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Abstract. Consider a discrete-time insurance risk model in which the one-period insurance and
financial risks are assumed to be independent and identically distributed random pairs, but a strong
dependence structure is allowed to exist between each pair. Recently, Q. Tang and Y. Yang em-
ployed a framework of bivariate regular variation to model the heavy tails and the dependence of
the insurance and financial risks, and they also established an asymptotic formula for the finite-
time ruin probability [Interplay of insurance and financial risks in a stochastic environment, Scand.
Actuar. J., 2019(5):432–451, 2019]. In this paper, by adopting a different approach, we study the
asymptotic behavior of some tail risk measures for the aggregate discounted net loss, including
the tail probability and the conditional loss-based tail expectation. We show both analytically and
numerically how the heavy tailedness and the dependence of each pair of insurance and financial
risks affect the tail risk measures.

Keywords: asymptotics, aggregate discounted net loss, insurance and financial risks, tail risk
measure, bivariate regular variation.

1 Introduction

Assessing right tail risks of aggregate losses of an insurer has become an extremely
important task in risk management since it can provide insurers and regulators with in-
sightful guidance on risk capital calculation and the pricing of insurance products, among
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others. For example, to meet regulatory capital requirements such as Solvency II, insurers
are required to maintain adequate risk capital to prevent bankruptcy. As investments
have become more and more significant in insurance business nowadays2, two types of
fundamental risks should be carefully addressed in conducting solvency assessment: the
insurance risk that is caused by insurance claims and the financial risk that is due to
risky investments. A discrete-time insurance risk model serves as an effective platform
for accommodating these two risks.

Consider a discrete-time risk model in which, within each period i ∈ N, the insurance
risk is quantified as the insurer’s net loss Xi equal to the total amount of claims plus
expenses minus premiums over the period, and the financial risk is quantified as the
stochastic present value factor Yi equal to the reciprocal of the stochastic accumulation
factor calculated according to overall returns on investments over the same period. In this
way, the randomly weighted sum

Sn =

n∑
i=1

Xi

i∏
j=1

Yj , n ∈ N, (1)

represents the stochastic present value of aggregate net insurance losses up to time n.
Such a discrete-time risk model (1) is first introduced by [19,20,26,27], who study the

asymptotic behavior of the probability of ruin by time n, defined by P(max16k6nSk>x),
as the initial capital x of the insurer becomes large. In the majority of works on this study,
it is usually assumed that the insurance and financial risk vectors (Xi, Yi), i ∈ N, form a
sequence of independent and identically distributed (i.i.d.) copies of a generic pair (X,Y ),
while some specific dependence may exist between X and Y . In the presence of heavy-
tailed insurance risks, [4] and [5] obtain some asymptotic formulas for the finite-time ruin
probability under the condition that each pair of the insurance and financial risks follows a
common bivariate Farlie–Gumbel–Morgenstern (FGM) distribution. Fruitful works have
extended the FGM dependence between X and Y to various asymptotic independence
structures; see, e.g., [6, 14, 32, 33], among others.

As a lesson from the global financial crisis of 2007–2009, the key issue, which is
attractive to all practitioners, academics, and regulators, lies in understanding the stronger
tail dependence between the insurance and financial risks and subsequently modeling it
mathematically. This calls for investigation into the concept of multivariate regular vari-
ation (MRV), which provides a rather flexible framework for allowing a variety of strong
tail dependence structures between variables. In recent literature, many concerns have
been addressed in the MRV structure. [12, 31] and [28] carry on their studies under the
MRV framework for (X,Y ) and find that the decay rate of the finite-time ruin probability
is much slower than that in the case of asymptotic dependence.

Motivated by [28], this paper studies the asymptotic behavior of the tail probability
of the aggregate discounted net losses defined in (1), rather than the finite-time ruin

2The Annual Report 2023 of Allianz Group stated that as of December 31, 2023, the total assets
held for investment amounted to 736.8 billion euros, increased by 33.5 billion euros compared to year-
end 2022, mainly in the debt instruments. Available at https://www.allianz.com/en/investor_
relations/results-reports/annual-reports.html.
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probability, and address the interplay of the insurance and financial risks in terms of the
MRV framework. The obtained result shows in a transparent way how the tail probability
is affected by the tail dependence between each pair of insurance and financial risks.
We remark that our main result cannot be deduced from Theorem 1(i) of [28], and our
proof employs a new approach developed by [32] in random difference equations and
mathematical induction.

A second goal of this paper is to study the conditional tail risk measures in the context
of extreme risks and to highlight the application potential of such measures. Precisely
speaking, we shall apply the result on tail probability to the assessment of a conditional
tail expectation-type risk measure of the aggregate discounted net loss, given extreme
scenarios of this aggregate loss. We generalize the conditional tail risk measure of interest
by incorporating a loss function into the conditional tail expectation. In the terminology
of [18], our generalized conditional tail risk measure can be regarded as a specialization
of the extreme Wang distortion risk measure. By specifying the loss function, various
commonly-used risk measures are included, such as the conditional tail expectation,
the conditional tail variance, and even more general the conditional tail moments of
aggregate discounted net losses. These tail risk measures are often used as alternatives
of the initial reserve for insurers to measure the expectation of downside risk and hence
avoid insolvency with a given level of risk tolerance in practice.

The rest of the paper is organized as follows. In Section 2, we prepare some pre-
liminaries needed for our study, in Section 3, we present the main results. In Section 4,
we conduct some numerical studies to illustrate our main findings, and in Section 5, we
complete all proofs.

2 Preliminaries

2.1 Notational convention

Throughout this paper, all limit relationships are according to x → ∞ unless otherwise
stated. For two positive functions f(·) and g(·), as usual, we write f(x) ∼ g(x) if
lim f(x)/g(x) = 1; write f(x) = o(1)g(x) if lim f(x)/g(x) = 0; write f(x) . g(x)
or g(x) & f(x) if lim sup f(x)/g(x) 6 1; and write f(x) � g(x) if 0 < lim inf f(x)/
g(x) 6 lim sup f(x)/g(x) < ∞. Furthermore, for two positive bivariate function f(·, ·)
and g(·, ·), we write f(x, t) ∼ g(x, t) uniformly for all t in a nonempty set A if

lim
x→∞

sup
t∈A

∣∣∣∣f(x, t)g(x, t)
− 1

∣∣∣∣ = 0.

