Hence, sin τ2w3 = (L1L4 − L2L3)/(L2
1 + L2

2) and cos τ2w3 = (−L1L3 − L2L4)/
(L2

1 + L2
2).

From Eq. (7), we obtain

ds

dτ2

∣∣∣∣
w=w3, τ2=τ2

01

=
M1 + iM2

M3 + iM4
,

where

M1 = δwα+1
3 sin

(
w3τ

2
02 −

απ

2

)
+ w3δ(d+ σ) sinw3τ

2
02 + w3B5 sin

(
w3τ

2
02+w3τ̃

1
)
,

M2 = δwα+1
3 cos

(
w3τ

2
02 −

απ

2

)
+ w3δ(d+ σ) cosw3τ

2
02 + w3B5 cos

(
w3τ

2
02+w3τ̃

1
)
,

M3 = 2αw2α−1
3 sinαπ + (2d+ σ)αwα−1

3 sin
απ

2

+ cosw3τ̃
1

[
−τ̃1B3w

α
3 cos

απ

2
− (d+ σ)τ̃1B3 +B3α sin

απ

2

]
− sin τ̃1

[
τ̃1B3w

α sin
απ

2
+B3α cos

απ

2

]
− τ2

02δ(d+ σ) cosw3τ
2
02

− τ2
02δw

α
3 cos

(
w3τ

2
02 −

απ

2

)
+ δα sin

(
απ

2
− w3τ

2
02

)
−
(
τ̃1 + τ2

02

)
B5 cos

(
w3τ

2
02 + w3τ̃

1
)
,

M4 = −2αw2α−1
3 cosαπ − (2d+ σ)αwα−1

3 cos
απ

2

+ sinw3τ̃
1

[
τ̃1B3w

α
3 cos

απ

2
+ (d+ σ)τ̃1B3 −B3α sin

απ

2

]
− cos τ̃1

[
τ̃1B3w

α sin
απ

2
+B3α cos

απ

2

]
+ τ2

02δ(d+ σ) sinw3τ
2
02

+ τ2
02δw

α
3 sin

(
w3τ

2
02 −

απ

2

)
− δα cos

(
απ

2
− w3τ

2
02

)
+
(
τ̃1 + τ2

02

)
B5 sin

(
w3τ

2
02 + w3τ̃

1
)
.

In order to get the conditions of the Hopf bifurcation, we suppose (M1M3 +M2M4)/
(M2

3 + M2
4 ) 6= 0. Then the transversality condition Re(ds/dτ2|τ=τ2

02, w=w3
) 6= 0
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holds. Therefore, we can denote τ2
02 = mink=0,1,...{(1/w3)[arccos(−L1L3 − L2L4)/

(L2
1 + L2

2) + 2kπ]}. Then Eq. (7) has a purely imaginary root iw3. Thus, there is a Hopf
bifurcation when τ2 crosses τ2

02.

Theorem 6. If τ2 ∈ T ∗2 = {τ2 = τ̃2, 0 < τ̃2 < τ2
01}, the rumor-prevailing equilibrium

E∗1 is locally asymptotically stable when τ1 ∈ (0, τ1
02) and unstable when τ1 > τ1

02.
Model (5) undergoes a Hopf bifurcation at the rumor-prevailing equilibrium point E∗1
when

τ1 = τ1
02 = min

k=0,1,...

{
1

w4

[
arccos

−P1P3 − P2P4

P 2
1 + P 2

2

+ 2kπ

]}
,

where

P1 = δB5 cosw4τ̃
2 − wα4B3 cos

απ

2
− δ(d+ σ),

P2 = −wα4B3 sin
απ

2
− δB5 sinw4τ̃

2,

P3 = w2α
4 cosαπ + wα4 cos

απ

2
(2d+ σ) + cosw4τ̃2

[
wα4 cos

δαπ

2
+ δ(d+ σ)

]
+ δwα sin

απ

2
sinw4τ̃

2,

P4 = w2α
4 sinαπ + wα4 sin

απ

2
(2d+ σ)− sinw4τ̃2

[
wα4 cos

δαπ

2
− δ(d+ σ)

]
+ δwα sin

απ

2
cosw4τ̃

2.

