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Abstract. This model describes the Poiseuille type solution in the nonstationary case of the Navier–
Stokes problem. An equivalent form of PDE problem is defined as the first-kind Volterra integral
equation. The main aim is to analyze a possible ill-posedness of the given problem. For some
problems the first-kind Volterra integral equation can be modified to the integral equation of the
second kind and the letter equation is well-posed. Different regularization techniques also can be
used to control the influence of error pollution with not equal efficiency. Thus we made an extensive
analysis and compared classical discretization schemes for PDE and integral Navier–Stokes models
and regularization algorithms.

The regularization methods are applied to control the influence of the noise in data. The
numerical experiment was aimed at obtaining new information about the stability of schemes for the
inverse problems. Different approximations methods are used to solve PDE and integral versions of
the equation. Results of computational experiments are presented, they confirm the theoretical error
analysis and stability estimates.

Keywords: inverse problems, numerical approximation, Navier–Stokes problem, Volterra equation,
regularization methods.

1 Introduction

The development of mathematical models based on the Navier–Stokes equations and
simulation of various real world applications requires construction of efficient numerical
solvers. It is a general trend in applied numerical analysis to consider specific cases of
the classical Navier–Stokes equations and to propose accurate approximation methods
targeted for such restricted subsets of problems. Here we can mention analysis of models
with weak and very weak solutions [8, 11, 15], problems with a specific structure of
solutions, including the Poiseuille type solutions. This class of problems is the main
goal of our paper. An important approach to reduce the general Navier–Stokes problem
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to inverse parabolic problems was initiated in [14] and continued in [15]. The problem of
finding the solution of inverse parabolic problems with unknown linear and non-linear
source terms and nonstationary integral constraints were considered in many papers.
A good review of numerical schemes is given in [4].

The main technique of papers mentioned above is based on a possibility to rewrite
a PDE model to the first-kind integral Volterra equations.

It is quite well known, that the continuous problem can reformulated as Volterra equa-
tion with a weakly singular kernel. Space discretization regularize this kernel, making it
smooth. Those two facts are very important in formulation and analysis of mathematical
problems described in this article.

Our main aim is to compare the accuracy and solution costs of numerical schemes
developed for the solution of parabolic PDEs and integral equations. In order to make this
comparison honestly justified we restricted to the analysis of basic classical discretization
algorithms fitted for both classes of problems.

The cited papers include problems defined in spaces of n = 2, 3 dimensions. We have
restricted to Navier–Stokes problems defined in n = 2 dimensions, since the reduction of
3D problems to integral Volterra equations lead to kernels of the equations with very sim-
ilar properties. The complexity of the discrete scheme implementation for the parabolic
PDEs depend on the dimension of the space, but in the case of 3D problems we can use
efficient ADI schemes.

It is well known that inverse problems, including the first-kind integral Volterra equa-
tions, can be ill-posed [9, 15].

In definitions of these Navier–Stokes problems some nonclassical additional local and
nonlocal conditions, boundary conditions can be formulated. The existence and unique-
ness of the solutions, stability of discrete approximation methods are very sensitive to
influence of such conditions. Often they require development and analysis of special dis-
crete approximation techniques. For a case of smooth data the first-kind integral Volterra
equations can be reduced to the second-kind integral equations which are well-posed, but
in the case of non-smooth coefficients such a transformation can’t be done. In real world
applications the coefficients are perturbed by measured noise pollution. Thus our second
goal was to compare the efficiency of various regularization techniques, including specific
methods for the integral equations and general variational Tikhonov type methods [9].

A very interesting problem is investigated in [1, 2], where numerical solution of the
viscous flows in a network of thin tubes are considered. These equations are defined on the
graph and its one-dimensional approximation is proposed. We note, that the aim of this
analysis was to develop efficient algorithms to discretize the obtained weakly singular
kernels and to compare the accuracy of the new scheme to the direct numerical solution
of the full 3D Navier–Stokes mathematical model. The influence of noise perturbations
was not considered in these cited papers.

We note that in general numerical modeling of thin tubes has a long history It is suf-
ficient to mention applications/modelling of blood flow in arteries. A deep and extensive
review of these results and different numerical techniques is given e.g. in [12, 16–18].

These problems are not considered in detail in our paper since we have restricted
our goal to a more narrow topic of comparing the discrete schemes for two classes of
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ill-posed problems, i.e. the inverse PDEs and integral first-kind Volterra equations. Still
the indicated applications and validation of mathematical models for the given medical
applications will be considered in the second part of this project.

We also note that the implicit Euler scheme and a midpoint scheme are used in our
paper as typical standard methods for the approximation of inverse parabolic PDEs and
integral Volterra equations. Both these schemes (the implicit Euler and a Galerkin type
scheme) are also used in [1] to simulate the viscous flows in a network of thin tubes, when
equations are specified on the graph. The main goal of [1,2] is to propose accurate approx-
imations of weakly singular kernels in the obtained set of integral equations on the graph
and to give some convergence bounds. Our aim is to compare different approximation
schemes with respect to errors introduced by noise pollution of data. We agree that more
accurate approximations for kernels of Volterra ill-posed equations can be useful in order
to regularize the stability of constructed discrete schemes. We plan to test this approach
in future papers also put a note on this question in the revised version of the recent paper.

