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Abstract. Recently in [V. Berinde and M. Păcurar, Approximating fixed points of enriched Chat-
terjea contractions by Krasnoselskij iterative algorithm in Banach spaces, J. Fixed Point Theory
Appl., 23(4):66, 2021], using the technique of enrichment of contractive mappings by Krasnoselskij
averaging, Berinde and Păcurar introduced a new type of mappings, called enriched Chatterjea-type
mappings. The main aim of this article is to introduce a new semigroup of enriched Chatterjea-
type mappings. We also establish weak and strong convergence results for enriched Chatterjea-type
semigroups using a novel iterative process in uniformly convex Banach spaces. To support the
theoretical results, we conduct numerical experiments demonstrating the convergence behavior of
the iterative scheme under various initial conditions and control sequences. The findings confirm
exponential convergence and highlight the effectiveness and robustness of the proposed method for
common fixed point approximation.

Keywords: enriched Chatterjea-type mappings, semigroups, strong convergence, weak conver-
gence.

1 Introduction

As well known, many real-world problems can be expressed in terms of nonlinear equa-
tions. Since these equations can be translated into equivalent fixed point problems, the
fixed point theory has emerged as an important tool for solving many kinds of real-world
problems. It brings to the fact that the fixed point theory is a fascinating subject with
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a variety of wide applications in pure and applied sciences. One of the famous results in
the fixed point theory, which is known as Banach’s contraction principle, was firstly given
by Banach [2] in 1922. In a metric space setting, it can be briefly stated as follows:

Theorem 1. (See [2].) Let (X, d) be a complete metric space, and let T : X → X be
a Banach contraction mapping, i.e., there exists b ∈ [0, 1) such that for each x, y ∈ X ,

d(Tx, Ty) 6 bd(x, y). (1)

Then T has a unique fixed point. Moreover, for each x0 ∈ X , the Picard iteration
{xn}n∈N∪{0}, which is defined by xn = Txn−1 for all n ∈ N, converges to a fixed
point of T .

This principle is a very popular and powerful tool for solving problems arising in
various fields of applied mathematical analysis and its applications. So far, according
to importance and simplicity, the Banach’s contraction principle have been improved,
extended, and generalized in various directions by several authors. An interesting direc-
tion of research is the generalization of the Banach’s contraction principle by defining
contractive-type mappings on metric spaces. In the Rhoades’ classification of contractive
conditions in [22], there are many interesting types of contractive definitions on a metric
space (X, d), for example: let C be a nonempty subset of a metric space X , and let T be
a self-mapping on C.

(A) (Kannan [12]): A mapping T is called a Kannan contraction mapping if there
exists a1 ∈ [0, 1/2) such that for each x, y ∈ C,

d(Tx, Ty) 6 a1
[
d(x, Tx) + d(y, Ty)

]
; (2)

(B) (Bianchini [5]): A mapping T is called a Bianchini contraction mapping if there
exists a2 ∈ [0, 1) such that for each x, y ∈ C,

d(Tx, Ty) 6 a2 max
{
d(x, Tx), d(y, Ty)

}
; (3)

(C) (Chatterjea [8]): A mapping T is called a Chatterjea contraction mapping if there
exists a3 ∈ [0, 1/2) such that for each x, y ∈ C,

d(Tx, Ty) 6 a3
[
d(x, Ty) + d(y, Tx)

]
; (4)

(D) A mapping T is called a Chatterjea-type contraction mapping if there exists a4 ∈
[0, 1) such that for each x, y ∈ C,

d(Tx, Ty) 6 a4 max
{
d(x, Ty), d(y, Tx)

}
. (5)

In 2021, using the technique of enrichment of contractive-type mappings by Kras-
noselskii averaging, first introduced in [3], Berinde and Păcurar [4] introduced a new
class of generalized Chatterjea contraction mappings in the setting of a Banach space as
follows.
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Definition 1. (See [4].) Let C be a nonempty subset of a normed space (X, ‖·‖). A map-
ping T : C → C is called an enriched Chatterjea mapping if there exist c ∈ [0, 1/2) and
k ∈ [0,∞) such that for each x, y ∈ C,∥∥k(x− y) + Tx− Ty

∥∥
6 c
[∥∥(k + 1)(x− y) + y − Ty

∥∥+ ∥∥(k + 1)(y − x) + x− Tx‖
]
. (6)

To indicate two constants involved in (6), we shall also call T as a (k, c)-enriched Chat-
terjea mapping.

Definition 2. (See [4].) Let C be a nonempty subset of a normed space (X, ‖·‖). A map-
ping T : C → C is called an enriched Chatterjea-type mapping if there exist c̃ ∈ [0, 1)
and k ∈ [0,∞) such that for each x, y ∈ C,∥∥k(x− y) + Tx− Ty

∥∥
6 c̃max

{∥∥(k + 1)(x− y) + y − Ty
∥∥, ∥∥(k + 1)(y − x) + x− Tx

∥∥}. (7)

To indicate two constants involved in (7), we shall also call T as a (k, c̃)-enriched Chat-
terjea-type mapping.

Moreover, they presented several examples to illustrate the richness of the new class
of enriched Chatterjea contractions. The reader can see in the following remark.

Remark 1.
(i) A Chatterjea contraction mapping on a normed space satisfying (4) is a (0, c)-

enriched Chatterjea mapping with c = a3, but the converse is not true as shown
by the next example.

(ii) Let C = [0, 1] be a subset of a usual norm (R, ‖·‖), and let T : C → C be defined
by Tx = 1 − x for all x ∈ C. Then for any a ∈ [0, 1/2), T is a (1− 2a, a)-
enriched Chatterjea mapping but T is not a Chatterjea contraction mapping (see
[4] for more details).

(iii) By (1), each Banach contraction mapping with b < 1/3 is a (0, b)-enriched Chat-
terjea mapping, and also by (2), each Kannan contraction mapping with a1 < 1/4
is a (0, a1)-enriched Chatterjea mapping.

(iv) A Chatterjea-type contraction mapping on a normed space satisfying (5) is
a (0, c̃)-enriched Chatterjea-type mapping with c̃ = a4.

(v) Any (k, c)-enriched Chatterjea mapping satisfying (6) is a (k, c̃)-enriched Chat-
terjea-type mapping with c̃ = 2c.