For any set A, denote its indicator function by 1A. We use R+ to represent the interval
[0,∞) and use b·c to represent the floor function. For a nondecreasing function f :R 7→R,
denote by f← its càglàd inverse defined as

f←(y) = inf
{
x ∈ R: f(x) > y

}
, y ∈ R,

where inf ∅ = ∞. For any x, y ∈ R, write x ∨ y = max{x, y} and x+ = x ∨ 0. For
x,y ∈ R2, we write [x,y] = [x1, y1]× [x2, y2], [x,∞) = [x1,∞)× [x2,∞), and so on.
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2.2 Heavy-tailed distributions

In this paper, we shall assume that all insurance and financial risks are heavy-tailed.
For this purpose, let us recall several important classes of heavy-tailed distributions.
Necessarily, a distributionF discussed in this subsection is assumed to possess an ultimate
right tail in the sense that F (x) = 1− F (x) > 0 for all x > 0.

A distribution F on R is said to be long tailed, written as F ∈ L , if it holds for any
y ∈ R that

F (x+ y) ∼ F (x). (2)

Automatically, relation (2) holds uniformly on every compact set of y. This implies that
there exists a nonnegative auxiliary function l(·) with l(x) = o(x) and l(x) ↑ ∞ such
that (2) holds uniformly for all −l(x) 6 y 6 l(x). A distribution F on R is said to
be dominatedly varying tailed, written as F ∈ D , if F (xy) = O(1)F (x) holds for any
0 < y < 1. The intersection L ∩ D forms a useful class of heavy-tailed distributions;
see the monographs [2,10,11] for related discussions. An important subclass of L ∩D is
the class R of regularly varying tailed distributions, which contains almost all practically
useful distributions in L ∩D . A distribution F on R is said to be regularly varying tailed
with index 0 < α < ∞, written as F ∈ R−α, if F (xy) ∼ y−αF (x) holds for any
y > 0. Generally, a positive function f on R is said to be regularly varying at ∞ with
index α ∈ R, written as f ∈ RVα, if f(xy) ∼ yαf(x) holds for any y > 0. When α = 0,
this defines a slowly varying function at∞. See [2] and [22] for textbook treatments of
regular variation. Trivially, for a distribution function F ∈ R−α for some α > 0, we can
also write F ∈ RV−α.

In the terminology of [2], for a distribution F , the upper Matuszewska index of the
function (F (x))−1 is defined as

J+
F = inf

{
− logF ∗(y)

log y
: y > 1

}
with F ∗(y) = lim inf

x→∞

F (xy)

F (x)
, y > 0.

This index is very useful in describing the tail behavior of a distribution function, espe-
cially that in the class D . It is known that, for a distribution F , its upper Matuszewska
index 0 6 J+

F 6 ∞, F ∈ D if and only if J+
F < ∞, and if F ∈ RV−α, then J+

F = α.
In addition, Proposition 2.2.1 of [2] gives that if F ∈ D , then for any p > J+

F , there exist
two positive constants C and x1 such that

F (xy)

F (x)
6 Cy−p ∨ 1 (3)

holds for all x > x1 and xy > x1. It is easy to see from (3) that the relation

x−p = o(1)F (x)

holds for any p > J+
F . Moreover, Karamata’s theorem gives that if F ∈ RV−α for some

α > 1, then
∞∫
x

F (y) dy ∼ xF (x)

α− 1
. (4)

https://www.journals.vu.lt/nonlinear-analysis
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Initiated by [7], the concept of MRV substantially extends that of univariate regular
variation and provides us with a rather flexible framework for modeling multivariate
heavy-tailed risks and their tail dependence structure in a unified manner. The MRV has
found its applications in insurance, finance, and risk management that involve extreme
risks. For example, [12, 28] and [31] apply MRV in insurance and financial risk mod-
eling, and [29] and [24] find its application in credit risk management. In this paper, to
characterize each pair of insurance and financial risks, we briefly introduce here the two-
dimensional version of MRV.

For simplicity, for a distribution F , we abbreviate the càglàd inverse of 1/F to χF ,
i.e.,

χF (x) =

(
1

F

)←
(x), x ∈ R+.

A nonnegative random vector (X,Y ) is said to possess a bivariate regularly varying
(BRV) tail if there exist two representative distribution functions F , G and a nondegener-
ate (i.e., not identically 0) limit measure ν such that

limxP

((
X

χF (x)
,

Y

χG(x)

)
∈ B

)
= ν(B) (5)

holds for every Borel set B ⊂ [0,∞] that is away from 0 and ν-continuous (i.e., ν
assigns zero mass to the boundary ∂B). The definition of BRV in (5) implies that both
F and G are regularly varying. Assume that F ∈ RV−α and G ∈ RV−β for some
α, β > 0, for which case we write (X,Y ) ∈ BRV−α,−β(F,G, ν). In (5), due to the
nondegeneracy of the limit measure on [0,∞] \ {0}, specifying B to ((1, 0),∞] and
((0, 1),∞], respectively, we can obtain the tail behaviors of X and Y

lim
P(X > x)

F (x)
= ν

((
(1, 0),∞

])
and

lim
P(Y > x)

G(x)
= ν

((
(0, 1),∞

])
.

Thus, the representative tails F and G in (5) are proportional, though not necessarily
identical, to the marginal tails of (X,Y ) if the two limits are positive. The reader is
referred to [7] and [22, 23] for the introduction and comprehensive treatments of BRV
or even MRV.

Remarkably, the information of tail dependence in the upper-right tail of (X,Y ) is
contained in the limit measure ν. It allows a variety of tail dependence structures for
(X,Y ). Under (5), if ν((1,∞]) > 0, then

lim
P(X > χF (x), Y > χG(x))

P(X > χF (x))
=

ν((1,∞])

ν(((1, 0),∞])
> 0.