In this paper we have developed and analyzed finite-volume discrete schemes to solve
the inverse parabolic problems with unknown source function which defines a pressure of
Poiseuille problem solution and an additional linear integral flux condition to specify this
function. The numerical experiment was aimed at obtaining new information about the
stability of discrete schemes for these inverse problems. Second, we have developed and
solved numerically the first-kind integral Volterra equation which defines an equivalent
mathematical model for the Poiseuille problem. The stability, efficiency (CPU time) and
accuracy of the proposed discrete solvers is analyzed and compared in the cases when test
solutions are smooth and non-smooth functions.

Next, the ill-posedness of the Poiseuille problem is investigated by adding the noise
perturbations for specified flux functions. The regularization of discrete schemes is mainly
done for the Volterra integral equation. Results of numerical experiments by using simple
transformations to the second-kind Volterra problems [9, 15] and the regularization by
using the classical variational Tikhonov method are presented and analyzed.

The definition of variational Tikhonov method algorithm is also presented for the
inverse parabolic problem.

The rest of the paper is organized in the following way. In Section 2 the problem is
formulated. For a general Navier–Stokes problem we are interested to define the non-
stationary Poiseuille type solution. Two different approaches are used. First, the inverse
parabolic PDE problem is formulated and in addition the flow rate (flux) is defined. The
discretization of space operators is done. Second, this problem is reduced to the integral
first-kind Volterra equation.

In Section 3 the fully discrete schemes are constructed for the inverse PDE model. The
approximation accuracy and stability of these schemes for solution of the direct parabolic
problems are investigated. A connection of these discrete algorithms with specific discrete
schemes for the Volterra integral equation is also analyzed. The stability of the inverse
parabolic problem is studied only by making the computational experiments.

In Section 4 the popular discrete schemes are used to approximate the given first
kind Volterra equation. The approximation accuracy and stability of these algorithms are
investigated.
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Results of computational experiments are presented and compared in Section 5. In
the first test problem the smooth flux function is used and a non-smooth flux function
is defined in the second test problem. For all algorithms experiments are done for data
without noise and for two different noise levels. The noise is generated according a uni-
form random number distribution. For noisy data application of some popular efficient
regularization methods is considered. Some final conclusions are done in Section 6.

2 Problem formulation

Let us consider an initial-boundary value problem for the Navier–Stokes equations

∂u

∂t
− ν

2∑
j=1

∂2u

∂x2j
+
(
u(x, t) · ∇

)
u(x, t) +∇p(x, t) = 0, (1)

∇ · u(x, t) = 0,

u(x, t)|Π = 0, u(x, 0) = u0(x).

In (1), u is the fluid velocity, p is the pressure function and ν > 0 is the constant kinematic
viscosity of the fluid. It describes the flow of an incompressible fluid in an infinite straight
pipe

Π =
{
x = (x1, x2) ∈ R2: 0 6 x1 6 1, −∞ < x2 <∞

}
.

We are interested to define the Poiseuille type solution in the nonstationary case.
Assume that the initial data u0(x) has only the one component:

u0(x) =
(
0, u02(x1)

)
.

Then we look for the solution of problem (1) in the form [8]

u(x, t) =
(
0, U2(x1, t)

)
, p(x, t) = −q(t)x2 + p0(t), (2)

where p0(t) is an arbitrary function. Next, we substitute (2) into (1) and get for functions
U(x1, t) := U2(x1, t) and q(t) the following initial-boundary value problem

∂U

∂t
− ν ∂

2U

∂x21
= −q(t), (3)

U(0, t) = 0, U(1, t) = 0,

U(x1, 0) = u02(x1), 0 6 x1 6 1.

In addition the flow rate (flux) is defined

1∫
0

U(x1, t) dx1 = F (t). (4)
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Thus we solve an inverse problem: for given initial condition u02 and flow rate F (t)
we must find a pair of functions (U(x1, t), q(t)) solving the parabolic problem (3) and
satisfying the flux condition (4).

Now we restrict to the analysis of discrete in space operators. Thus a uniform discrete
grid in space is defined

ωh = {x1j : x1j = jh, j = 1, . . . , J − 1}, x1J = 1,

ω̄h = ωh ∪ {0, 1}.

Semi-discrete functions V (x1, t) = (v0, v1, . . . , vJ) are approximations of U(x1, t),
where vj = V (x1j , t), j = 0, . . . , J .

For any V , such that v0 = 0, vJ = 0 we define the discrete diffusion operator

AhV = −vj+1 − 2vj + vj−1
h2

, j = 1, . . . , J − 1.

The eigenvectors Vk = (vk1, . . . , vk,J−1) and eigenvalues λk of Ah are well known [7]:

AhVk = λkVk, k = 1, . . . , J − 1,

vkj =
√

2 sin(πkxj), λk =
4

h2
sin

(
h

2
πk

)
.

Let us define a scalar product and the L2 norm for the discrete functions

(V,W ) =

J−1∑
j=1

vjwjh, ‖V ‖ = (V, V )1/2.