Proof. Suppose (ReQReK + ImQ ImK)/(Re2K + Im2K) 6= 0, where Q and K are
expressed as

Q(s) = B3s
α+1e−sτ

1

+B3(d+ σ)se−sτ
1

+ sB5e−sτ
1

e−sτ̃
2

,

K(s) = 2αs2α−1 + (2d+ σ)αsα−1

− e−sτ
1[
τ1B3

(
sα + d+ σ

)
− αsα−1

]
+ e−sτ̃

2[
−τ̃2δ

(
sα + d+ σ

)
+ δαsα−1

]
−
(
τ1 + τ̃2

)
B5e−sτ̃

2

e−sτ
1

.

Then Theorem 6 can be proved by using a similar method as in Theorem 5, and the proof
process is omitted here.

Remark 7. Unlike the rumor propagation model with higher-order interactions in [22],
which only identifies a single Hopf bifurcation triggered by time delays, our model detects
two Hopf bifurcations triggered by time delays. This indicates that our model can capture
more complex dynamic behaviors and bifurcation phenomena in rumor spreading, thereby
providing a more comprehensive understanding of the evolution of rumors under the
influence of time delays.
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Next, we compare the above delay-free system and delayed system in terms of theoret-
ical results, modeling significance and application scenarios to gain a better understanding
of the model differences.
Theoretical results. In the delayed-free system, the model focuses on the immediate
interactions and transitions among the states of individuals without considering the time
lags. This allows for a relatively straightforward analysis of the basic equilibrium and
stability conditions, as presented in Theorems 1 and 2. The stability of the rumor-free and
rumor-prevailing equilibria can be determined based on the values of parameters such as
the basic reproduction numberR0 and certain conditions related to the interaction factors.
However, introducing propagation and recovery time delays in the delayed system, the
model becomes more complex. The time delays introduce a dynamic element that can
change the stability behavior of the equilibria. As demonstrated in Theorems 3–6, the
presence of time delays can cause the rumor-prevailing equilibrium E∗1 to change from
stable to unstable and trigger Hopf bifurcations under specific conditions. This indicates
that the time delays have a significant impact on the long-term behavior and oscillation
patterns of the rumor spreading process.
Modeling significance and application scenarios. The delay-free system is crucial for
grasping the basic dynamic behavior of the rumor spreading model without time lag
effects. It helps clarify the influence of parameters like the basic reproduction number
and interaction strength on rumor spreading, providing a simple framework for analyz-
ing equilibrium stability and basic trends through decoupling the I-state and deriving
characteristic equations. In contrast, the delayed system better reflects the real world
where information dissemination and spreader behavior have time delays. It can explain
oscillation and instability in rumor spreading, offering more accurate predictions and
a deeper understanding of rumor development trends, thus possessing stronger practical
application value in analyzing and forecasting rumor evolution in real social networks.

3.3 Model promotion

In reality, an ignorant individual may have L (L > 2) communicators spreading rumors
to him or her, and the larger L the more likely the ignorant individual is to be a communi-
cator, which is reflected in the Bandwagon effect and Goebbels effect formed by multiple
individuals in communication. Therefore, considering higher-dimensional simplex-based
propagation, model (5) can be generalized as

C
0D

α
t I(t) = A− ηI

(
t− τ1

)[
〈k〉S

(
t− τ1

)
+ ξl

L∑
l=2

〈kl〉S
(
t− τ1

)l]
− dI(t) + σR(t),

C
0D

α
t S(t) = ηI

(
t− τ1

)[
〈k〉S

(
t− τ1

)
+ ξl

L∑
l=2

〈kl〉S
(
t− τ1

)l]
− dS(t)− δS(t− τ2),

C
0D

α
t R(t) = δS

(
t− τ2

)
− dR(t)− σR(t),
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where 〈kl〉 is the number of l-dimensional geometric entity formed by each individual
through l-simplex on average, ξl shows the strengthening effect based on the l-simplex
propagation.

Remark 8. Note that the more spread individuals an individual is exposed to, the stronger
the enhancement factor should be. Therefore, we assume ξli 6 ξlj when li < lj . In
addition, for 〈kli〉 and 〈klj 〉, there is no such assumption about li < lj according to the
real cases in [9, 16].

Remark 9. The propagation based on l-simplex works if and only if l neighbor nodes
of an ignorant individual are all spreaders, however, the probability of this occurrence is
small when l is large. Therefore, we will not carry out theoretical analysis here.