To investigate correlations between the newly proposed mappings and the well-known
classical mappings in the setting of normed spaces, letC be a nonempty subset of a normed
space (X, ‖·‖), T be a self-mapping on C, and F (T ) denotes the set of fixed points
of T , that is, F (T ) = {x ∈ C: Tx = x}. A mapping T is called a nonexpansive
mapping if ‖Tx − Ty‖ 6 ‖x − y‖ for all x, y ∈ C, and a mapping T is called a strictly
quasicontractive mapping if F (T ) 6= ∅ and there exists a5 ∈ [0, 1) such that for each
x ∈ C and z ∈ F (T ), we get

‖Tx− z‖ 6 a5‖x− z‖. (8)
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It is well known that the nonexpansive mapping is necessarily continuous on the whole
domain, while the enriched Chatterjea mapping is, in general, not continuous (see the
mapping T in Examples 1.3.4, 1.3.5, and 1.3.7 of [20]). In particular, there exist a non-
expansive mapping that is not enriched Chatterjea mapping and an enriched Chatterjea
mapping that is not nonexpansive, so the class of enriched Chatterjea mappings is inde-
pendent of that of nonexpansive. If F (T ) 6= ∅ and we take k = 0 and y = z ∈ F (T ) in
(6), then we obtain (8). This implies that the class of (0, c)-enriched Chatterjea mappings
possessing a fixed point is contained within the class of strictly quasicontractive map-
pings. Moreover, the enriched Chatterjea mapping T in Remark 1(ii) is an enriched Chat-
terjea-type mapping and is also a nonexpansive, which is not a strictly quasicontractive
mapping (see [4] for more details).

On the other hand, the study of common fixed points for a family of nonlinear map-
pings has been considered by many authors via several directions. One of the interest
directions is to establish common fixed point results for semigroups of nonlinear map-
pings because these results are important subjects in nonlinear operator theory and their
applications. In particular, nontrivial applications can reduce in the form of semigroups
such as differential equations, integral equations, and dynamical systems. Due to the
importance of common fixed point results for semigroups, many researchers have been
investigated common fixed point results for semigroups of several types of nonlinear
mappings such as nonexpansive semigroups [18, 24], Lipschitzian semigroups [7, 17],
pseudocontraction semigroups [1,9], weak contraction semigroups [13,15], enriched non-
expansive semigroups [14], enriched Kannan semigroups [16,21], and so on (see [25–27]
and the references therein). For instance, Kozlowski [17] presented the existence theorems
for common fixed points of monotone contractive and monotone nonexpansive semi-
groups in ordered Banach spaces and discussed some applications to differential equations
and dynamical systems. Very recently, a new semigroup of enriched Kannan contraction
mappings was introduced by Kesahorm and Sintunavarat in [16]. They also provided some
weak and strong convergence theorems for the Mann iterative process to approximate
common fixed points of enriched Kannan semigroups in uniformly convex Banach spaces.

This paper is motivated by several interesting contractive types of mappings in [4].
We begin by introducing a novel semigroup framework based on enriched Chatterjea-type
mappings. Next, we prove two types of convergence theorems for these semigroups using
the novel iterative process in uniformly convex Banach spaces. To establish the weak
convergence result, we employ Opial’s condition together with the uniform convexity of
the underlying Banach space. By analyzing the asymptotic behavior of the Krasnoselskii
iterative sequence and applying properties of enriched Chatterjea-type mappings, we
demonstrate that the generated sequence converges weakly to the unique common fixed
point of the semigroup. For the strong convergence theorem, we combine the geomet-
ric properties of uniformly convex Banach spaces with key characteristics of enriched
Chatterjea-type semigroups. By constructing a suitable error estimate and exploiting the
convexity structure of the space, we demonstrate that the sequence converges strongly to
the unique common fixed point. To support and show our theoretical results, we present
numerical tests that highlight how well the proposed method works and how it converges
with different starting points and parameter selections.
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2 Preliminaries

Throughout this paper, R and N will represent the set of all real numbers and the set
of all positive integers, respectively. Let X be a uniformly convex Banach space, C be
a nonempty closed convex subset of X , and G be an unbounded subset of [0,∞) such
that for all s, t ∈ G, we have

s+ t ∈ G and if s > t, then s− t ∈ G, (9)

e.g., G = [0,∞), G = N, or G = N ∪ {0}.
Recall that a Banach space X is said to satisfy the Opial’s condition, as stated in [19],

if for each sequence {xn} in X weakly convergent to x ∈ X ,

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ X with y 6= x. In addition, for a bounded sequence {xn} in X , the set
AC({xn}) defined by

AC
(
{xn}

)
=
{
y ∈ C: lim sup

n→∞
‖xn − y‖ = inf

y0∈C
lim sup
n→∞

‖xn − y0‖
}

is called the asymptotic center of {xn} relative to C. It is well known that in a uniformly
convex Banach space, AC({xn}) is a singleton set.

Next, we give the following facts that will be used in the proof of our results.

Lemma 1. (See [10].) Let C be a closed convex subset of a uniformly convex Banach
space X satisfying the Opial’s condition. Suppose that {xn} is a sequence in C. If {xn}
converges weakly to a point p, then p ∈ AC({xn}).

Lemma 2. (See [23].) Let X be a uniformly convex Banach space and 0 < αn < 1 for
all n ∈ N. Suppose that {xn} and {yn} are two sequences in X . If there is a nonnegative
number d such that lim supn→∞ ‖xn‖ 6 d, lim supn→∞ ‖yn‖ 6 d, and

lim
n→∞

∥∥αnxn + (1− αn)yn
∥∥ = d,

then limn→∞ ‖xn − yn‖ = 0.

The end of this section presents a fundamental fact about the class of Chatterjea-type
mappings, which will be used in our proof later in this paper.

Proposition 1. Let C be a nonempty subset of a normed space X , and let T : C → C be
a Chatterjea-type mapping on C, i.e., there exists c ∈ [0, 1) such that

‖Tx− Ty‖ 6 cmax
{
‖x− Ty‖, ‖y − Tx‖

}
for all x, y ∈ C. Then T is a mapping satisfying the following condition:

‖Tx− y‖ 6 c‖x− y‖+ 1

1− c
‖Ty − y‖

for all x, y ∈ C.
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Proof. For each x, y ∈ C, we have

‖Tx− y‖ 6 ‖Tx− Ty‖+ ‖Ty − y‖
6 cmax

{
‖x− Ty‖, ‖y − Tx‖

}
+ ‖Ty − y‖. (10)

If ‖x− Ty‖ > ‖y − Tx‖, then (10) implies

‖Tx− y‖ 6 c‖x− Ty‖+ ‖Ty − y‖
6 c‖x− y‖+ c‖y − Ty‖+ ‖Ty − y‖
6 c‖x− y‖+ (1 + c)‖Ty − y‖. (11)

If ‖x− Ty‖ < ‖y − Tx‖, then (10) implies

‖Tx− y‖ 6 c‖y − Tx‖+ ‖Ty − y‖

and so

‖Tx− y‖ 6 1

1− c
‖Ty − y‖. (12)

Since 1/(1− c) > 1 + c, from (11) and (12), for each x, y ∈ C, we have

‖Tx− y‖ 6 c‖x− y‖+ 1

1− c
‖Ty − y‖. �

3 Common fixed point results for enriched Chatterjea-type semi-
groups

The first purpose of this section is to introduce a new semigroup of enriched Chatterjea-
type mappings, called an enriched Chatterjea-type semigroup, with the following defini-
tion.