The set of eigenvectors {Vk}, k = 1, . . . , J−1, make an orthonormal and complete basis.
The semi-discrete approximation of problem (3)-(4) is given by

∂V

∂t
+ νAhV = −q(t), (5)

v0(t) = 0, vJ(t) = 0,

v(xj , 0) = u02(xj), j = 0, . . . , J,

and the discrete flux condition is defined as

(
V (t), 1

)
:=

J−1∑
j=1

vjh = F (t). (6)

We got the one dimensional semi-discrete nonstationary parabolic PDE problem (5).
Since it is an inverse problem, we are interested to analyze the conditioning of this
formulation and it is well known, that inverse problems can be ill-posed. In the case
of ill-posed problems the main aim is to apply the regularization techniques in order to
construct robust discrete schemes.
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Next, we define the second approach, when the given problem is reformulated as an
integral first-kind Volterra equation. In fact, our main aim is to compare the accuracy
and efficiency of numerical schemes constructed following both approaches: when the
inverse PDE and the integral Volterra equation are solved. The efficiency of algorithms
was mainly estimated by comparing CPU times required to solve the given problems.

Let us consider the spectral representation of the solution

vj =

J−1∑
k=1

wk(t)vkj , j = 1, . . . , J − 1. (7)

Next, we derive a spectral representation of the identity function I

I(xj) =

J−1∑
k=1

βkvkj , βk =

J−1∑
j=1

vkjh,

where

I(xj) :=

{
1, 1 6 j 6 J − 1,

0, j = {0, J}.

It is sufficient to consider the case of homogeneous initial condition u02 = 0. Substituting
solution (7) into equation (5) we get linear ODEs for coefficients wk, k = 1, . . . , J − 1:

dwk(t)

dt
+ νλkwk(t) = βkq(t), wk(0) = 0. (8)

The solution of this equation can be written in an explicit form

wk(t) = βk

t∫
0

exp
(
−νλk(t− s)

)
q(s) ds.

Substituting it into the spectral representation of the discrete flow condition (6), which is
written as

J−1∑
k=1

wk(t)

(
J−1∑
j=1

vkjh

)
= F (t),

we get the integral first-kind Volterra equation for unknown function q(t):

t∫
0

(
J−1∑
k=1

β2
k exp

(
−νλk(t− s)

))
q(s) ds = F (t). (9)

It can be written in a compact form as

t∫
0

K(t, s)q(s) ds = F (t),

where the function K(t, s) in the integral is called the kernel.
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It is well known that in many cases the first-kind Volterra equations define the ill-
posed mathematical problems [9]. Application of regularization methods is required in
order to solve such problems efficiently and to achieve a maximum possible accuracy for
a noisy data.

The main aim of this paper is to compare the accuracy of numerical schemes for solu-
tion of the inverse parabolic problem (5) and the integral first-kind Volterra equation (9).
The comparison is done for similar sizes of discrete problems and different algorithms.

3 Discretization in time of problem (5)(5)(5)

In this section we construct fully discrete approximations of the given semi-discrete par-
abolic problem (5). Again we restrict to the uniform discrete grid in time

ωτ =
{
tn: tn = nτ, n = 0, . . . , N

}
, tN = T.

Vectors V n = (vn1 , v
n
1 , . . . , v

n
J−1) and V̄ n = (vn0 , v

n
1 , . . . , v

n
J ) are approximations of the

semi-discrete solution V (tn) at t = tn.
Let us consider a family of discrete schemes

V n+1 − V n

τ
+AhV

n+σ = qn+σ, (10)

vn0 = 0, vnJ = 0, (11)

where 0 6 σ 6 1 is the weight parameter and

V n+σ = σV n+1 + (1− σ)V n.

We are interested in two schemes: the Backward Euler (BE) scheme for σ = 1 and
Crank–Nicolson (CN) method for σ = 0.5.

The additional flux condition is defined at tn+1 as

J−1∑
j=1

V n+1
j h = Fn+1. (12)

The system of equations (10)–(12) can be solved very efficiently. For simplicity, we
restrict the description of the numerical algorithm only to the CN scheme. This scheme
can be written as

V n+1/2 − V n

0.5τ
+AhV

n+1/2 = qn+1/2.

Next, we compute an auxiliary function W which solves the following discrete problem:

W

0.5τ
+AhW = 1, 1 6 j < J,

w0 = 0, wJ = 0.

Nonlinear Anal. Model. Control, 30(4):771–791, 2025
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Then the solution V n+1/2 is computed as

V n+1/2 = Wn+1/2 + qn+1/2W,

where the nonstationary discrete function Wn+1/2 takes into account the dynamics of the
solution from the previous time level

Wn+1/2 − V n

0.5τ
+AhW

n+1/2 = 0, 1 6 j < J,

w
n+1/2
0 = 0, w

n+1/2
J = 0.

The value of the source function qn+1/2 is computed from the flow condition

qn+1/2 =
1
2 (Fn+1 + Fn)−

∑J−1
j=1 W

n+1/2
j h∑J−1

j=1 Wjh
.

The existence and stability of the solution of the semi-discrete problem (5) is done by the
authors of referenced papers. Thus for the goals of this work it is sufficient to use numer-
ical schemes which approximate the non-homogeneous parabolic problem by preserving
the stability of the solution. For the discrete integral Volterra equations the stability of the
discrete solutions follow from the general theory.

It is well known that the constructed family of schemes define unconditionally stable
methods if [7]

σ >
1

2
− h2

4τ
. (13)

It follows from (13) that the Explicit Euler (EE) scheme for σ = 0 is stable if the condition

τ 6
h2

2

is valid and BE and CN schemes are unconditionally stable.
The discrete scheme (10) also can be interpreted as a specific discretization of the

Volterra equation (9). Let us consider the spectral representation of the discrete solution

vnj =

J−1∑
k=1

wnk vk(xj).