This means that (X,Y ) exhibits large joint movements, and thus, X and Y are asymptoti-
cally dependent. In the case that the limit measure ν is concentrated on a first-quadrant ray

Nonlinear Anal. Model. Control, 30(Online First):1–21, 2025

https://doi.org/10.15388/namc.2025.30.42690


6 Y. Yang et al.

from the origin, X and Y are so-called fully tail dependent. In contrast, if ν((1,∞]) = 0,
then (X,Y ) does not exhibit large joint movements indicating that its components are
asymptotically independent.

3 Main results

This section collects two main results on the tail behavior of the aggregate discounted
net loss Sn in the discrete-time risk model (1) in which the insurance and financial risks
(Xi, Yi), i ∈ N, form a sequence of i.i.d. copies of a generic random vector (X,Y )
possessing a BRV structure. For brevity, we define

κ(x) =
1

(χFχG)
←(x)

, x ∈ R. (6)

If F ∈ RV−α and G ∈ RV−β for some α, β > 0, then by Proposition 0.8(v) of [22] we
have that χF ∈ RV1/α and χG ∈ RV1/β , and hence κ ∈ RV−αβ/(α+β).

The following first result establishes an asymptotic formula for the tail probability of
the aggregate discounted net loss.

Theorem 1. Consider the discrete-time risk model (1) in which the generic pair (X+, Y )
possesses BRV−α,−β(F,G, ν) for some nondegenerate measure ν and two representing
tail distributions F ∈ RV−α and G ∈ RV−β , α, β > 0. If ν((1,∞]) > 0, then it holds
for every n ∈ N that as x→∞,

P(Sn > x) ∼ 1− (E[Y αβ/(α+β)])n

1−E[Y αβ/(α+β)]
ν(A)κ(x), (7)

where the set A = {(u, v) ∈ [0,∞]: uv > 1}, and κ(x) is defined in (6).

Remark 1. Theorem 1 indicates that the tail probability of the aggregate discounted net
loss converges to 0 with a power-like function of order −αβ/(α + β). This is in sharp
contrast to some recent results on asymptotically independent X and Y such as [32] in
which the asymptotic behavior of P(Sn > x) is another power-like function of order−α.
The heavier tail of the aggregate discounted net loss obtained by Theorem 1 manifests the
strong impact of the tail dependence between the insurance and financial risks.

The coefficient ν(A) on the right-hand side of (7) captures the interplay of the insur-
ance and financial risks, which is explicit and computable, though a bit intricate.

Although [28] derives a similar result on the finite-time ruin probability, it is worth
to remark that our Theorem 1 cannot be deduced from theirs due to the lower bound of
P(Sn > x). Indeed, we adopt a different approach in random difference equations and
mathematical induction to prove Theorem 1, whose idea comes from [32]; see Section 5.1
for a detailed discussion.

The second result studies the asymptotic behavior of the conditional loss-based tail
expectation E[ϕ(Sn) |Sn > x], where ϕ : R 7→ R+ is a nondecreasing loss/cost function
with ϕ(∞) = ∞. A similar concept can be found in behavior economics; see, e.g., [1, 8,
13]. As pointed out by [15], for a nonnegative random variable ξ, an unconditional loss-

https://www.journals.vu.lt/nonlinear-analysis
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based expectation E[ϕ(ξ)] coincides with the well-known expected utility in insurance,
which covers many commonly-used risk measures such as the expected value principle,
the mean-variance measure, the Dutch risk measure, and the Esscher premium principle.

Our second result aims to measure the risk of the aggregate discounted insurance
net loss Sn under the condition that it has located in an extreme region. The purpose of
incorporating a loss function ϕ into the conditional tail expectation is to better align the
risk measure with the actual preferences of decision-makers, in a similar spirit of the use
of utility functions in portfolio theory. In practice, the threshold x in E[ϕ(Sn) |Sn > x]
is usually chosen as the value at risk (VaR) of Sn under a confidence level q ∈ (0, 1), i.e.,

VaRq(Sn) = F
←

Sn
(q) = inf

{
x: P(Sn 6 x) > q

}
. (8)

In this scenario, if ϕ(x) = x, then E[ϕ(Sn) |Sn > VaRq(Sn)] reduces to the conditional
tail expectation (CTEq(Sn)); and if ϕ(x) = x2, then E[ϕ(Sn)|Sn > VaRq(Sn)] −
(CTEq(Sn))

2 becomes the so-called tail variance risk measure of Sn. If the loss function
ϕ is chosen to be a power function of order three or four, then the conditional loss-based
tail expectation is related to tail skewness or tail kurtosis of Sn.

In the terminology of a recent work of [18], they propose a general risk measure,
called an extreme Wang distortion risk measure,

ρq(Sn) =

1∫
0

ϕ ◦ F
←

Sn

(
1− p(1− q)

)
dg(p),

where g : [0, 1] 7→ [0, 1] is a nondecreasing distortion function with g(0) = 0 and
g(1) = 1. It can be verified that if g(x) = x, then for the continuous Sn, our explor-
ing E[ϕ(Sn) |Sn > VaRq(Sn)] echoes a specialization of extreme Wang distortion risk
measures for the aggregate discounted net loss.

To generalize a power loss function ϕ in a logical and useful manner, we introduce
the basic technical assumption below, which comes from [9].

Assumption 1. Let ϕ : R 7→ R+ be a nondecreasing function satisfying:

• ϕ is eventually differentiable, i.e., it is differentiable for sufficiently large x;
• ϕ is eventually subhomogeneous, i.e., ϕ(2x) 6 Mϕ(x) for some M > 0 and all

sufficiently large x.

Theorem 2. Consider the discrete-time risk model (1). Under the conditions of Theorem 1
and Assumption 1, if for all i ∈ N and all sufficiently large x,

E

[
ϕ

(
Xi

i∏
j=1

Yj

)
1(Xi

∏i
j=1 Yj>x)

]
<∞, (9)

then it holds for every n ∈ N that as x→∞,

E
[
ϕ(Sn)

∣∣ Sn > x
]
∼ ϕ(x) + 1

κ(x)

∞∫
x

ϕ′(u)κ(u) du, (10)

where the function κ is defined in (6).