4 Numerical simulation

In this section, the validity of the theoretical results and the applicability of the proposed
model are confirmed by choosing appropriate parameters for numerical simulation and
fitting real cases. We utilized Matlab 2023b for the numerical simulations.

Example 1. Let α = 0.9, A = d = 0.01, ξ2 = 1.59, η = 0.59, δ = 0.79, σ =
0.69, 〈k∆〉 = 〈k〉 = 2. Then we get R0 = 0.725 < 1. From Fig. 3(a), E0 is locally
asymptotically stable, which is consistent with Theorem 1.

Example 2. Let α = 0.9, A = d = 0.01, ξ2 = 1.59, η = 0.59, δ = 0.79, σ = 0.69,
〈k∆〉 = 〈k〉 = 2. Then we getR0 = 1.475 > 1 and (ηδ〈k〉)2−4ηξ2〈k∆〉(d+σ)2(η〈k〉+
σ − δ) ≈ −3.1 < 0. In this case, it can be seen from Fig. 3(b) that E∗1 is locally
asymptotically stable.

Remark 10. Note that the stability of the rumor-prevailing equilibrium after adding
higher-order interactions no longer depends only on the basic reproduction number R0

but also requires some additional conditions reflecting higher-order interactions.

Example 3. Let α = 0.9, A = d = 0.01, ξ2 = 3.59, η = 0.59, δ = 0.79, σ =
0.99, 〈k∆〉 = 〈k〉 = 2, τ2 ≡ 0. Then we can get τ1

01 ≈ 5.25, and the values of τ1 in
Figs. 4(a) and 4(b) are 1.5 and 14, respectively. From Fig. 4(a), we see that the rumor-
prevailing equilibrium E∗1 is locally asymptotically stable if τ1 < τ1

01 and τ2 = 0, and
from Fig. 4(b), we observe that the rumor-prevailing equilibrium E∗1 is unstable if τ1 >
τ1
01. Therefore, there exists a Hopf bifurcation when τ1 pass through τ1

01.

Example 4. Let α = 0.9, A = d = 0.01, ξ2 = 3.59, η = 0.59, δ = 0.99, σ =
0.99, 〈k∆〉 = 〈k〉 = 2, τ1 ≡ 0. Then we can get τ2

01 ≈ 0.68, and the values of τ2

in Figs. 5(a) and 5(b) are 0.55 and 0.7, respectively. From Fig. 5(a), we see that the
rumor-prevailing equilibrium E∗1 is locally asymptotically stable if τ2 < τ2

01 and τ1 = 0,
and from Fig. 5(b), we observe that the rumor-prevailing equilibrium E∗1 is unstable if
τ2 > τ2

01 and τ1 = 0. Therefore, there exists a Hopf bifurcation when τ2 pass through
τ2
01. In addition, comparing Figs. 5(a) and 5(b), we can see that the model oscillates more

severely in Fig. 5(b), indicating that the model is more sensitive to recovery time delay.
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(a) (b)

Figure 3. The dynamical behavior of each state in model (2) without time delay.

(a) (b)

Figure 4. The dynamical behavior of each state in model (5) when τ1 6= 0, τ2 = 0.

(a) (b)

Figure 5. The dynamical behavior of each state in model (5) when τ2 6= 0, τ1 = 0.
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(a) (b)

Figure 6. The dynamical behavior of model (5) when τ1 6= 0, τ2 ∈ (0, τ201).

(a) (b)

Figure 7. The dynamical behavior of model (5) when τ2 6= 0, τ1 ∈ (0, τ101).

Example 5. Let τ2 = 0.2 ∈ (0, τ2
01), τ1 = 1 < τ1

02 in Fig. 6(a) and τ1 = 15 > τ1
02 in

Fig. 6(b). The values of other parameters are the same as in Example 4. According to
Figs. 6(a) and 6(b), it can be drawn that the rumor-prevailing equilibrium E∗1 is locally
asymptotically stable if τ1 < τ1

02 and τ2 ∈ (0, τ2
01) and the rumor-prevailing equilibrium

E∗1 is unstable if τ1 > τ1
02 and τ2 ∈ (0, τ2

01). Therefore, there exists a Hopf bifurcation
when τ1 pass through τ1

02.