Then we get from (10) the discrete approximation of equation (8)

wn+1
k − wnk

τ
+ νλkw

n+σ
k = βkq

n+σ, k = 1, . . . , J − 1.

We restrict to the BE scheme (10), when σ = 1. Substituting the function

wn+1
k =

1

1 + τνλk

(
1 + τβkq

n+1
)
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into the conjugation equation (12) gives

J−1∑
k=1

βk
1 + τνλk

(
1 + τβkq

n+1
)

= Fn+1.

Then we compute the solution qn+1 of the inverse PDE problem

τqn+1
J−1∑
k=1

β2
k

1 + τνλk
= Fn+1 −

J−1∑
k=1

βk
1− τνλk
1 + τνλk

wnk .

Next, we can write the obtained solution in the form which mimics the solution of
the integral Volterra equation. The algorithm is presented in an iterative way. The initial
condition is given as

w0
k = 0, k = 1, . . . , J − 1.

The first iteration defines a solution at t = τ

w1
k = w0

k + βk
τ

1 + τνλk
q1 = βk

τ

1 + τνλk
q1, k = 1, . . . , J − 1.

After n iterations we get the following equality:

wnk = βk

n∑
l=1

τ

(1 + τνλk)n+1−l q
l, k = 1, . . . , J − 1.

Substituting these equations into (9) we get a nonstandard discrete approximation of
the given first-kind Volterra equation

n∑
l=1

J−1∑
k=1

β2
k

τ

(1 + τνλk)n+1−l q
l = Fn.

4 Direct discretization of Volterra equation (9)(9)(9)

In this section we present classical approximations of the first-kind Volterra equations.
Our aim is to compare these numerical methods with special approximations obtained
using discrete approximations of parabolic problem.

We present the numerical approximations for integral equations written in a compact
form

t∫
0

K(t, s) q(s) ds = F (t), (14)

where the kernel K is defined as

K(t, s) =

J−1∑
k=1

β2
k exp

(
−νλk(t− s)

)
.
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In fact this linear Volterra integral equation is a convolution equation but we consider
numerical algorithms targeted for general kernels.

Let us assume that some standard requirements are satisfied for coefficients of (14):

• kernel K(t, t) is nonsingular, i.e. K(t, t) > 0,
• functions K(t, s) and F (t) are sufficiently smooth and bounded, i.e. all derivatives

of them, which are used in the theoretical analysis exist.

Then it is well known that the first-kind integral Volterra equation (14) has a unique and
continuous solution.

Next, we define three popular approximation methods used in applications [3, 9].

The rectangular method. The discrete approximation of the integral Volterra equation (14)
is defined as

τ

n−1∑
l=0

K
(
tn, tl

)
ql = F (tn), n = 1, . . . , N, (15)

where the discrete solution qn is defined on the discrete time mesh ωτ .
Let us assume that for sufficiently small time steps τ the estimate |K(tn, tn−1)| > 0

is valid, then the discrete solution is computed as

τK
(
tn, tn−1

)
qn−1 = F

(
tn
)
− τ

n−2∑
l=0

K
(
tn, tl

)
ql, n = 1, . . . , N.

It follows that the initial value q0 of the discrete solution is also computed by using
the basic rectangular method algorithm

τK
(
t1, t0

)
q0 = F

(
t1
)
.

A discrete method is said to be of order p if there exists a finite constant C such that

max
06n6N

∣∣qn − q(tn)∣∣ 6 Cτp.

A standard convergence analysis show that the accuracy of approximation (15) is of
order p = 1.

The classical stability analysis takes into account the stability with respect to ap-
proximation errors when all data is smooth. We are interested to investigate the possi-
ble ill-posedness of the given problem (14) with respect to noise perturbations of func-
tion F .

Let us assume that the source term is defined as

F̃ (t) = F (t) + ε(t),

where ε(tn) values are generated according a uniform random numbers distribution.
Let us denote the global error en = q(tn)− qn. The applied stability analysis is based

on three general techniques.
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First, the discrete problem for the global error en is derived. It depends on the classical
truncation error.

Second, the obtained equation for en is transformed to the discrete second-kind Volter-
ra equation. This step mimics the well-known technique used for continuous Volterra
equations (14). Assuming that the kernel K(t, s) and source function F (t) are smooth
and K(t, t) > ν > 0 we may differentiate this integral equation with respect to t to
obtain [9]

K(t, t)q(t) +

t∫
0

∂

∂t
K(t, s)q(s) ds = F ′(t).

It is known that a Volterra equation of the second kind is a well-posed problem.
Third, using the discrete Gronwall’s inequality [3] the global error estimate in a uni-

form norm is proved.
We will apply this analysis for the rectangular method. First, by substituting qj =

q(tj)− en into the discrete equation (15) we get the problem

τ

n−1∑
j=0

K
(
tn, tj

)
ej = ψn − εn, n = 1, . . . , N, (16)

where ψj defines the truncation error

ψn = τ

n−1∑
j=0

K
(
tn, tj

)
qj − F (tn).

Next, we subtract equation (16) from a similar equation for tn+1 and divide by τ , we get

K
(
tn+1, tn

)
en + τ

n−1∑
j=0

(
K(tn+1, tj)−K(tn, tj)

τ

)
ej

=
ψn+1 − ψn

τ
− εn+1 − εn

τ
.