Nonlinear Anal. Model. Control, 30(Online First):1–21, 2025
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By choosing a power loss function, a more explicit asymptotic formula for the condi-
tional tail moment can be obtained from Theorem 2.

Corollary 1. Under the conditions of Theorem 1, it holds for any r ∈ [0, αβ/(α + β))
and every n ∈ N that as x→∞,

E
[
Srn
∣∣ Sn > x] ∼ αβxr

αβ − (α+ β)r
. (11)

Further, if both F and G are eventually strictly increasing, then it holds that as q → 1,

E
[
Srn
∣∣ Sn > VaRq(Sn)

]
∼ αβ(F

←
(q)G

←
(q))r

αβ − (α+ β)r

(
1− (E[Y αβ/(α+β)])n

1−E[Y αβ/(α+β)]
ν(A)

)(α+β)r/(αβ)

. (12)

An explicit asymptotic formula for the popular risk measure CTEq(Sn) can be de-
rived from (12) with r = 1.

4 Numerical studies

In this section, we perform some numerical studies. Firstly, we check the accuracy of ap-
proximations obtained from Theorem 1 and Corollary 1 for the tail probability P(Sn>x)
and the conditional tail moment E[Srn |Sn > x] by Monte Carlo simulation; secondly,
we adopt a new measurement to assess the insolvency risk of the underestimation of tail
dependence; finally, we conduct a sensitivity analysis on two risk measures VaRq(Sn)
and CTEq(Sn) to key model parameters including the regular variation indices and the
tail dependence parameter.

Consider the aggregate discounted net loss Sn in (1). The dependence of the generic
insurance and financial risk vector (X,Y ) is described by a Gumbel copula

C(u, v) = exp
{
−
(
(− lnu)γ + (− ln v)γ

)1/γ}
, (u, v) ∈ (0, 1)2, (13)

where γ ∈ [1,∞] determines the strength of upper tail dependence. Specifically, γ = 1
corresponds to the independence case, γ > 1 corresponds to the asymptotic dependence
case with the upper tail dependence coefficient 2 − 21/γ > 0, while γ = ∞ corresponds
to the comonotonicity case; see, e.g., Example 7.37 of [17] for more details.

In our numerical studies, we use the Pareto II distribution to model both the insurance
risk and the financial risk. Recall that a Pareto II distribution with tail index α > 0,
minimum parameter µ ∈ R, and scale parameter σ > 0, denoted by Pareto(α, µ, σ), is
of the form

F (x;α, µ, σ) = 1−
(
1 +

x− µ
σ

)−α
, x > µ.

Concrete model specifications are listed below:

• X follows Pareto(α, µ1, σ1) with α = 3, µ1 = −1, σ1 = 4, and Y follows
Pareto(β, µ2, σ2) with β = 10.85, µ2 = 0, σ2 = 6.5;

• (X,Y ) possesses the Gumbel copula (13) with γ ∈ (1,∞).

https://www.journals.vu.lt/nonlinear-analysis
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4.1 Accuracy of the asymptotic estimates

We first check the accuracy of the asymptotic estimate obtained from Theorem 1. All
model specifications are listed above. Remark that the Gumbel copula (13) possessed
by (X,Y ) is a special Archimedean copula with its generator φ(u) = (− lnu)γ , which
satisfies lims↓0 φ(1 − st)/φ(1 − s) = tγ for any t > 0. Then, since (X,Y ) has Pareto-
distributed margins, Lemma 4.1 of [28] ensures that (X,Y ) possesses the BRV structure
with α = 3, β = 10.85, and ν described by

ν
([
0, (s, t)

]c)
=
(
s−αγ + t−βγ

)1/γ
, (s, t) > 0, (14)

where [0, (s, t)]c = R2
+ \ [0, (s, t)] denotes the complement of [0, (s, t)]. It is easy to

verify that all conditions of Theorem 1 are satisfied, and thus, the asymptotic formula (7)
is applicable. The accuracy of formula (7) is checked by comparing the tail probability
P(Sn > x) on the left-hand side, computed by simulation, and its asymptotic estimate on
the right-hand side.

To calculate the value of the right-hand side of (7), we need to determine ν(A) and
κ(x). Under the above-mentioned specifications, by (14), ν(A) can be calculated as

ν(A) = αβ(γ − 1)

∫∫
st>1

(
s−αγ + t−βγ

)1/γ−2
s−αγ−1t−βγ−1 dsdt, (15)

and by (6), the function κ(x) can be further approximated by

κ(x) ∼
(

x

σ1σ2

)−αβ/(α+β)
. (16)

Indeed, since X and Y follow Pareto(α, µ1, σ1) and Pareto(β, µ2, σ2), respectively, we
have that FX(x) ∼ σ−α1 x−α and GY (x) ∼ σ−β2 x−β . Applying Proposition 2.13(iii)
of [3] leads to (χFχG)(x) ∼ σ1σ2x

(α+β)/(αβ). Again by Proposition 2.13(iii) of [3],
relation (16) follows. Therefore, the right-hand side of (7) becomes easily computable.

Now we assign n = 3 to the period and γ = 5 to the parameter value of the Gumbel
copula (13). We simulate the left-hand side of (7) with a sample of size N = 107 but
directly compute the right-hand side of (7) illustrated in Fig. 1(a). Figure 1(b) shows the
ratio of the simulated probability P(Sn > x) to its estimated value by (7). We observe
that almost all the ratios are close to 1 with estimation errors well within 5%.

We next turn to the asymptotic estimate obtained by formula (11). Besides the above
specifications and parameter setting, we assign r = 2 to the order of the conditional tail
moment. The simulated conditional tail moment E[Srn |Sn > x] in (11) is constructed by∑N

k=1 Ŝ
r
n,k1(Ŝn,k>x)∑N

k=1 1(Ŝn,k>x)

,

where Ŝn,k =
∑n
i=1Xi,k

∏i
j=1 Yj,k, and {(Xi,k, Yi,k), i = 1, . . . , n; k = 1, . . . , N}

is the sample of size N for n pairs of (X,Y ). The simulated and estimated values of
E[Srn |Sn > x], as well as their ratio, are shown in Fig. 2.