Example 6. Let τ1 = 0.2 ∈ (0, τ1
01), τ2 = 0.68 < τ2

02 in Fig. 7(a) and τ2 = 0.75 > τ2
02

in Fig. 7(b). The values of other parameters are the same as in Example 4. According to
Figs. 7(a) and 7(b), it can be drawn that the rumor-prevailing equilibrium E∗1 is locally
asymptotically stable if τ2 < τ2

02 and τ1 ∈ (0, τ1
02) and the rumor-prevailing equilibrium

E∗1 is unstable if τ2 > τ2
02 and τ1 ∈ (0, τ1

02). Therefore, there exists a Hopf bifurcation
when τ2 pass through τ2

02.
By comparing the solid and dashed lines of the same color in Fig. 8(a), we can

observe that during the prevalence of rumors, the presence of higher-order interactions
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(a) (b)

Figure 8. The effect of time delay and higher-order interactions on propagation.

leads to a higher peak and a broader spread in the propagation of rumors. Additionally,
by comparing the solid and dashed lines of the same color in Fig. 8(b), we can see that
during the decline of rumors, the existence of higher-order interactions significantly slows
down the decay rate of the rumors. However, the influence of the presence or absence of
higher-order interactions on the final disappearance time of the rumor is not obvious.

5 Model application

To better demonstrate the applicability of the model presented in this paper, in this section,
we will select two real rumor cases from different domains for simulation and compare
the performance differences between our model and other models in terms of simulation
fitting.

5.1 Case 1: Crawfish rumor

In this part, we used as a data source the data collected on the website of Zhiwei about the
“crawfish rumor”, the main content of which is that initially, the doctor’s analysis based
on the patient’s experience believed that the disease was related to eating crawfish, and
then on May 3, 2018, a set of infected parasites and eggs caused by eating crawfish began
to be widely disseminated. The “crayfish” rumor belongs to the public health field. The
real data of this rumor are shown in Table 1, which is obtained from the propagation trend
chart of Zhiwei website [7]. T is the unit time, N is the number of rumors forwarded.

Since rumors are usually initially posted by one or a few people, we let the initial
value be I(0) = 0.999, S(0) = 0.001, R(0) = 0. Let 〈k∆〉 = 3.9706 and 〈k〉 = 4.5882.
Other parameters are chosen as A = 0.048, d = 0.22, ξ2 = 4, η = 0.445, δ = 0.15,
σ = 0.4, τ1 = τ2 = 0.1. Using the data in Table 1 and the above parameter values, fit the
model with actual data, and the results are revealed in Fig. 9. In Fig. 9, the rosy dashed line
indicates the curve of the model of integer order, i.e., taking α = 1; the blue dashed line
indicates the curve of the model without considering higher-order interactions, i.e., taking
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Table 1. The number of rumor spreader with time.

T 1d 2d 3d 4d 5d 6d 7d 8d 9d 10d
N 9 33 91 231 204 99 53 36 14 6
T 11d 12d 13d 14d 15d 16d 17d 18d 19d 20d
N 11 20 11 11 14 9 12 5 6 4

Figure 9. Fitting of the model to real datas.

ξ2 = 0; the turquoise dashed line indicates the curve of the model without considering
time delays, i.e., taking τ1 = τ2 = 0.

As seen from the red curve and blue dashed line in Fig. 9, higher-order interactions
clearly contribute to the outbreak of rumors in the early stage, which better reflects the
rapid outbreak and extinction of rumors and is more in line with reality. In contrast, the
difference is minimal during the decline of the rumor, which is dominated by the recovery
of the spreaders. The reason for this phenomenon is that we only consider higher-order
interactions in the dissemination process but not in the recovery process. Because in our
model, δ refers to the possibility of becoming a deleted individual due to losing interest
or discovering the truth, representing the recovery process as spontaneous and active.

By comparing with the actual data, we should also justify the consideration of higher-
order interactions in the propagation process only. By comparing the red solid line and
turquoise dashed line in Fig. 9, it can be seen that time delay can effectively delay the
speed and peak of rumor outbreak in the early stage, while the effect of time delay can be
basically ignored in rumor decline stage.