Definition 3. Let C be a nonempty subset of a normed space X and G be an unbounded
subset of [0,∞) satisfying condition (9). Then the family τ = {Tt : C → C, t ∈ G}
is called an enriched Chatterjea-type semigroup on C if the following conditions are
satisfied:

(C1) For each t ∈ G, Tt : C → C is an enriched Chatterjea-type mapping on C,
i.e., there are constants kt ∈ [0,∞) and ht ∈ [0, 1) such that for each x, y ∈ C,∥∥kt(x−y) + Ttx− Tty

∥∥
6 htmax

{∥∥(kt+1)(x−y) + y − Tty
∥∥,∥∥(kt+1)(y−x) + x− Ttx

∥∥}; (13)

(C2) Ts+tx = TsTtx for all s, t ∈ G and x ∈ C;
(C3) For all x ∈ C, the mapping G 3 t 7→ Ttx is continuous.
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If kt = k ∈ [0,∞) and ht = h ∈ [0, 1) for all t ∈ G in (13), the family τ = {Tt :
C → C, t ∈ G} will be called a (k, h)-enriched Chatterjea-type semigroup on C. The
set of all common fixed points of τ is denoted by Fix(τ), that is,

Fix(τ) = {x ∈ C: Ttx = x for all Tt ∈ τ}.

Remark 2. It is easy to show that if τ = {Tt : C → C, t ∈ G} is an enriched Chat-
terjea-type semigroup on C and Fix(τ) 6= ∅, then Fix(τ) is a singleton set. Indeed, let
Fix(τ) 6= ∅. Suppose that z0, z1 ∈ Fix(τ) with z0 6= z1. For each t ∈ G, we get

(kt + 1)‖z0 − z1‖
= ‖kt(z0 − z1) + Ttz0 − Ttz1‖

6 htmax
{∥∥(kt + 1)(z0 − z1) + z0 − Ttz0

∥∥,∥∥(kt + 1)(z1 − z0) + z1 − Ttz1
∥∥}

6 ht(kt + 1)‖z0 − z1‖.

Obviously, this is a contradiction. Hence, τ has a unique common fixed point.

Now, we give some examples of enriched Chatterjea-type semigroups, which show
that there exist an enriched Chatterjea-type semigroup in the sense of Definition 3.

Example 1. LetC = [−1, 1] be a nonempty closed convex subset of a usual normed space
(X, ‖·‖) = (R, | · |) and τ = {Tt : C → C, t ∈ N} such that for each t ∈ N, a mapping
Tt : C → C defined by

Ttx =

{
−xe1−t if x ∈ [−1, 0),
xe−t if x ∈ [0, 1].

Firstly, we claim that τ is a (k, h)-enriched Chatterjea-type semigroup on C with
k = 1 and h = 0.9. In this claim, let t ∈ N. For each x, y ∈ C with x = y, it is clearly
that ‖k(x− y) + Ttx− Tty‖ = 0, and so (13) holds. Now we assume that x 6= y. In the
first case when x, y ∈ [−1, 0) with x > y, we obtain∥∥k(x− y) + Ttx− Tty

∥∥
=
∣∣x− y − xe1−t + ye1−t

∣∣ = ∣∣(1− e1−t
)
(x− y)

∣∣
=
(
1− e1−t

)
(x− y) 6 −1.8y +

(
1− e1−t

)
x.

It follows from (1−e1−t)x < 0.9(1−e1−t)x 6 0 together with the above inequality that∥∥k(x− y) + Ttx− Tty
∥∥

6 −1.8y + 0.9
(
1− e1−t

)
x = 0.9

(
−2y + x− xe1−t

)
= 0.9

∥∥(1 + 1)(y − x) + x+ xe1−t
∥∥ = h

∥∥(k + 1)(y − x) + x− Ttx
∥∥

6 hmax
{∥∥(k + 1)(x− y) + y − Tty

∥∥,∥∥(k + 1)(y − x) + x− Ttx
∥∥}.
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Similarly, for x, y ∈ [−1, 0) with x < y, we can show that (13) holds. In the next case,
let x, y ∈ [0, 1]. Without loss of generality, we may assume x > y. Then we get∥∥k(x− y) + Ttx− Tty

∥∥
=
∣∣x− y + xe−t − ye−t

∣∣ = ∣∣(1 + e−t)(x− y)
∣∣

=
(
1 + e−t

)
(x− y) 6 1.8x−

(
1 + e−t

)
y. (14)

Since 0 6 0.9(1 + e−t)y 6 (1 + e−t)y, from Eq. (14) we obtain∥∥k(x− y) + Ttx− Tty
∥∥

6 1.8x− 0.9
(
1 + e−t

)
y = 0.9

(
2x− y − ye−t

)
= 0.9

∥∥(1 + 1)(x− y) + y − ye−t
∥∥ = h

∥∥(k + 1)(x− y) + y − Tty
∥∥

6 hmax
{∥∥(k + 1)(x− y) + y − Tty

∥∥,∥∥(k + 1)(y − x) + x− Ttx
∥∥}.

In the last case, let (x, y) ∈ ([−1, 0)×[0, 1])∪((0, 1]×[−1, 0]). Without loss of generality,
we can assume that x ∈ [−1, 0) and y ∈ [0, 1]. Hence, we get∥∥k(x− y) + Ttx− Tty

∥∥
=
∣∣x− y − xe1−t − ye−t∣∣ = ∣∣(1− e1−t

)
x−

(
1 + e−t

)
y
∣∣

=
(
1 + e−t

)
y −

(
1− e1−t

)
x 6 0.45

(
3 + e−t

)
y − 0.45

(
3− e1−t

)
x

= 0.45
[
3y + e−ty − 3x+ e1−tx

]
= 0.45

[∥∥3x− e1−tx− 3y − e−ty
∥∥]

= 0.45
[∥∥2(x− y) + y − e−ty − 2(y − x)− x− e1−tx

∥∥]
6 0.45

[∥∥2(x− y) + y − e−ty
∥∥+ ∥∥2(y − x) + x+ e1−tx

∥∥]
6 0.45(M +M) = 0.9M,

where M := max{‖(k+ 1)(x− y) + y − Tty‖, ‖(k+ 1)(y − x) + x− Ttx‖}. From all
possible cases we conclude that for each t ∈ N, Tt is an enriched Chatterjea-type mapping
on C satisfying (13) with k = 1 and h = 0.9. This implies that condition (C1) holds.

Next, we will show that Ts+tx = TsTtx for all s, t ∈ G and for all x ∈ C. For fixed
s, t ∈ N and for each x ∈ [−1, 0), we have

TsTtx = Ts
(
−xe1−t

)
=
(
−xe1−t

)
e−s = −xe1−(s+t) = Ts+tx.