Nonlinear Anal. Model. Control, 30(Online First):1–21, 2025
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(a) (b)

Figure 1. Comparison between the simulated and the asymptotic values of P(Sn > x) (a) and their ratio (b)
via the Gumbel copula.

(a) (b)

Figure 2. Comparison between the simulated and the asymptotic values of E[Sr
n |Sn > x] (a) and their

ratio (b) via the Gumbel copula.

4.2 Consequences of underestimating the tail dependence

We are concerned about the consequences of a poor risk management that underestimates
the tail dependence betweenX and Y . Now that we have verified the high accuracy of the
asymptotic formula (7) in Section 4.1, we shall resort to the right-hand side of (7) when
conducting the numerical studies in this section.

In this section, we continue to use the same model specifications and keep most of the
parameter settings as those in Section 4.1, and rewrite the aggregate discounted net loss
in (1) as Sn(γ) and ν(A) in (15) as ν(A; γ) to reflect the tail dependence parameter γ.
Suppose that the total economic capital prepared by the manager of an insurer is x,
then P(Sn(γ) > x) represents the probability that the insurer becomes insolvent. As
usual, in order to attain a solvency level q ∈ (0, 1), the economic capital requirement is
VaRq(Sn(γ)) according to the internal ratings-based approach, which, recalling (8), is
defined as

VaRq
(
Sn(γ)

)
= inf

{
x ∈ R: P

(
Sn(γ) 6 x

)
> q
}
.
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Table 1. The asymptotic estimate of RPI(γ; 1.1) defined by (17) with q = 99.9%.

γ 1.1 1.2 1.3 1.4 1.5

RPI(γ; 1.1) 0.1000% 0.1527% 0.1850% 0.2066% 0.2219%

Suppose that the manager models the aggregate discounted net loss Sn(γ) in which
the true parameter value γ ∈ (1,∞] of the Gumbel copula (13) underlying (X,Y ) is
unknown and is estimated to be γ̂. If the manager underestimates the tail dependence of
(X,Y ), i.e., γ̂ < γ, then the economic capital VaRq(Sn(γ̂)) may be underprepared, and
hence the realized probability of insolvency will be higher than allowed.

To measure the consequences of this underestimation of the tail dependence, we define
the realized probability of insolvency as

RPI(γ; γ̂) = P
(
Sn(γ) > VaRq

(
Sn(γ̂)

))
, q ∈ (0, 1). (17)

In the case of γ̂ < γ, we shall see that RPI(γ; γ̂) > 1 − q, indicating a more acute
exacerbation of the insolvency risk.

We conduct numerical studies of the quantity RPI(γ; γ̂) in (17) to visualize the conse-
quences of the underestimation of the tail dependence. To this end, by assuming solvency
level q ↑ 1, we first apply formulas (7) and (16) to derive the asymptotic estimate for
VaRq(Sn(γ̂))

VaRq
(
Sn(γ̂)

)
∼ σ1σ2

(
(1− (E[Y αβ/(α+β)])n)ν(A; γ̂)

(1− q)(1−E[Y αβ/(α+β)])

)(α+β)/(αβ)

, γ̂ > 1, (18)

where we also used Proposition 2.13(iii) of [3]. By applying (7) and (16) again, we have
that as q ↑ 1, RPI(γ; γ̂) ∼ ν(A; γ)/ν(A; γ̂) · (1− q).

Consider a scenario that the tail dependence of (X,Y ) is underestimated, i.e., 1 <
γ̂ < γ. Specifically, suppose that the manager estimates the tail dependence parameter γ
to be γ̂ = 1.1, but its true value is higher. Assume a solvency level 99.9%, and thus, the
allowed probability of insolvency is 0.1%. Then the manager sets the economic capital
to be VaR99.9%(Sn(1.1)), which apparently becomes inadequate to attain the 99.9%
solvency level since the true value of γ is larger than 1.1. We numerically compute
RPI(γ; 1.1) in Table 1.

Table 1 tabulates RPI(γ; 1.1) with the true value of γ assumed to be larger than 1.1.
Under the above-mentioned model specifications, when γ = 1.2, which is slightly larger
than γ̂ = 1.1, the realized probability of insolvency, in comparison to the allowed level
0.1%, is increased by more than one half. It becomes even worse when a larger value of γ
such as γ = 1.4 is underestimated as γ̂ = 1.1, which would cause the realized probability
of insolvency to be higher than twice of the allowed level 0.1%. Thus, underestimating
the tail dependence of (X,Y ) makes the corresponding economic capital significantly
inadequate to attain the desired solvency level, leading to serious consequences.

4.3 Sensitivity analysis

In Section 4.1, we have conducted an accuracy check for the asymptotic estimates of the
tail probability P(Sn>x) and the conditional tail moment E[Srn | Sn>x]. Building on
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Table 2. The sensitivity analysis of VaRq(Sn) with respect to α, β, and γ.

Model parameters VaRq(Sn)

q = 0.95 q = 0.99 q = 0.999

% change in α and β
+15% −44.846% −47.819% −53.070%
+10% −33.310% −35.646% −40.530%
+5% −18.609% −20.337% −23.175%

(α = 3, β = 10.85) (11.362) (47.073) (251.146)
−5% +26.160% +27.913% +30.674%
−10% +59.434% +66.511% +76.148%
−15% +105.888% +121.135% +147.752%

% change in γ
+15% +10.628% +14.098% +14.682%
+10% +7.606% +9.625% +8.639%
+5% +4.003% +4.958% +4.391%

(γ = 1.5) (11.362) (47.073) (251.146)
−5% −3.817% −5.719% −6.759%
−10% −8.396% −12.435% −15.863%
−15% −13.626% −20.169% −25.756%

Table 3. The sensitivity analysis of CTEq(Sn) with respect to α, β, and γ.