Besides, a comparison of the red curve and the rosy dashed line in Fig. 9 shows that
the fractional-order differential equation with the appropriate strength of memory effects
is more responsive to the actual trend than the integer-order model in the early rumor,
outbreak, and decline periods. To sum up, considering the effects of fractional derivatives,
higher-order interactions, and time delays when modelling rumor propagation would be
closer to the real rumor propagation trend.
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Figure 10. Fitting of the model to real datas.

5.2 Case 2: Elephants trample tourists

In this section, we select a rumor belonging to the field of public safety for model appli-
cation. This rumor is called “Elephants Trampling Tourists”, and the actual propagation
data of this rumor comes from the research literature [27].

We set the initial values of the model as I(0) = 0.973, S(0) = 0.027, R(0) = 0.
Referring to the model application section in reference [27], the values of other parameters
of model (2) are set as A = 0.048, d = 0.0675, ξ2 = 2.8, η = 0.712, δ = 0.185,
σ = 0.12, τ1 = τ2 = 0.18. Then we can obtain Fig. 10. From Fig. 10, it can be seen
that the fitting effect of the proposed model remains the best. In addition, by comparing
the different curves in Fig. 10, we can find that the existence of higher-order interactions
and fractional derivatives enables the model to better characterize the peak value when the
rumor breaks out; the addition of the time-delay factor can better predict the time when
the rumor propagation reaches the peak.

Remark 11. Case 2 in this paper is the same as the case in the model application of
reference [27]. We found that when α = 1 in model (2), that is, it becomes an integer-
order system, the obtained rosy dashed line is approximately similar to the fitting curve of
the model in reference [27]. Both can reflect the general trend of real rumor propagation,
but neither can accurately describe the peak situation of the rumor. When model (2)
simultaneously considers time delay, higher-order interactions, and fractional derivatives,
it can fit the real rumor propagation more accurately.

6 Conclusion

Practical significance. The proposed model provides a more detailed understanding of
the way rumors spread, especially when higher-order interactions prevail. Such enhanced
comprehension helps formulate more effective strategies to control rumors. For example,
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we find that even if the threshold obtained by the next-generation matrix method is less
than one, it cannot guarantee the disappearance of rumors. To this end, we need to adopt
more precise and multidimensional prevention and control strategies. For instance, lever-
aging data analysis techniques, we should strive to identify potential risk points in higher-
order interactions to stop rumors at their source. Additionally, in response to the group
behavior effects that may occur during rumor propagation, we need to design flexible
public opinion guidance mechanisms. For groups that are easily influenced by group
polarization (such as the elderly and adolescents), we should provide them with diverse
information and perspectives to help them form a more comprehensive and objective
understanding.

Additionally, through the application of the model, we have found that the fractional-
order rumor spreading model based on simplicial complexes exhibits enhanced perfor-
mance in real-case simulations. This finding indicates that in the field of computer science,
when predicting the spread of rumors, consideration should be given to higher-order
interactions and fractional-order effects to enhance the accuracy of current prediction
algorithms.

Theoretical significance. By combining fractional-order derivatives with higher-order
interactions, this paper fills a crucial theoretical gap and enriches the modeling framework
of rumor propagation. Using simplicial complexes to depict higher-order relationships
provides researchers with an innovative approach. Notably, the revelation of bistability
and the comprehensive exploration of Hopf bifurcation behavior under different condi-
tions uncover the complex dynamic characteristics of rumor propagation. These findings
offer new perspectives for the theoretical research on rumor propagation.

Future plans. We plan to deeply explore the role of higher-order interactions topology
in rumor detection and tracing. Leveraging the current model’s insights on the impact
of higher-order interactions on rumor propagation dynamics, we will investigate using
topological features like connectivity patterns and node centrality in simplicial complexes
to create more efficient rumor source identification algorithms.

Author contributions. All authors have read and approved the published version of the
manuscript.

References

1. E. Barrena, A. De-Los-Santos, J. Mesa, F. Perea, Analyzing connectivity in collective
transportation line networks by means of hypergraphs, Eur. Phys. J. Spec. Top., 215:93–108,
2013, https://doi.org/10.1140/epjst/e2013-01717-3.

2. A. Bodo, G. Katona, P. Simon, SIS epidemic propagation on hypergraphs, Bull. Math. Biol.,
78:713–735, 2016, https://doi.org/10.1007/s11538-016-0158-0.