In order to keep the main idea of the stability proof for a general cases, we also assume
that the following estimate∣∣∣∣K(tn+1, tj)−K(tn, tj)

τ

∣∣∣∣ 6 C1, j = 0, . . . , n− 1,

is valid. This assumption must tested for any specific applied problem and given kernels
of discrete operators.

Then, assuming that K−1(tn+1, tn) < C, all data is smooth and the truncation error
is of order O(τ) the following stability estimate is obtained

∣∣en∣∣ 6 τC1

n−1∑
j=0

∣∣ej∣∣+ C2τ +
1

2
C3 max

16j6n

|ε(tj)− ε(tj−1)|
τ

.
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Since |ε(tj)| 6 1, then the estimate

∣∣en∣∣ 6 τC1

n−1∑
j=0

∣∣ej∣∣+ C2τ + C3
1

τ

is valid, where C1, C2 and C3 are bounded constants. Assuming that e0 = C4τ and using
the discrete Gronwall’s inequality we prove the following error estimate:

∣∣en∣∣ 6 exp
(
C1t

n
)(
C2τ + C4τ

2 +
C3

τ

)
.

Thus, for the case of no noise pollution C3 = 0 in data the accuracy of approximation
is of order p = 1, but if the noise error is included into the formulation of the integral
equation, then the ill-posedness of the discrete rectangular method should be expected.

The midpoint method. The discrete approximation of the Volterra integral equation (14)
is defined as

τ

n−1∑
l=0

K
(
tn, tl+1/2

)
ql+1/2 = F

(
tn
)
, n = 1, . . . , N. (17)

We see again that there is no need to specify separately the initial condition.
The accuracy of this algorithm can be investigated similarly to the analysis of the

rectangular method. The error en satisfies the stability estimate

∣∣en−1/2∣∣ 6 τC1

n−2∑
j=0

∣∣ej+1/2
∣∣+ C2τ

2 +
1

2
C3 max

16j6n

|ε(tj)− ε(tj−1)|
τ

,

where the second term C2τ
2 defines the truncation error and the third term includes the

influence of noise. Thus the truncation error of the midpoint method (17) is of order
p = 2. Taking into account the estimate of e1/2 = C4τ

2 and using the discrete Gronwall’s
inequality we prove the following error estimate

∣∣en−1/2∣∣ 6 exp
(
C1t

n−1/2)(C2τ
2 + C4τ

3 +
C3

τ

)
.

If noise pollution C3 = 0 is not included into measurements of F then the accuracy
of approximate solution is of order p = 2, but if the noise error is included into the
formulation of the integral equation, then the ill-posedness of the discrete rectangular
method is expected.

For discontinuous initial conditions the Crank–Nicolson time scheme can result in
oscillations which are are only weakly damped by the CN scheme. In this case a few
regularization steps are needed to reduce these oscillations quite fast in order to keep the
second order of convergence of the symmetric scheme. Such techniques are described in
detail in [10, 13].
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Still in our computational experiments the jump discontinuities are avoided in the
initial conditions and such an additional regularization was not needed. This theoretical
and experimental analysis can make an interesting part of future simulations of more
general initial and boundary conditions.

The trapezoidal method. The discrete approximation of the Volterra integral equation (14)
is defined as

τ

2
K
(
tn, t0

)
q0+τ

n−1∑
l=1

K
(
tn, tl

)
ql +

τ

2
K
(
tn, tn

)
qn=F

(
tn
)
, n=1, . . . , N. (18)

The initial condition q0 is computed exactly by [9]

q0 =
dF
dt (0)

K(0, 0)
.

We restrict to the evaluation of the truncation error. The analysis based on Taylor’s
series proves that this error is of order two. The remaining convergence conclusions are
similar to the case of the midpoint method.

5 Computational experiments

Consider problem (3)–(4) in the domain [0, 1]. First, we solve this inverse problem till
T = 1 with given zero initial, boundary conditions and smooth flux (flow rate) function

ν = 0.5, u02(x1) = 0, F (t) = 10
(
et − 1

)
.

All numerical tests have been performed on the computer with Intel®Xeon® processor.
First, we want to compare the accuracy of discrete methods developed for the solution

of inverse parabolic problem (5)–(6) with the accuracy of methods developed for the first-
kind integral Volterra equation (14). Second, the influence of noise perturbations also is
tested in these series of computations. No special regularization algorithms are applied in
this part of computations.

5.1 The accuracy of time integration of BE and CN schemes

First, we have tested the time integration accuracy of the BE solver (10)–(12), σ = 1 for
the discrete inverse parabolic PDE model (5)–(6).

A uniform space grid ωh with J = 40 is used. Table 1 gives for a sequence of
decreasing time step widths τ the errors e(τ) and the experimental convergence rates
ρ(τ) of the discrete solution for BE finite volume scheme:

e(τ) =
∣∣qN − q(T )

∣∣, ρ(τ) = log2

e(2τ)

e(τ)
,

where the reference solution V (T ), q(T ) is computed by using the very small time step
τ = 10−5 and the second-order accurate CN scheme. Then the approximation error e(τ)
of the BE scheme can be measured accurately.
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Table 1. Errors e(τ) and experimental convergence rates ρ(τ) for the
discrete solution of BE scheme (10), σ = 1 for a sequence of time steps
τ = T/N , without noise and two different noise levels ε(t) for flux F (t).