Similarly, we can verify Ts+tx = TsTtx in the other case. Hence, the family τ satis-
fies (C2).

Finally, it is clear that for each x ∈ C, the mapping N 3 t 7→ Ttx ∈ C is continuous,
which implies that the family τ satisfies (C3).
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Based on the aforementioned, we can conclude from Definition 3 that τ is a (k, h)-
enriched Chatterjea-type semigroup on C with k = 1 and h = 0.9.

Example 2. Let X = L2([0, 1]) be equipped with the square-integrable norm ‖·‖ :
X ×X → R defined by

‖f‖ =

( 1∫
0

|f(x)|2 dx

)1/2

for all f ∈ X . Then (‖·‖, X) is a normed space. Let

C =
{
f ∈ X: 0 6 f(x) 6 1 almost everywhere (a.e.) on [0, 1]

}
be a nonempty closed convex subset of X and τ = {Tt : C → C, t ∈ N} such that for
each t ∈ N, a mapping Tt : C → C is defined for each f ∈ C by

(Ttf)(x) = a−btf(x)

for all x ∈ [0, 1], where a, b ∈ (1,∞) such that ab ∈ (3,∞). Then the family τ satisfies
conditions (C2) and (C3) in Definition 3. Indeed, fix s, t ∈ N, and for each f ∈ C, we
have

TsTtf(x) = Ts
(
a−btf(x)

)
=
(
a−bs

)(
a−btf(x)

)
= a−b(s+t)f(x) = Ts+tf(x)

for all x ∈ [0, 1], and the mapping N 3 t 7→ Ttf is continuous.
Now, we will verify that for each t ∈ N, Tt is an enriched Chatterjea-type mapping

on C with kt ∈ [0, (1− 3a−b)/2) and ht ∈ [2(kt + a−b)/(1− a−b), 1). For fixed t ∈ N
and for each f1, f2 ∈ C, we get∥∥kt(x− y) + Ttf1 − Ttf2

∥∥
=
∥∥kt(f1 − f2) + a−btf1 − a−btf2

∥∥ =
∥∥(kt + a−bt

)
(f1 − f2)

∥∥
6
(
kt + a−b

)
‖f1 − f2‖. (15)

Since a−b < 1/3, we obtain 0 < 1− a−b < 1. Then we have(
1− a−b

)
‖f1 + f2‖

=
∥∥(1− a−b)f1 + (1− a−b)f2∥∥

=
∥∥f1 − a−bf1 + f2 − a−bf2

∥∥ = ‖f1 − Ttf1 + f2 − Ttf2‖

=
∥∥(kt + 1)(f1 − f2) + f2 − Ttf2 + (kt + 1)(f2 − f1) + f1 − Ttf1

∥∥
6
∥∥(kt + 1)(f1 − f2) + f2 − Ttf2

∥∥+ ∥∥(kt + 1)(f2 − f1) + f1 − Ttf1
∥∥

6 2max
{∥∥(kt + 1)(f1 − f2) + f2 − Ttf2

∥∥,∥∥(kt + 1)(f2 − f1) + f1 − Ttf1
∥∥}.
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Multiplying both sides of the above inequality by 0 < (kt + a−b)/(1− a−b), we obtain(
kt + a−b

)
‖f1 + f2‖

6
2(kt + a−b)

1− a−b
max

{∥∥(kt+1)(f1−f2) + f2 − Ttf2
∥∥,∥∥(kt + 1)(f2 − f1) + f1 − Ttf1

∥∥}
6 htmax

{∥∥(kt+1)(f1−f2) + f2 − Ttf2
∥∥,∥∥(kt+1)(f2−f1) + f1 − Ttf1

∥∥}, (16)

where kt ∈ [0, (1 − 3a−b)/2) and ht ∈ [2(kt + a−b)/(1 − a−b), 1). From the fact that
‖f1 − f2‖ 6 ‖f1 + f2‖ for all f1, f2 ∈ C it follows together with (15) and (16) that∥∥kt(x− y) + Ttf1 − Ttf2

∥∥
6
(
kt + a−b

)
‖f1 − f2‖ 6

(
kt + a−b

)
‖f1 + f2‖

6 htmax
{∥∥(kt+1)(f1−f2) + f2−Ttf2

∥∥,∥∥(kt+1)(f2−f1) + f1 − Ttf1
∥∥}.

This implies that condition (C1) holds. Therefore, we conclude that τ is an enriched
Chatterjea-type semigroup on C with kt ∈ [0, (1 − 3a−b)/2) and ht ∈ [2(kt + a−b)/
(1− a−b), 1).

Let C be a nonempty closed convex subset of a uniformly convex Banach space X
and G be an unbounded subset of [0,∞) satisfying condition (9). Throughout this paper,
unless otherwise specified, we will use the notation τ to denote an enriched Chatterjea-
type semigroup on C, that is,

τ = {Tt : C → C, t ∈ G},

and we will also use the notation

τ :=
{
T
µt

t : C → C, t ∈ G
}
,

which represents a family of the averaged mappings T
µt

t associated with Tt ∈ τ and is
defined for each t ∈ G by

T
µt

t = (1− µt)I + µtTt,

where I is the identity mapping, and µt := 1/(kt + 1) such that kt is a constant in (13)
of an enriched Chatterjea-type mapping Tt.

It is straightforward to prove that Tt and T
µt

t share the same fixed points for all t ∈ G,
which implies that Fix(τ) = Fix(τ).

Moreover, for each Tt ∈ τ , we obtain that the averaged operator T
µt

t is a Chatterjea-
type contraction mapping. Indeed, since Tt is an enriched Chatterjea-type mapping on C,
there are kt ∈ [0,∞) and ht ∈ [0, 1) such that∥∥kt(x− y) + Ttx− Tty

∥∥
6 htmax

{∥∥(kt + 1)(x− y) + y − Tty
∥∥,∥∥(kt + 1)(y − x) + x− Ttx

∥∥}
https://www.journals.vu.lt/nonlinear-analysis
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for all x, y ∈ C. Putting kt = 1/(µt − 1) in the above inequality, for each x, y ∈ C, we
have ∥∥∥∥( 1

µt
− 1

)
(x− y) + Ttx− Tty

∥∥∥∥
6 htmax

{∥∥∥∥ 1

µt
(x− y) + y − Tty

∥∥∥∥, ∥∥∥∥ 1

µt
(y − x) + x− Ttx

∥∥∥∥},
which yields∥∥(1− µt)(x− y) + µtTtx− µtTty

∥∥
6 htmax

{∥∥(x− y) + µty − µtTty
∥∥,∥∥(y − x) + µtx− µtTtx

∥∥}.
From the above inequality we obtain∥∥Tµt

t x− T
µt

t y
∥∥ 6 htmax

{∥∥x− Tµt

t y
∥∥,∥∥y − Tµt

t x
∥∥}

for all x, y ∈ C. This implies that T
µt

t is a Chatterjea-type contraction mapping with
a contractive constant ht.