3. G. Chen, C. Fan, J. Sun, J. Xia, Mean square exponential stability analysis for Itô stochastic
systems with aperiodic sampling and multiple time-delays, IEEE Trans. Autom. Control,
67:2473–2480, 2022, https://doi.org/10.1109/TAC.2021.3074848.

Nonlinear Anal. Model. Control, 30(4):747–770, 2025

https://doi.org/10.1140/epjst/e2013-01717-3
https://doi.org/10.1007/s11538-016-0158-0
https://doi.org/10.1109/TAC.2021.3074848
https://doi.org/10.15388/namc.2025.30.42681


768 Y. Xia et al.

4. G. Chen, J. Xia, H. Ju, H. Shen, G. Zhuang, Sampled-data synchronization of stochastic
Markovian jump neural networks with time-varying delay, IEEE Trans. Neural Networks
Learn. Syst., 33:3829–3841, 2022, https://doi.org/10.1109/TNNLS.2021.
3054615.

5. S. Chen, H. Jiang, L. Li, J. Li, Dynamical behaviors and optimal control of rumor propagation
model with saturation incidence on heterogeneous networks, Chaos Solitons Fractals, 140:
110206, 2021, https://doi.org/10.1016/j.chaos.2020.110206.

6. D. Daley, D. Kendall, Stochastic rumours, IMA J. Appl. Math., 1:42–55, 1965, https:
//doi.org/10.1093/imamat/1.1.42.

7. Z. Date, Zhiwei data, 2021, https://ef.zhiweldata.com/eventOverview/
bd599e638776c52b10003350.html.

8. P. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for
compartmental models of disease transmission, Math. Biosci., 180:29–48, 2002, https:
//doi.org/10.1016/s0025-5564(02)00108-6.

9. M. Girvan, M. Newman, Community structure in social and biological networks, Proc.
Natl. Acad. Sci. USA, 99:7821–7826, 2002, https://doi.org/10.1073/pnas.
122653799.

10. H. Guo, X. Yan, Y. Niu, Event-triggered zero-gradient-sum distributed consensus optimization
over directed networks, J. Appl. Math. Comput., 69:2473–2502, 2023, https://doi.org/
10.1007/s12190-022-01829-5.

11. B. Jhun, M. Jo, B. Kahng, Simplicial SIS model in scale-free uniform hypergraph, J. Stat.
Mech. Theory Exp., 12:123207, 2019, https://doi.org/10.1088/1742-5468/
ab5367.

12. B. Li, L. Zhu, Turing instability analysis of a reaction-diffusion system for rumor propagation
in continuous space and complex networks, Inf. Process. Manage., 61:103621, 2024, https:
//doi.org/10.1016/j.ipm.2023.103621.

13. Y. Moreno, M. Nekovee, A. Pacheco, Dynamics of rumor spreading in complex
networks, Phys. Rev. E, 69:066130, 2004, https://doi.org/10.1103/physreve.
69.066130.

14. A. Nauman, R. Ali, R. Muhammad, Numerical and bifurcation analysis of SIQR model, Chaos
Solitons Fractals, 150:111133, 2021, https://doi.org/10.1016/j.chaos.2021.
111133.

15. M. Nekovee, Y. Moreno, G. Bianconi, M. Marsili, Theory of rumour spreading in complex
social networks, Physica A, 374:457–470, 2007, https://doi.org/10.1016/j.
physa.2006.07.017.

16. M. Newman, Finding community structure in networks using the eigenvectors of matrices,
Phys. Rev. E, 74:036104, 2006, https://doi.org/10.1103/physreve.74.
036104.

17. Z. Pan, X. Wang, X. Li, Simulation investigation on rumor spreading on scale-free network
with tunable clustering, Int. J. Syst. Sci., 18:2346–2348, 2006, https://doi.org/10.
1360/jos172601.