Model parameters CTEq(Sn)

q = 0.95 q = 0.99 q = 0.999

% change in α and β
+15% −52.172% −52.356% −55.448%
+10% −40.243% −39.413% −41.853%
+5% −24.989% −22.988% −24.702%

(α = 3, β = 10.85) (46.387) (146.006) (638.482)
−5% +25.973 +34.568% +40.645%
−10% +64.554 +77.382% +86.376%
−15% +131.700% +159.206% +193.695%

% change in γ
+15% +8.221% +13.615% +16.162%
+10% +6.873% +13.329% +16.610%
+5% +1.244% +6.214% +7.327%

(γ = 1.5) (46.387) (146.006) (638.482)
−5% −10.298% −7.142% −7.771%
−10% −16.455% −13.920% −13.391%
−15% −25.040% −24.532% −26.911%

the previous specifications used in the simulations for Theorem 1 and Corollary 1, we
further explore the impact of three parameters on the two commonly used risk measures
VaRq(Sn) and CTEq(Sn). These three parameters under consideration are the regular
variation indices α and β of the insurance and financial risks and their tail dependence pa-
rameter γ of the Gumbel copula (13). As a benchmark, we set α=3, β=10.85, and γ=5.

We introduce small percentage changes to α, β, and γ, and then document how much
VaRq(Sn) and CTEq(Sn) alter through the right-hand sides of (18) and (12). Tables 2
and 3 summarize the percentage changes in the simulated values of VaRq(Sn) and
CTEq(Sn) for different large values of confidence level q. As expected, the two tables
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display that the smaller the values of α and β are, which correspond to heavier tails for
the insurance and financial risks, the larger the two risk measures become. As the findings
suggest, the VaRq(Sn) and CTEq(Sn) both increase as the dependence between the
insurance and financial risks strengthens, and exhibits a relatively high level of sensitivity
although significantly lower than that caused by the tail indices α and β. This indicates
that the heavy tails of the insurance and financial risks play a dominant role in the effect
on the two risk measures, and the dependence plays a second role.

5 Proofs

5.1 Proof of Theorem 1

We start this section with a series of lemmas. The first three lemmas collect some elemen-
tary but useful properties of heavy-tailed distributions. The first lemma is a refinement of
long-tailed distribution, which can be found in Lemma 2.19 of [11].

Lemma 1. For a distribution V ∈ L , there exists an auxiliary function l satisfying
l(x) ↑ ∞ and l(x) = o(1)xs for any s > 0 such that V (x− u) ∼ V (x) holds uniformly
for all u ∈ [−l(x), l(x)].

The second lemma shows an elementary result regarding dominatedly varying-tailed
distribution, which is due to Proposition 3.1 of [34].

Lemma 2. A distribution V ∈ D if and only if for any distribution W with W (x) =
o(1)V (x), there exists a positive function g such that g(x) ↓ 0, xg(x) ↑ ∞, and
W (xg(x)) = o(1)V (x).

The third lemma is a variation of Lemma 7 of [30], and we can prove it along the line
of Tang and Yuan’s proof.

Lemma 3. Let ξ be a random variable with distribution V ∈ D , let η be a nonnegative
random variable with E[ηp] < ∞ for some p > J+

V , and let {∆x, x ∈ R} be a set of
random events satisfying limx→∞P(∆x) = 0. If {η, {∆x, x ∈ R}} is independent of ξ,
then it holds that

P(ξη > x, ∆x) = o(1)V (x) = o(1)P(ξη > x).

Remark that in Lemma 3, the arbitrary dependence is allowed both between η and
{∆x, x ∈ R} and among random events ∆x for all x ∈ R. The fourth lemma restates the
result of (22) in [28].

Lemma 4. Let X be a real-valued random variable, and let Y be a nonnegative random
variable. Assume that (X+, Y ) ∈ BRV−α,−β(F,G, ν) for a nondegenerate measure ν
and that two representing tails F ∈ RV−α and G ∈ RV−β for some α, β > 0. If
ν((1,∞]) > 0, then it holds that

P(XY > x) ∼ ν(A)κ(x),

where the set A is defined in (7), and the function κ is defined in (6).
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The following lemma is crucially important in the proof of Theorem 1.

Lemma 5. Under the conditions of Lemma 4, if Z is a real-valued random variable,
independent of (X,Y ), with tail H ∈ RV−αβ/(α+β), then it holds that

P
(
(X + Z)Y > x

)
∼ P(XY > x) +P(ZY > x). (19)

Proof. Clearly, Lemma 4 implies that P(XY > x) ∈ RV−αβ/(α+β) because of ν(A) >
ν((1,∞]) > 0. ByH ∈ RV−αβ/(α+β),G ∈ RV−β , and Lemma 2, there exists a positive
function g such that

g(x) ↓ 0, xg(x) ↑ ∞, and G
(
xg(x)

)
= o(1)H(x). (20)

Again by H ∈ RV−αβ/(α+β), Lemma 1 implies that for the above g, there exists a func-
tion h such that h(x) ↑ ∞, 1/g(x) − h(x) → ∞, h(x)(g(x))s → 0 for any s > 0,
and

H

(
1

g(x)
− u
)
∼ H

(
1

g(x)

)
(21)

holds uniformly for all u ∈ [−h(x), h(x)].
We split the tail probability P((X + Z)Y > x) into three parts:

P
(
(X + Z)Y > x

)
= P

(
(X + Z)Y > x, |X| 6 h(x), Y 6 xg(x)

)
+P

(
(X + Z)Y > x, |X| 6 h(x), Y > xg(x)

)
+P

(
(X + Z)Y > x, |X| > h(x)

)
= I1 + I2 + I3. (22)

Since Z is independent of (X,Y ), we have that

I1 =

h(x)∫
−h(x)

xg(x)∫
0

P

(
Z >

x

v
− u
)
P(X ∈ du, Y ∈ dv)

∼
h(x)∫
−h(x)

xg(x)∫
0

P

(
Z >

x

v

)
P(X ∈ du, Y ∈ dv)

= P
(
ZY > x, |X| 6 h(x), Y 6 xg(x)

)
= P(ZY > x)−P

(
ZY > x,

(
|X| > h(x)

)
∪
(
Y > xg(x)

))
∼ P(ZY > x), (23)

where we used the uniformity of (21) in [−h(x), h(x)] in the second step and Lemma 3
in the last step by noticing H ∈ RV−αβ/(α+β) and G ∈ RV−β .