Now, we introduce a new iterative process {xn} in C within the context of a semi-
group τ , inspired by the Krasnoselskii iterative process in the context of a single operator,
as follows:

x0 ∈ C, xn+1 = (1− λtn)xn + λtnTtnxn (17)

for all n ∈ N ∪ {0}, where {tn}n∈N∪{0} ⊆ G, Ttn ∈ τ , and λtn ∈ (0, 1] for all tn ∈ G.
Next, we introduce the definition needed to prove our main results in this section,

which are motivated by the concept of modular contraction and the behavior of enriched
Chatterjea-type semigroups.

Definition 4. Let C be a nonempty subset of a normed space X , G be an unbounded
subset of [0,∞) satisfying condition (9), τ = {Tt : C → C, t ∈ G} be an enriched
Chatterjea-type semigroup, and {xn}n∈N∪{0} be a sequence defined by the iterative
scheme (17) with a sequence {tn}n∈N∪{0} ⊆ G.

(i) τ is said to satisfy condition (L) if lims→∞(supx∈C ‖Tsx− x‖) = 0.
(ii) {tn}n∈N∪{0} is said to satisfy condition (K) if the following condition holds:

lim
n→∞

‖xn − Ttnxn‖ =⇒ lim
n→∞

‖xn − Tsnxn‖

whenever {sn}n∈N∪{0} ⊆ G with sn > tn for all n ∈ N ∪ {0}.
(iii) {tn}n∈N∪{0} is said to satisfy condition (H) if

∏n
i=0 hti → 0 as n→∞, where

ktn ∈ [0,∞) and htn ∈ (0, 1] are constants involving a (ktn , htn)-enriched
Chatterjea-type mapping in τ .

Remark 3. From the above definition we get the following assertions:

(i) If τ satisfies condition (L) and limn→∞ tn = ∞, then {tn}n∈N∪{0} satisfies
condition (K).
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(ii) If G is a singleton set, then {tn}n∈N∪{0} satisfies condition (K).
(iii) In the case of (k, h)-enriched Chatterjea-type semigroups, it is evident that the

sequence {tn}n∈N∪{0} satisfies both conditions (K) and (H).

In the sequel, we establish some weak and strong convergence theorems for enriched
Chatterjea-type semigroups in uniformly convex Banach spaces.

Theorem 2. Let X be a uniformly convex Banach space satisfying the Opial’s condi-
tion, C be a nonempty closed convex subset of X , G be an unbounded subset of [0,∞)
satisfying condition (9), and τ = {Tt : C → C, t ∈ G} be a (k, h)-enriched Chatterjea-
type semigroup with Fix(τ) 6= ∅. Suppose that {xn}n∈N∪{0} is a sequence defined by the
iterative scheme (17) with {tn}n∈N∪{0} ⊆ G satisfying condition (K) and λtn := mµtn ∈
(0, 1], where m ∈ (0, 1) and µtn := 1/(k + 1). Then {xn}n∈N∪{0} converges weakly to
the unique common fixed point of τ .

Proof. Assume that z ∈ Fix(τ) = Fix(τ). We divide the proof into three steps.
Step 1. We will show that limn→∞ ‖xn−Ttnxn‖ = 0. For each n ∈ N∪{0}, we get

xn+1 = (1− λtn)xn + λtnTtnxn = (1−mµtn)xn +mµtnTtnxn

= (1−m)xn +m(1− µtn)xn +mµtnTtnxn

= (1−m)xn +m
[
(1− µtn)xn + µtnTtnxn

]
= (1−m)xn +mT

µtn

tn xn (18)

and then

‖xn+1 − z‖ =
∥∥(1−m)xn +mT

µtn

tn xn − z
∥∥

6 (1−m)‖xn − z‖+m
∥∥Tµtn

tn xn − z
∥∥. (19)

By Proposition 1 and (19), we get

‖xn+1 − z‖ 6 (1−m)‖xn − z‖+m

(
h‖xn − z‖+

1

1− h
‖Tµtn

tn z − z‖
)

6 (1−m)‖xn − z‖+m‖xn − z‖ = ‖xn − z‖. (20)

From inequality (20) we obtain that the sequence {‖xn − z‖} is nonincreasing and
bounded below. Hence, limn→∞ ‖xn − z‖ exists. Now, we may assume that there is
d > 0 such that

lim
n→∞

‖xn − z‖ = d. (21)

From (18) and (21) we have

d = lim
n→∞

‖xn+1 − z‖ = lim
n→∞

∥∥(1−m)(xn − z) +m
(
T
µtn

tn xn − z
)∥∥. (22)

Since T
µtn

tn is a Chatterjea-type mapping for each n ∈ N ∪ {0}, we obtain

‖Tµtn

tn xn − z‖ = ‖T
µtn

tn xn − Tz‖ 6 htn max
{
‖xn − Tz‖, ‖z − T

µtn

tn xn‖
}

= htn max
{
‖xn − z‖, ‖z − T

µtn

tn xn‖
}

https://www.journals.vu.lt/nonlinear-analysis
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for all n ∈ N ∪ {0}. Both cases of the maximum value imply that∥∥Tµtn

tn xn − z
∥∥ 6 ‖xn − z‖

for all n ∈ N ∪ {0}. It yields that

lim sup
n→∞

∥∥Tµtn

tn xn − z
∥∥ 6 lim sup

n→∞
‖xn − z‖ = d. (23)

It follows from Lemma 2 together with (21), (22), and (23) that

lim
n→∞

∥∥xn − Tµtn

tn xn
∥∥ = 0. (24)

For each n ∈ N ∪ {0}, we get∥∥xn − Tµtn

tn xn
∥∥ =

∥∥xn − (1− µtn)xn − µtnTtnxn
∥∥

= ‖µtnxn − µtnTtnxn‖ = µtn‖xn − Ttnxn‖

and then
‖xn − Ttnxn‖ = (k + 1)

∥∥xn − Tµtn

tn xn
∥∥. (25)

From (24) and (25) we conclude that

lim
n→∞

‖xn − Ttnxn‖ = 0. (26)

Step 2. We will verify that limn→∞ ‖xn − Ttxn‖ = 0 for all t ∈ G. Let t ∈ G. For
each n ∈ N ∪ {0}, we obtain

‖xn − Ttxn‖
6 ‖xn − Tt+tnxn‖+ ‖Tt+tnxn − Ttxn‖
= ‖xn − Tt+tnxn‖+ ‖TtTtnxn − Ttxn‖
= ‖xn − Tt+tnxn‖+