18. H. Sha, L. Zhu, Dynamic analysis of pattern and optimal control research of rumor propagation
model on different networks, Inf. Process. Manage., 66:104016, 2025, https://doi.org/
10.1016/j.ipm.2024.104016.

https://www.journals.vu.lt/nonlinear-analysis

https://doi.org/10.1109/TNNLS.2021.3054615
https://doi.org/10.1109/TNNLS.2021.3054615
https://doi.org/10.1016/j.chaos.2020.110206
https://doi.org/10.1093/imamat/1.1.42
https://doi.org/10.1093/imamat/1.1.42
https://ef.zhiweldata.com/eventOverview/bd599e638776c52b10003350.html
https://ef.zhiweldata.com/eventOverview/bd599e638776c52b10003350.html
https://doi.org/10.1016/s0025-5564(02)00108-6
https://doi.org/10.1016/s0025-5564(02)00108-6
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1007/s12190-022-01829-5
https://doi.org/10.1007/s12190-022-01829-5
https://doi.org/10.1088/1742-5468/ab5367
https://doi.org/10.1088/1742-5468/ab5367
https://doi.org/10.1016/j.ipm.2023.103621
https://doi.org/10.1016/j.ipm.2023.103621
https://doi.org/10.1103/physreve.69.066130
https://doi.org/10.1103/physreve.69.066130
https://doi.org/10.1016/j.chaos.2021.111133
https://doi.org/10.1016/j.chaos.2021.111133
https://doi.org/10.1016/j.physa.2006.07.017
https://doi.org/10.1016/j.physa.2006.07.017
https://doi.org/10.1103/physreve.74.036104
https://doi.org/10.1103/physreve.74.036104
https://doi.org/10.1360/jos172601
https://doi.org/10.1360/jos172601
https://doi.org/10.1016/j.ipm.2024.104016
https://doi.org/10.1016/j.ipm.2024.104016
https://www.journals.vu.lt/nonlinear-analysis


Dynamic analysis of a fractional-order rumor spreading model 769

19. P. Shu, Effects of memory on information spreading in complex networks, in The 17th
International Conference on Computational Science and Engineering, CSE 2014, 19–21
December 2014, Chengdu, China, IEEE, Piscataway, NJ, 2014, pp. 554–556, https:
//doi.org/10.1109/CSE.2014.126.

20. J. Singh, A new analysis for fractional rumor spreading dynamical model in a social network
with Mittag-Leffler law, Chaos, 29:013137, 2019, https://doi.org/10.1063/1.
5080691.

21. L. Xia, G. Jiang, Y. Song, B. Song, Modeling and analyzing the interaction between network
rumors and authoritative information, Entropy, 17:471–482, 2015, https://doi.org/
10.3390/e17010471.

22. Y. Xia, H. Jiang, S. Yu, Z. Yu, The dynamic analysis of the rumor spreading and behavior
diffusion model with higher-order interactions, Commun. Nonlinear Sci. Numer. Simul., 138:
108186, 2024, https://doi.org/10.1016/j.cnsns.2024.108186.

23. Y. Xia, H. Jiang, Z. Yu, Global dynamics of ILSR rumor spreading model with general
nonlinear spreading rate in multi-lingual environment, Chaos Solitons Fractals, 154:111698,
2022, https://doi.org/10.1016/j.chaos.2021.111698.

24. Y. Xia, H. Jiang, Z. Yu, S. Yu, X. Luo, Dynamic analysis and optimal control of a reaction-
diffusion rumor propagation model in multi-lingual environments, J. Math. Anal. Appl., 331:
126967, 2022, https://doi.org/10.1016/j.jmaa.2022.126967.

25. D. Xiong, D. Liu, T. Li, M. Tian, Rumor spreading of a SEIR model in complex social networks
with hesitating mechanism, Adv. Difference Equ., 391, 2018, https://doi.org/10.
1186/s13662-018-1852-z.

26. M. Ye, J. Li, H. Jiang, Dynamic analysis and optimal control of a novel fractional-order 2I2SR
rumor spreading model, Nonlinear Anal. Model. Control, 28(5):859–882, 2023, https:
//doi.org/10.15388/namc.2023.28.32599.

27. S. Yu, Z. Yu, H. Jiang, S. Yang, The dynamics and control of 2I2SR rumor spreading models in
multilingual online social networks, Inf. Sci., 581:18–41, 2021, https://doi.org/10.
1016/j.ins.2021.08.096.

28. T. Yuan, G. Guan, S. Shen, L. Zhu, Stability analysis and optimal control of epidemic-like
transmission model with nonlinear inhibition mechanism and time delay in both homogeneous
and heterogeneous networks, J. Math. Anal. Appl., 256:127273, 2023, https://doi.org/
10.1016/j.jmaa.2023.127273.