N e0(τ) ρ(τ) e1(τ) e2(τ)
δ0 = 0 δ1 = 0.001 δ2 = 0.0001

25 0.6416646 — 0.6835583 0.6458539
50 0.3229603 0.99046 0.4189708 0.3325613

100 0.1620159 0.99522 0.3067941 0.1764937
200 0.0811422 0.99761 0.4157049 0.1145985
400 0.0406045 0.99881 0.6959599 0.1061401
800 0.0203104 0.99942 1.3141067 0.1275119

1600 0.0101571 0.99974 3.0556232 0.2964209

Table 2. Errors e(τ) and experimental convergence rates ρ(τ) for the
discrete solution of CN scheme (10) σ = 0.5 for a sequence of time steps
τ = T/N , without noise and two different noise levels ε(t) for flux F (t).

N e0(τ) ρ(τ) e1(τ) e2(τ)
δ0 = 0 δ1 = 0.001 δ2 = 0.0001

10 0.4505788 — 0.5099376 0.4565147
20 0.1199393 1.90947 0.2618352 0.1341289
40 0.0313501 1.93576 0.2380837 0.0520234
80 0.0079756 1.97481 0.4737014 0.0401921

160 0.0020053 1.99192 0.8205092 0.0802461
320 0.0005024 1.99677 1.8073408 0.1811863

Table 1 shows errors of the discrete solution when the flux F is defined without
noise F (t) as well with a noise perturbations F (t) + εj(t), for two different noise levels
ε1(tn) = δ1R(tn) and ε2(tn) = δ2R(tn), where δ1 = 0.001 and δ2 = 0.0001. Here
R(t) generates random numbers in the interval [0, 1] according a uniform random number
distribution. For each case of noise level parameters twenty calculations are done with
different random noises and the worst error value is presented.

It follows from the presented results, that the convergence rate of the discrete solution
agree well with theoretical estimate of accuracy order p = 1.

The second important conclusion states that the given inverse problem is ill-posed and
the errors increase when the discrete time steps τ are decreased, i.e. the numbers of time
steps N are increased.

Next, we did similar computation experiments by using the discrete CN scheme (10).
The results are presented in Table 2.

It follows from the presented results, that the experimental convergence rate is equal
to the second order and this conclusion agrees well with the theoretical predictions.

The second conclusion is that the CN scheme defines an ill-posed problem, this
property is similar to the BE scheme properties.

Next, we test the accuracy of discrete CN scheme (10) when the flux function F is not
smooth (non-differentiable)

F (t) =

{
10(exp(t)− 1), 0 6 t 6 0.5,

10(exp(2(t− 0.25)) + 2), 0.5 < t 6 1.
(19)
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Table 3. Errors e(τ)and experimental convergence rates ρ(τ) for the
discrete solution of the CN method (10) σ = 0.5 for a sequence of time
steps τ = T/N , without noise and two different noise levels ε(t). The
non-smooth flux F (t) is defined in (19).

N e0(τ) ρ(τ) e1(τ) e2(τ)
δ0 = 0 δ1 = 0.001 δ2 = 0.0001

40 0.12150671 — 0.3377168 0.1431277
80 0.05369016 1.17830 0.4279869 0.0792428

160 0.01590153 1.75548 0.8066129 0.0877509
320 0.00399501 1.99289 1.8108334 0.1846789
640 0.00099849 2.00037 3.6123721 0.3621359

Table 3 shows the results when the flux is defined without noise F (t) as well with
noise perturbations F (t) + εj(t), for two different noise levels ε1(tn) = δ1R(tn) and
ε2(tn) = δ2R(tn), where δ1 = 0.001 and δ2 = 0.0001. For each parameter case twenty
calculations are done with different sets of random noises and the worst error value is
presented.

It follows from the presented results, that convergence rate is smaller than the second
order for time meshes with N 6 150. Such a drop of the accuracy is expected due to
the non-smooth flux function F (t) (19). The asymptotic second-order accuracy in time is
achieved for finer discrete time meshes. This behavior of the discrete solution is expected
from the presented theoretical results.

Our second conclusion states that the ill-posedness of the given differential problem
is clearly seen for the CN scheme (10) in the case of non-smooth data functions.

5.2 Discrete approximations of the Volterra equation

First, we consider results of numerical experiments, when the rectangular method (15) is
used to approximate the integral equation (9). The smooth flux function F is selected in
this part of computations. The results of numerical experiments are presented in Table 4.

It follows that the convergence order is equal to one, but the error of the discrete
solution is twenty times larger than the error of the BE scheme (10) with σ = 1, which also
has the first order of accuracy. As expected for the first-kind integral Volterra equations

Table 4. Errors e(τ) and experimental convergence rates ρ(τ) for the
discrete solution of the rectangular method (15) for a sequence of time steps
τ = T/N , without noise and two different noise levels ε(t) for the smooth
flux F (t).