As for I2, by (20) we have that

I2 6 G
(
xg(x)

)
= o(1)H(x) = o(1)P(ZY > x), (24)

where the last step is due to P(ZY > x) � H(x) byH ∈ RV−αβ/(α+β) andG ∈ RV−β .
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We mainly deal with I3. First, consider the upper bound of I3. For any 0 < ε < 1,

I3 6 P
((
XY > (1− ε)x

)
∪ (ZY > εx), |X| > h(x)

)
= P

(
XY > (1− ε)x, |X| > h(x)

)
+P

(
XY 6 (1− ε)x, ZY > εx, |X| > h(x)

)
= I31 + I32. (25)

By H ∈ RV−αβ/(α+β), G ∈ RV−β , and Lemma 3, we have that

I32 6 P
(
ZY > εx, |X| > h(x)

)
= o(1)P(ZY > x). (26)

As for I31, by (4) and κ ∈ RV−αβ/(α+β), we have that

I31 6 P
(
XY > (1− ε)x

)
∼ (1− ε)−αβ/(α+β)P(XY > x). (27)

Plugging (26) and (27) into (25) and by the arbitrariness of ε > 0, we obtain that

I3 . P(XY > x) + o(1)P(ZY > x). (28)

Next, consider the lower bound of I3. For the above 0 < ε < 1,

I3 > P
(
XY > (1 + ε)x, ZY > −εx, X > h(x)

)
> P

(
XY > (1 + ε)x, X > h(x)

)
−P

(
XY > (1 + ε)x, ZY 6 −εx

)
= I33 − I34. (29)

For brevity, we write y(x) = 1/κ(x) ∈ RVαβ/(α+β). Then, by χF ∈ RV1/α, we know
χF ◦ y ∈ RVβ/(α+β). Note that h(x) = o(1)(g(x))−s = o(1)xs for any s > 0 by (20).
This further implies that h(x) = o(1)χF ◦ y(x). By (χF · χG) ◦ y(x) ∼ x, we have that
x 6 (χF ·χG) ◦ y((1+ ε)x) for the above 0 < ε < 1 and all large x. Thus, for the above
0 < ε < 1 and all large x,

I33 > P
(
X+Y > (χF · χG) ◦ y

(
(1 + ε)2x

)
, X+ > h(x)

)
> P

(
X+

χF ◦ y((1 + ε)2x)
· Y

χG ◦ y((1 + ε)2x)
> 1,

X+

χF ◦ y
(
(1 + ε)2x

) > ε

)
∼ ν(Aε)κ

(
(1 + ε)2x

)
∼ (1 + ε)−2αβ/(α+β)ν(Aε)κ(x), (30)

where the set Aε = {(u, v) ∈ [0,∞]: uv > 1, u > ε} tends to the set A as ε ↓ 0,
and ν(∂Aε) = 0 is verified by Lemma 5.2 of [28]. As for I34, by FXY ∈ RV−αβ/(α+β)
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and (24), we have that

I34 = P
(
XY > (1 + ε)x, ZY 6 −εx, 0 < Y 6 xg(x)

)
+P

(
XY > (1 + ε)x, ZY 6 −εx, Y > xg(x)

)
6 P(XY > (1 + ε)x)H

(
− ε

g(x)

)
+G

(
xg(x)

)
= o(1)

(
P(XY > x) +P(ZY > x)

)
. (31)

Combining (29)–(31) with the arbitrariness of ε > 0 and (4) leads to

I3 &
(
1 + o(1)

)
P(XY > x) + o(1)P(ZY > x). (32)

Therefore, (19) follows from (22)–(24), (28), and (32).

Proof of Theorem 1. Since {(Xi, Yi), i ∈ N} is a sequence of i.i.d. random vectors, it
holds that

Sn =

n∑
i=1

Xi

i∏
j=1

Yj
d
=

n∑
i=1

Xi

n∏
j=i

Yj := Tn, n ∈ N,

where d
= stands for equality in distribution. Thus, for (7), it suffices to prove that

P(Tn > x) ∼ 1− (E[Y αβ/(α+β)])n

1− (E[Y αβ/(α+β)])
ν(A)κ(x). (33)

Trivially, (33) holds for n = 1. Now we assume by induction that it holds for n ∈ N, and
we prove it for n+ 1. By the induction assumption and ν((1,∞]) > 0 (thus, ν(A) > 0),
we have that FTn ∈ RV−αβ/(α+β). Note that for every n ∈ N,

Tn+1 = (Xn+1 + Tn)Yn+1.

By using Lemma 5, (4), Breiman’s theorem, and the induction assumption in turn, we
derive that

P(Tn+1 > x) ∼ P(Xn+1Yn+1 > x) +P(TnYn+1 > x)

∼ ν(A)κ(x) +E
[
Y αβ/(α+β)

]
P(Tn > x)

∼
(
1 +

E[Y αβ/(α+β)]− (E[Y αβ/(α+β)])n+1

1−E[Y αβ/(α+β)]

)
ν(A)κ(x)

=
1− (E[Y αβ/(α+β)])n+1

1−E[Y αβ/(α+β)]
ν(A)κ(x).

This completes the proof.
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5.2 Proof of Theorem 2

In this subsection, we first introduce a lemma related to an alternative expected formula,
which is due to Lemma 3 of [9]. For more discussions on alternative expected formulas,
the reader can be referred to [16, 21, 25], among others.

Lemma 6. Let ξ be a real-valued random variable with distribution V , and let ϕ :
[a,∞) 7→ R be a differentiable function such that

∫∞
a−(
∫ x
a

∣∣ϕ′(u)∣∣du)V (dx) <∞ holds
for some a > 0. Then

E
[
ϕ(ξ)1(ξ>x)

]
= ϕ(x)V (x) +

∞∫
x

ϕ′(u)V (u) du

holds for all x > a.