29. X. Yue, J. L. Huo, Analysis of the stability and optimal control strategy for an ISCR
rumor propagation model with saturated incidence and time delay on a scale-free network,
Mathematics, 69:3900, 2022, https://doi.org/10.3390/math10203900.

30. Y. Zan, J. Wu, P. Li, SICR rumor spreading model in complex networks: counterattack and self
resistance, Physica A, 405:159–170, 2014, https://doi.org/10.1016/j.physa.
2014.03.021.

31. D. Zanette, Criticality behavior of propagation on small-world networks, Phys. Rev. E, 64:
050901, 2001, https://doi.org/10.1103/physreve.64.050901.

32. Y. Zhang, J. Xu, A rumor spreading model considering the cumulative effects of memory,
Discrete Dyn. Nat. Soc., 2015:1–11, 2015, https://doi.org/10.1155/2015/
204395.

Nonlinear Anal. Model. Control, 30(4):747–770, 2025

https://doi.org/10.1109/CSE.2014.126
https://doi.org/10.1109/CSE.2014.126
https://doi.org/10.1063/1.5080691
https://doi.org/10.1063/1.5080691
https://doi.org/10.3390/e17010471
https://doi.org/10.3390/e17010471
https://doi.org/10.1016/j.cnsns.2024.108186
https://doi.org/10.1016/j.chaos.2021.111698
https://doi.org/10.1016/j.jmaa.2022.126967
https://doi.org/10.1186/s13662-018-1852-z
https://doi.org/10.1186/s13662-018-1852-z
https://doi.org/10.15388/namc.2023.28.32599
https://doi.org/10.15388/namc.2023.28.32599
https://doi.org/10.1016/j.ins.2021.08.096
https://doi.org/10.1016/j.ins.2021.08.096
https://doi.org/10.1016/j.jmaa.2023.127273
https://doi.org/10.1016/j.jmaa.2023.127273
https://doi.org/10.3390/math10203900
https://doi.org/10.1016/j.physa.2014.03.021
https://doi.org/10.1016/j.physa.2014.03.021
https://doi.org/10.1103/physreve.64.050901
https://doi.org/10.1155/2015/204395
https://doi.org/10.1155/2015/204395
https://doi.org/10.15388/namc.2025.30.42681


770 Y. Xia et al.

33. Y. Zhang, J. Xu, Y. Wu, A rumor control competition model considering intervention of the
official rumor-refuting information, Int. J. Mod. Phys. C, 31:205123, 2020, https://doi.
org/10.1142/s0129183120501235.

34. L. Zhao, Q. Wang, J. Chen, Rumor spreading model with consideration of forgetting
mechanism: A case of online blogging LiveJournal, Physica A, 390:2619–2625, 2011,
https://doi.org/10.1016/j.physa.2011.03.010.

35. G. Zhu, G. Jiang, L. Xia, Rumor spreading model considering conformity phenomena in
complex social networks, Comput. Sci., 43:135–143, 2016, https://doi.org/10.
11896/j.issn.1002-137X.2016.02.030.

36. L. Zhu, X. Zhou, Y. Li, Global dynamics analysis and control of a rumor spreading model in
online social networks, Physica A, 526:120903, 2019, https://doi.org/10.1016/j.
physa.2019.04.139.

https://www.journals.vu.lt/nonlinear-analysis

https://doi.org/10.1142/s0129183120501235
https://doi.org/10.1142/s0129183120501235
https://doi.org/10.1016/j.physa.2011.03.010
https://doi.org/10.11896/j.issn.1002-137X.2016.02.030
https://doi.org/10.11896/j.issn.1002-137X.2016.02.030
https://doi.org/10.1016/j.physa.2019.04.139
https://doi.org/10.1016/j.physa.2019.04.139
https://www.journals.vu.lt/nonlinear-analysis

	Introduction
	Model instruction
	Theoretical analysis
	 Dynamics of delayed-free system
	Dynamics of delayed system
	Model promotion

	Numerical simulation
	Model application
	Case 1: Crawfish rumor
	Case 2: Elephants trample tourists

	Conclusion
	References