N e0(τ) ρ(τ) e1(τ) e2(τ)
δ0 = 0 δ1 = 0.001 δ2 = 0.0001

25 20.358405 — 20.471404 20.369705
50 10.053094 1.01798 10.273131 10.075098

100 5.0283119 0.99949 5.4285812 5.0683389
200 2.5255935 0.99345 3.3774841 2.6107825
400 1.2689509 0.99298 3.1515991 1.4572158
800 0.6367833 0.99476 3.2247893 0.8840511

1600 0.3190841 0.99686 7.5110672 1.0382824
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Table 5. Errors e(τ) and experimental convergence rates ρ(τ) for the
discrete solution of the trapezoidal method (18) for a sequence of time
steps τ = T/N , without noise and two different noise levels ε(t) for the
smooth flux F (t). The errors ẽ(τ) for the discrete solution of the midpoint
method (17) are also given.

N e0(τ) ρ(τ) e1(τ) e2(τ) ẽ0(τ)
δ0 = 0 δ1 = 0.001 δ2 = 0.0001

10 9.9763765 — 10.023967 9.9811356 3.0586515
20 3.4529521 1.530685 3.5598865 3.4636456 1.0807689
40 1.1367817 1.602875 1.3014422 1.1532478 0.3798273
80 0.3602494 1.657887 0.9237413 0.4165986 0.1311862

160 0.1092939 1.720783 1.7748138 0.2758459 0.0437980
320 0.0313633 1.801059 3.2864789 0.3004209 0.0137335
640 0.0084609 1.890194 8.2681789 0.8344327 0.0039249

Table 6. Errors e(τ) and experimental convergence rates ρ(τ) for the
discrete solution of the midpoint method (17) for a sequence of time steps
τ = T/N , without noise and two different noise levels ε(t) for the non-
smooth flux F (t).

N e0(τ) ρ(τ) e1(τ) e2(τ)
δ0 = 0 δ1 = 0.001 δ2 = 0.0001

40 1.2551493 — 1.3655095 1.2661852
80 0.4469026 1.48983 0.6893151 0.4711438

160 0.1522972 1.55307 0.4059690 0.1776643
320 0.0483563 1.65511 0.9920110 0.1427218
640 0.0139065 1.79795 1.8561645 0.1981323

the error of discrete solutions is sensitive to the noise perturbations of data and again
the error of the discrete solution is essentially larger than the error of discrete solutions
computed by using the BE discrete scheme (10).

Next, we present results of numerical experiments when the midpoint method (17)
and the trapezoidal method (18) are used to approximate the integral equation (9). The
smooth flux function F is selected in this part of computations. The results of numerical
experiments are presented in Table 5.

The results of these computational experiments confirm conclusions of the theoretical
analysis that the accuracy order of both schemes increases from 1.52 till 1.9. Still it
follows from the given results that the error of the midpoint scheme solution is three
times smaller.

It interesting to note that global errors of CN scheme (10), σ = 0.5 for solution of
the inverse parabolic problem are from ten till fifteen times smaller than errors of the
midpoint method (17).

The dynamics of the global errors when data is perturbed with noise show that the
given first-kind discrete Volterra equation is ill-posed and the influence of noise increases
when the number of discrete points N is increased.

For high-order methods it is interesting to solve the discrete problem with non-smooth
flux F function. In Table 6 the results of computational experiments obtained with the
midpoint method(17) are presented.
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5.3 Regularization of discrete schemes

First, we consider the most simple regularization technique, which is based on a singular
perturbation approach [9]. In order to stabilize an ill-posed problem (14) a term of the
form αq(t) is added to the integral operator. Thus we consider a perturbed equation

αq(t) +

t∫
0

K(t, s)q(s) ds = F (t), (20)

which is a well-posed second-kind Volterra equation. It has a unique solution q(t) de-
pending continuously on data F .

We restrict to the analysis of the discrete approximation of the regularized Volterra
integral equation (20) by using the midpoint method. The discrete scheme is defined as

αqn−1/2 + τ

n−1∑
l=0

K
(
tn, tl+1/2

)
ql+1/2 = F ε(tn), n = 1, . . . , N, (21)

where the flux function F is perturbed by a noise ε:

F ε(t) := F (t) + ε(t).

Errors e(τ) for the discrete solution of the regularized midpoint method (21) for
a sequence of time steps τ = T/N , different regularization parameters α = δ and noise
levels ε(t) for the smooth flux function F are presented in Table 7. In the last row of
the table errors of the discrete solution are presented for the regularized problem with
different values of regularization parameter α but without noise perturbations ε = 0.

It is recommended to select α = α(δ) satisfying δ/α(δ) → 0 in order to guarantee
the convergence of the discrete solution, but our numerical experiments show that the
selection α = δ give even a better accuracy for this test problem.

The presented results confirm that this simple regularization method leads to ro-
bust and efficient computational solvers. Since the formulated discrete first-kind integral
problem is ill-posed, some regularization technique is necessary in order to control the
influence of noise perturbations in data.

Table 7. Errors e(τ) for the discrete solution of the regularized midpoint
method (21) for a sequence of time steps τ = T/N , different regularization
parameters α = δ and noise levels ε(t) for the smooth flux function F .