∥∥k(Ttnxn − xn) + TtTtnxn − Ttxn − k(Ttnxn − xn)
∥∥

6 ‖xn − Tt+tnxn‖+
∥∥k(Ttnxn − xn) + TtTtnxn − Ttxn

∥∥+ ∥∥k(Ttnxn − xn)∥∥
6 ‖xn − Tt+tnxn‖
+ hmax

{∥∥(k + 1)(Ttnxn − xn) + xn − Ttxn
∥∥,

‖(k + 1)(xn − Ttnxn) + Ttnxn − Tt+tnxn
∥∥}+ k‖Ttnxn − xn‖

= ‖xn − Tt+tnxn‖
+ hmax

{∥∥(k + 1)(Ttnxn − xn) + (xn − Ttxn)
∥∥,∥∥(k + 1)(xn − Ttnxn) + (xn − Tt+tnxn)‖

}
+ k‖Ttnxn − xn‖

6 ‖xn − Tt+tnxn‖+ h
[
(k + 1)‖xn − Ttnxn‖+ ‖xn − Ttxn‖+ ‖xn − Tt+tnxn‖

]
+ k‖xn − Ttnxn‖

= (1 + h)‖xn − Tt+tnxn‖+
(
h(k + 1) + k

)
‖xn − Ttnxn‖+ h‖xn − Ttxn‖,
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which implies that

‖xn − Ttxn‖ 6
1 + h

1− h
‖xn − Tt+tnxn‖+

h(k + 1) + k

1− h
‖xn − Ttnxn‖.

Taking the limit as n→∞ in the above inequality, by (26) and condition (K), we have

lim
n→∞

‖xn − Ttxn‖ = 0

for all t ∈ G.

Step 3. We will verify that {xn}n∈N∪{0} converges weakly to the unique common
fixed point of τ . As X is uniformly convex and {xn}n∈N∪{0} is bounded, there exists
a subsequence {xnl

} of {xn}n∈N∪{0} such that {xnl
} converges weakly to z0 ∈ X . Set

un := xnl
, then it follows from Lemma 1 that z0 ∈ AC({un}). For each t ∈ G, by

Proposition 1, we have∥∥Tµt

t z0 − un
∥∥ 6 h‖un − z0‖+ 1

1− h
∥∥Tµt

t un − un
∥∥

for all n ∈ N. Taking the limit superior as n→∞ in the above inequality, we get

lim sup
n→∞

∥∥Tµt

t z0 − un
∥∥ 6 h lim sup

n→∞
‖un − z0‖+

1

1− h
lim sup
n→∞

∥∥Tµt

t un − un
∥∥.

It follows from the fact in Step 2 that

lim sup
n→∞

∥∥Tµt

t z0 − un
∥∥ 6 lim sup

n→∞
‖z0 − un‖. (27)

Since z0 ∈ AC({un}) and T
µt

t z0 ∈ C, we get

lim sup
n→∞

‖z0 − un‖ = inf
y∈C

lim sup
n→∞

‖y − un‖ 6 lim sup
n→∞

∥∥Tµt

t z0 − un
∥∥. (28)

Inequalities (27) and (28) imply that

lim sup
n→∞

‖z0 − un‖ = lim sup
n→∞

∥∥Tµt

t z0 − un
∥∥

and so T
µt

t z0 ∈ AC({un}). Since X is uniformly convex, AC({un}) is a singleton set.
Hence, T

µt

t z0 = z0 for all t ∈ G, that is, z0 ∈ Fix(τ) = Fix(τ). Assume that another
subsequence {xnk

} of {xn}n∈N∪{0} is such that {xnk
} converges weakly to z1 ∈ X .

Similarly, we can show that z1 ∈ Fix(τ). Since Fix(τ) 6= ∅, we get that τ has a unique
common fixed point. So z0 = z1, and it follows that {xn}n∈N∪{0} has unique weak
subsequential limit in Fix(τ). Therefore, {xn}n∈N∪{0} converges weakly to the unique
common fixed point of τ .

Based on Remark 3(i), we can derive the following result from Theorem 2.
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Corollary 1. Let X be a uniformly convex Banach space satisfying the Opial’s condi-
tion, C be a nonempty closed convex subset of X , G be an unbounded subset of [0,∞)
satisfying condition (9), τ = {Tt : C → C, t ∈ G} be a (k, h)-enriched Chatterjea-type
semigroup with Fix(τ) 6= ∅, and condition (L) is satisfied. Suppose that {xn}n∈N∪{0}
is a sequence defined by the iterative scheme (17) with {tn}n∈N∪{0} ⊆ G satisfying
limn→∞ tn = ∞ and λtn := mµtn ∈ (0, 1], where m ∈ (0, 1) and µtn := 1/(k + 1).
Then {xn}n∈N∪{0} converges weakly to the unique common fixed point of τ .

Theorem 3. Let C be a nonempty closed convex subset of a uniformly convex Banach
spaceX , G be an unbounded subset of [0,∞) satisfying condition (9), τ = {Tt : C → C,
t ∈ G} be an enriched Chatterjea-type semigroup, and Fix(τ) 6= ∅. Suppose that
{xn}n∈N∪{0} is a sequence defined by the iterative scheme (17) with {tn}n∈N∪{0} ⊆ G
satisfying condition (H) and λtn := µtn = 1/(ktn+1) ∈ (0, 1] such that ktn is a constant
involving a (ktn , htn)-enriched Chatterjea-type mapping. Then {xn}n∈N∪{0} converges
strongly to the unique common fixed point of τ .

Proof. For each n ∈ N ∪ {0}, we have

‖xn+1 − z‖ =
∥∥(1− µtn)xn + µtnTtnxn − z

∥∥ =
∥∥Tµtn

tn xn − z
∥∥

6 htn‖z − xn‖+
1

1− htn

∥∥Tµtn

tn z − z
∥∥ = htn‖z − xn‖.

By induction, we get

‖xn+1 − z‖ 6
n∏
i=0

hti‖z − x0‖

for all n ∈ N. Taking the limit as n→∞ in the above inequality and using condition (H),
we get

lim
n→∞

‖xn+1 − z‖ = 0.

Therefore, the sequence {xn}n∈N∪{0} converges strongly to the unique common fixed
point of τ .

Finally, we will discuss the case of semigroups of enriched Chatterjea mappings. We
begin with the following definition.