The second lemma comes from [9], and we slightly modify its proof.

Lemma 7. Let ξ1, . . . , ξn be n arbitrarily dependent real-valued random variables, and
let ϕ : R 7→ R+ be a nondecreasing function satisfying Assumption 1. Then

E

[
ϕ

(
n∑
i=1

ξi

)
1(

∑n
i=1 ξi>nK)

]
6Mblog2 nc+1

n∑
i=1

E
[
ϕ(ξi)1(ξi>K)

]
holds for every n ∈ N, some M > 0, and some sufficiently large K > 0.

Proof. Since ϕ(·) is subhomogeneous by Assumption 1, it holds that ϕ(nx) = O(ϕ(x)).
Indeed, by ϕ(2x) 6 M(ϕ(x)) for some M > 0, some large K > 0, and all x > K, it
follows for every fined m ∈ N and all x > 2mK/n that

ϕ(nx) 6Mϕ

(
nx

2

)
6 · · · 6Mm−1ϕ

(
nx

2m−1

)
6Mmϕ

(
nx

2m

)
.

Choosing m = blog2nc+ 1 and noticing that ϕ(·) is nondecreasing, we have that for all
x > K,

ϕ(nx) 6Mmϕ

(
nx

2m

)
6Mmϕ(x) =Mblog2nc+1ϕ(x). (34)

Since ϕ is a nondecreasing and nonnegative function, it follows from (34) that

E

[
ϕ

(
n∑
i=1

ξi

)
1(

∑n
i=1 ξi>nK)

]
6 E

[
ϕ

(
n

n∨
i=1

ξi

)
1(

∨n
i=1 ξi>K)

]

6Mblog2nc+1E

[
ϕ

(
n∨
i=1

ξi

)
1(

∨n
i=1 ξi>K)

]

6Mblog2nc+1
n∑
i=1

E
[
ϕ(ξi)1(ξi>K)

]
.
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In the last step above, we used the method of mathematical induction. Indeed, it holds for
n = 1 that

E

[
ϕ

(
n∨
i=1

ξi

)
1(

∨n
i=1 ξi>K)

]
6

n∑
i=1

E
[
ϕ(ξi)1(ξi>K)

]
.

Assume by induction that this inequality holds for n ∈ N. Thus, it follows from the
induction assumption that

E

[
ϕ

(
n+1∨
i=1

ξi

)
1(

∨n+1
i=1 ξi>K)

]

= E

[
ϕ

(
n+1∨
i=1

ξi

)
1(

∨n+1
i=1 ξi>K)

(
1(

∨n
i=1 ξi>ξn+1) + 1(

∨n
i=1 ξi<ξn+1)

)]

6 E

[
ϕ

(
n∨
i=1

ξi

)
1(

∨n
i=1 ξi>K)

]
+E

[
ϕ(ξn+1)1(ξn+1>K)

]
6
n+1∑
i=1

E
[
ϕ(ξi)1(ξi>K)

]
.

This completes the proof of the lemma.

Proof of Theorem 2. By condition (9), there exists some large K > 0 such that

E

[
ϕ

(
Xi

i∏
j=1

Yj

)
1(Xi

∏i
j=1 Yj>K)

]
<∞

for all i = 1, . . . , n. Since ϕ is differential and nondecreasing, by Lemma 7 we have that
∞∫

nK

( x∫
nK

∣∣ϕ′(u)∣∣du)P(Sn ∈ dx)

=

∞∫
nK

( x∫
nK

ϕ′(u) du

)
P(Sn ∈ dx) = E

[(
ϕ(Sn)− ϕ(nK)

)
1(Sn>nK)

]
6Mblog2 nc+1

n∑
i=1

E

[
ϕ

(
Xi

i∏
j=1

Yj

)
1(Xi

∏i
j=1 Yj>K)

]
<∞.

Hence, Lemma 6 is applicable. Since ϕ is a nondecreasing function, we obtain from
Theorem 1 that

E
[
ϕ(Sn)1(Sn>x)

]
= ϕ(x)P(Sn > x) +

∞∫
x

ϕ′(u)P(Sn > u) du

∼ 1− (E[Y αβ/(α+β)])n

1−E[Y αβ/(α+β)]
ν(A)

(
ϕ(x)κ(x) +

∞∫
x

ϕ′(u)κ(u) du

)
.

This, together with (7), gives relation (10).
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Proof of Corollary 1. By Theorem 2, κ ∈ RV−αβ/(α+β), r < αβ/(α + β), and (4), we
can obtain that

E
[
Srn
∣∣ Sn > x

]
∼ xr + r

κ(x)

∞∫
x

ur−1κ(u) du ∼ αβxr

αβ − (α+ β)r
.

In the above deviation, the applicability of Theorem 2 is justified by the fact that bothXY
and Y have finite moments of order r < αβ/(α + β) because of FXY ∈ RV−αβ/(α+β)
and FY ∈ RV−β , and thus, for each i ∈ N,

E

[(
Xi

i∏
j=1

Yj

)r ]
= E

[
(XiYi)

r
](
E
[
Y r
])i−1

<∞,

implying (9) is satisfied.
Furthermore, our desired relation (12) follows from (11) and the fact that as q → 1,

VaRq(Sn) =

(
1

FSn

)←
1

1− q

∼
(
1

κ

)←(
1− (E[Y αβ/(α+β)])n

1−E[Y αβ/(α+β)]
ν(A)

1

1− q

)
∼
(
1− (E[Y αβ/(α+β)])n

1−E[Y αβ/(α+β)]
ν(A)

)(α+β)/(αβ)(
(χFχG)

←)← 1

1− q

=

(
1− (E[Y αβ/(α+β)])n

1−E[Y αβ/(α+β)]
ν(A)

)(α+β)/(αβ)

F
←
(q)G

←
(q),

where we used Theorem 1 and Proposition 0.8(vi) of [22] in the second step, (1/κ)← ∈
RV(α+β)/(αβ) in the third step, and the last equality holds because both F and G are
eventually strictly increasing.
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