N e0(τ) e1(τ) e2(τ) e3(τ)
δ0 = 0.01 δ1 = 0.0025 δ2 = 0.000625 δ3 = 0.00015

40 9.778062 2.3563355 0.3197639 0.2406764
80 10.686678 2.9032137 0.6554001 0.0593598

160 11.177441 3.3694121 0.9078908 0.1935046
320 11.156842 3.5044991 0.9938282 0.2393961
640 11.284466 3.8902388 1.3700367 0.3941284

1280 9.7478361 2.5728394 0.6515743 0.1561563
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The method of Tikhonov regularization. For a comparison we apply the general classical
variational regularization method, which was proposed by Tikhonov [5]. Perhaps this
method is most widely referenced regularization method. We will restrict to a finite-
dimensional linear problems framework. Let the linear equation is given

AτQ = F ε, Q =
{
q0, . . . , qn

}
∈ U,

on a Hilbert space U , where F ε is a perturbation of flux function F . The method of
Tikhonov regularization defines a regularized solution Qα solving

min
Qα∈U

∥∥AτQα − F ε∥∥2 + α‖Qα‖2, (22)

where the norm ‖·‖ is the classical L2 norm of a Hilbert space U . The solver is imple-
mented by solving the equivalent normal equation(

AT
τ Aτ + αI

)
Qα = AT

τ F
ε, (23)

where AT
τ is the transposed matrix of Aτ (it defines the adjoint operator associated with

Aτ ) and I is the identity matrix. We note, that Aτ typically is a lower-triangular matrix
and a linear system with this matrix can be solved very efficiently by sequential methods.
But AT

τ Aτ + αI is a full matrix and direct solution methods are not efficient.
Since AT

τ Aτ +αI is symmetric and positive definite then in all experiments we solve
the linear system (23) using the Conjugate Gradient Method (CGM) which is imple-
mented as an iterative algorithm.

In order to reduce the number of iterations the original system can be replaced with
a system with the preconditioned matrix B−1(AT

τ Aτ + αI), where B = AT
τ Aτ . The

matrix B is defined as a multiplication of two triangular matrices and linear systems with
matrix B can be solved very efficiently.

The discrete rectangular method (15) is used in computational experiments. Coeffi-
cients of matrix Aτ are defined as

anl = τK
(
tn+1, tl

)
, if l 6 n, 0 6 n, l < N.

Results of computation experiments are presented in Table 8. The value of the reg-
ularization parameter α was selected by using the asymptotical relation α = O(δ) and
the proportionality constant was determined by making few computational experiments.

Table 8. Errors e(τ) for the discrete solution of the Tikhonov regularization
method with rectangular scheme (15) for a sequence of time steps τ=T/N ,
different regularization parameters α and noise levels δ for the smooth flux
function F .

N δ0 = 0.01 δ1 = 0.001 δ2 = 0.0001
α0 = 0.001 α1 = 0.0001 α2 = 0.00001

100 5.3230868 5.4282109 5.0315919
200 10.9024143 3.3761372 2.6093254
400 19.4906147 3.1472836 1.4510428
800 39.0183178 3.2281995 0.8574195
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The number of CGM iterations always was not larger than 50. The obtained results can
be compared with results in Table 4 where no regularization techniques were used.

The method of Tikhonov regularization for inverse PDE problem (10). This variational
method is very general and it can be applied to solve inverse problem (10). We restrict
only to formulation of the general framework of this algorithm. Results of computational
experiments will be presented in a separate article. Again the regularization of noise
perturbations is obtained solving the variational problem:

Jα =

N−1∑
n=0

[(
V n+1/2, 1

)
− Fn+1/2

]2
τ + α

N−1∑
n=0

(
q
(
tn+1/2

))2
τ.

One of most popular methods to solve this minimization problem is to use the iterative
CGM. Note, that we used this method also to implement the iterative algorithm of the
Tikhonov method for the Volterra problem (22).

Consider the template for the algorithmic implementation of CGM [6].

1. Choose an initial guess of Q0 and calculate the residual of the flux function by
solving

V n+1
0 − V n0

τ
+AhV

n+1/2
s = Q0.

Calculate the gradient R0 of functional Jα by solving the adjoint (backward in
time) problem

−Ψ
n+1
0 − Ψn0

τ
+AhΨ

n+1/2
0 = R̃0,

where the residual R̃n+1/2
0 = (V

n+1/2
0 , 1)− Fn+1/2.

Next, for each iteration s > 0:

2. Solve the direct parabolic problem

V n+1
s − V ns

τ
+AhV

n+1/2
s = Ds,

where Ds is a modified gradient of functional Jα. Update the source function Qs
and R̃s+1.

3. Calculate the gradient Rs+1 of the functional Jα by solving the adjoint problem
and update Ds.

−
Ψn+1
s+1 − Ψns+1

τ
+AhΨ

n+1/2
s+1 = R̃s+1,

6 Conclusions

In this paper we have investigated the stability (well-posedness) of the Poiseuille type
solution in the nonstationary case of the Navier–Stokes problem. Two mathematical for-
mulations are considered and a general conclusion is that for non-smooth additional flux
function the given problem is ill-posed. Thus some regularization techniques should be
used to construct robust and efficient solvers.
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It is shown that the accuracy of discrete schemes for solving the inverse PDE model
is essentially better than the accuracy for similar approximations of the first-kind Volterra
integral model. The comparison is done for fixed sizes of time meshes. An opposite con-
clusion is done when costs of implementations are compared, the CPU time is essentially
smaller for solvers based on discrete approximations of the Volterra equation model.

This fact is very important when the Tikhonov method is applied to stabilize discrete
schemes for noisy data and CGM is used to minimize the variational functional Jα. In the
case of PDE model two discrete parabolic problems should be solved at each iteration.

Conflicts of interest. The author declares no conflicts of interest.
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