Definition 5. Let C be a nonempty closed convex subset of a uniformly convex normed
space X , and let G be an unbounded subset of [0,∞) satisfying condition (9). Then the
family τ = {Tt : C → C, t ∈ G} is called an enriched Chatterjea semigroup on C if the
following conditions are satisfied:

(C1) For each t ∈ G, Tt : C → C, there is an enriched Chatterjea mapping on C, i.e.,
there are constants kt ∈ [0,∞) and ct ∈ [0, 1/2) such that for each x, y ∈ C,∥∥kt(x− y) + Ttx− Tty

∥∥
6 ct

[∥∥(kt + 1)(x− y) + y − Tty
∥∥+ ∥∥(kt + 1)(y − x) + x− Ttx

∥∥]; (29)

(C2) Ts+tx = TsTtx for all s, t ∈ G and x ∈ C;
(C3) For all x ∈ C, the mapping G 3 t 7→ Ttx is continuous.
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If kt=k ∈ [0,∞) and ct=c∈ [0, 1/2) for all t ∈ G in (29), the family τ = {Tt : C → C,
t ∈ G} will be called a (k, c)-enriched Chatterjea semigroup on C.

Remark 4. It is easy to verify that any enriched Chatterjea semigroup onC is an enriched
Chatterjea-type semigroup on C. Indeed, let τ = {Tt : C → C, t ∈ G} be an enriched
Chatterjea semigroup on C. Then, for each t ∈ G, there are constants kt ∈ [0,∞) and
ct ∈ [0, 1/2) such that∥∥kt(x− y) + Ttx− Tty

∥∥
6 ct

[∥∥(kt + 1)(x− y) + y − Tty
∥∥+ ∥∥(kt + 1)(y − x) + x− Ttx

∥∥]
6 2ctMt,

where

Mt := max
{∥∥(kt + 1)(x− y) + y − Tty

∥∥,∥∥(kt + 1)(y − x) + x− Ttx
∥∥}.

Therefore, τ is an enriched Chatterjea-type semigroup on C. Obviously, any (k, c)-en-
riched Chatterjea semigroup is a (k, h)-enriched Chatterjea-type semigroup with h = 2c.

As a direct consequence of the above fact, we can derive the following corollaries
from Theorems 2 and 3.

Corollary 2. LetX be a uniformly convex Banach space satisfying the Opial’s condition,
C be a nonempty closed convex subset of X , G be an unbounded subset of [0,∞) satis-
fying condition (9), and τ = {Tt : C → C, t ∈ G} be a (k, c)-enriched Chatterjea semi-
group with Fix(τ) 6= ∅. Suppose that {xn}n∈N∪{0} is a sequence defined by the iterative
scheme (17) with {tn}n∈N∪{0} ⊆ G satisfying condition (K) such that limn→∞ tn = ∞
and λtn := mµtn ∈ (0, 1], where m ∈ (0, 1) and µtn := 1/(k + 1). Then {xn}n∈N∪{0}
converges weakly to the unique common fixed point of τ .

Corollary 3. Let C be a nonempty closed convex subset of a uniformly convex Ba-
nach space X , G be an unbounded subset of [0,∞) satisfying condition (9), τ = {Tt:
C → C, t ∈ G} be an enriched Chatterjea semigroup, and Fix(τ) 6= ∅. Suppose that
{xn}n∈N∪{0} is a sequence defined by the iterative scheme (17) with {tn}n∈N∪{0} ⊆G
satisfying condition (H) and λtn := µtn = 1/(ktn +1) ∈ (0, 1] such that ktn is a con-
stant involving a (ktn , ctn)-enriched Chatterjea mapping. Then {xn}n∈N∪{0} converges
strongly to the unique common fixed point of τ .

Proof. By Remark 4, τ is an enriched Chatterjea-type semigroup. Hence, by Theorem 3,
we can conclude that {xn}n∈N∪{0} converges strongly to the unique common fixed point
of τ .

4 A numerical experiment

In this section, we give a numerical example to support Theorem 3 and present some
results of numerical experiments for approximating common fixed points of such a semi-
group by using the iterative process presented in (17). Additionally, we analyze the rate
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of convergence of the iterative scheme in our numerical example. By computing the error
at each iteration and estimating the order of convergence, we assess how efficiently the
iterative process approximates the common fixed points and verify the theoretical results.
The concept of rate of convergence provides a quantitative measure of the efficiency of
an iterative process. The following definition formalizes this concept in the context of
common fixed point iteration.

Definition 6. Let C be a nonempty subset of a Banach space X , G be an unbounded
subset of [0,∞) satisfying condition (9), τ = {Tt : C → C, t ∈ G} be a family of
mappings, and Fix(τ) 6= ∅. Suppose that {xn}n∈N∪{0} is a sequence generated by an iter-
ative process such that {xn}n∈N∪{0} converges to z ∈ Fix(τ). We say that {xn}n∈N∪{0}
converges to z with order of convergence p > 1 and rate constant D > 0 if and only if

lim
n→∞

‖xn+1 − z‖
‖xn − z‖p

= D.

However, other more technical rate definitions are needed if the limit does not exist.
Integer powers of p are commonly encountered and are typically referred to by the

following specific names:

• If p = 1 and 0 < D < 1, the convergence is called linear.
• If p = 2, the convergence is called quadratic.
• If p = 3, the convergence is called cubic.

In general, the convergence is said to be superlinear when p > 1, and the convergence is
called sublinear when 0 < p < 1.

In particular, the sequence {xn}n∈N∪{0} is said to converge to z exponentially if there
exist constants M > 0 and 0 < ρ < 1 such that ‖xn − z‖ 6 Mρn for all n ∈ N.
Define ωn = ‖xn − z‖; this quantity measures the distance between the nth iterate
and the common fixed point z. The behavior of the sequence {ωn} provides important
insight into the convergence rate of the iterative process. In this case, the error ωn decays
exponentially as n→∞.

Example 3. Consider again the family τ of Example 1, that is, τ = {Tt : C → C, t ∈ N}
is defined for all t ∈ N by

Ttx =

{
−xe1−t if x ∈ [−1, 0),
xe−t if x ∈ [0, 1].

Following Example 1, the family τ is a (k, h)-enriched Chatterjea-type semigroup on C
with k = 1 and h = 0.9. Set λtn := µtn = 1/(k + 1) = 1/2 in the iterative scheme (17)
with {tn}n∈N∪{0} ⊆ N such that limn→∞ tn = ∞ and tn > 1 for all n ∈ N ∪ {0}.
Now, all conditions of Theorem 3 are satisfied. By Theorem 3, we can conclude that the
sequence {xn}n∈N∪{0} converges strongly to a common fixed point z of τ . In this case,
z = 0.
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For each x0 ∈ [−1, 1] \ {0}, the iterative scheme (17) haves the following form:

x1 =

{
1
2x0(1− e1−t0) if x0 ∈ [−1, 0),
1
2x0(1 + e−t0) if x0 ∈ (0, 1],

x2 =

{
1
2x1(1− e1−t1) = (12 )

2x0(1− e1−t0)(1− e1−t1) if x0 ∈ [−1, 0),
1
2x1(1 + e−t1) = (12 )

2x0(1 + e−t0)(1 + e−t1) if x0 ∈ (0, 1],

...

xn =

{
( 12 )

nx0
∏n−1
i=0 (1− e1−ti) if x0 ∈ [−1, 0),

( 12 )
nx0

∏n−1
i=0 (1 + e−ti) if x0 ∈ (0, 1]

(30)

for all n ∈ N∪{0}. To define ωn = |xn−z| for all n ∈ N∪{0}, we obtain the following
ratio for each n ∈ N ∪ {0}:

ωn+1

ωn
=
|xn+1 − 0|
|xn − 0|

=

{
1
2 (1− e1−tn) if x0 ∈ [−1, 0),
1
2 (1 + e−tn) if x0 ∈ (0, 1],

and then limn→∞ ωn+1/ωn = 1/2 ∈ (0, 1). This implies that {xn}n∈N∪{0} converges
to 0 with order of convergence p = 1 and the rate constant 1/2 ∈ (0, 1). Hence, the
convergence is linear. In addition, from (30) we obtain

ωn = |xn − 0|

=

{
|( 12 )

nx0
∏n−1
i=0 (1− e1−ti)| if x0 ∈ [−1, 0),

|( 12 )
nx0

∏n−1
i=0 (1 + e−ti)| if x0 ∈ (0, 1]

6

{
( 12 )

n|x0| if x0 ∈ [−1, 0),
( 12 )

n|x0|(1 + e−1)n−1 if x0 ∈ (0, 1]

6

{
( 12 )

n|x0| if x0 ∈ [−1, 0),
( 1+e−1

2 )n|x0| if x0 ∈ (0, 1]

for all n ∈ N ∪ {0}. This implies that the sequence {xn}n∈N∪{0} converges to 0
exponentially and also refers to the error ωn, which decays exponentially as n→∞.

Next, we present the results of the numerical experiment for approximating the com-
mon fixed point of τ by using the iterative process presented in (17). Here, each test is
terminated when ωn 6 10−14.

In the first experiment, we choose {tn}n∈N∪{0} = {2(n + 1)}n∈N∪{0}. In this ex-
periment, there are five initial guesses x0 ∈ {−1,−0.5, 0.1, 0.7, 0.9} for testing. Table 1
and Fig. 1 illustrate the performance of the iteration with various initial guesses x0. The
convergence behavior is consistent across all choices, but some trends emerge:

• As seen in Fig. 1(a), the iteration converges to the same fixed point regardless of
the initial guess. However, the speed of convergence varies. For instance, starting
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(a) (b)

Figure 1. Convergence behavior of Krasnoselskii iterative process {xn}n∈N∪{0} with different initial
guesses x0.

Table 1. Numerical results for Krasnoselskii iterative process {xn}n∈N∪{0} with different initial guesses x0.

n The value of ωn for different initial guesses x0

x0 = −1 x0 = −0.5 x0 = 0.1 x0 = 0.7 x0 = 0.9

1 0.4751 0.2376 0.0509 0.3564 0.4582
5 0.0295 0.0147 0.0032 0.0223 0.0287

10 9.2072 · 10−4 4.6036 · 10−4 9.9730 · 10−5 6.9811 · 10−4 8.9757 · 10−4

20 8.9914 · 10−7 4.4957 · 10−7 9.7393 · 10−8 6.8175 · 10−7 8.7653 · 10−7

30 8.7807 · 10−10 4.3903 · 10−10 9.5110 · 10−11 6.6577 · 10−10 8.5599 · 10−10
...

...
...

...
...

...
43 1.0719 · 10−13 5.3593 · 10−14 1.1601 · 10−14 8.1271 · 10−14 1.0449 · 10−13

44 5.3593 · 10−14 2.6796 · 10−14 6 10−14 4.0635 · 10−14 5.2245 · 10−14

45 2.6796 · 10−14 1.3398 · 10−14 2.0318 · 10−14 2.6123 · 10−14

46 1.3398 · 10−14 6 10−14 1.0159 · 10−14 1.3061 · 10−14

47 6 10−14 6 10−14 6 10−14

from x0 = 0.1 results in the fastest convergence, reaching near-zero values within
fewer iterations.

• Table 1 records the error ωn, which confirms that all sequences converge to the
common fixed point with high precision (within 10−14 by the 47th iteration).

• As illustrated in Fig. 1(b), which presents the plot of log(ωn) against the iteration
number, the convergence behavior of the iterative process is clearly linear as indi-
cated by the straight line pattern. This implies that the error decreases exponentially
with each iteration.

In the second experiment, we examine the impact of different sequences {tn}n∈N∪{0}
defined for each t ∈ N ∪ {0} by n + 5, 3n + 8, n2 + 4, n2 + n + 3, and n3 + 2,
respectively, with fixed x0 = 0.9 for testing. To evaluate the efficiency and convergence
behavior of the proposed iterative process, we consider the performance under different
sequences {tn}n∈N∪{0} as shown in Table 2 and Fig. 2. The observations are summarized
as follows.

Nonlinear Anal. Model. Control, 30(Online First):1–23, 2025

https://doi.org/10.15388/namc.2025.30.42692


20 T. Kesahorm, W. Sintunavarat

(a) (b)

Figure 2. Convergence behavior of the Krasnoselskii iterative process {xn}n∈N∪{0} with different sequence
{tn}n∈N∪{0}.

Table 2. Numerical results for the Krasnoselskii iterative process {xn}n∈N∪{0} with different sequence
{tn}n∈N∪{0}.

n The value of ωn for different sequence {tn}n∈N∪{0}
tn = n+ 5 tn = 3n+ 8 tn = n2 + 4 tn = n2 + n+ 3 tn = n3 + 2

1 0.4511 0.4500 0.4530 0.4530 0.4724
5 0.0282 0.0281 0.0283 0.0283 0.0295

10 8.8236 · 10−4 8.7892 · 10−4 8.8513 · 10−4 8.8494 · 10−4 9.2271 · 10−4

20 8.6168 · 10−7 8.5832 · 10−7 8.6438 · 10−7 8.6420 · 10−7 9.0108 · 10−7

30 8.4148 · 10−10 8.3821 · 10−10 8.4412 · 10−10 8.4394 · 10−10 8.7996 · 10−10
...

...
...

...
...

...
43 1.0272 · 10−13 1.0232 · 10−13 1.0304 · 10−13 1.0302 · 10−13 1.0742 · 10−13

44 5.1360 · 10−14 5.1160 · 10−14 5.1521 · 10−14 5.1510 · 10−14 5.3709 · 10−14

45 2.5680 · 10−14 2.5580 · 10−14 2.5761 · 10−14 2.5755 · 10−14 2.6854 · 10−14

46 1.2840 · 10−14 1.2790 · 10−14 1.2880 · 10−14 1.2878 · 10−14 1.3427 · 10−14

47 6 10−14 6 10−14 6 10−14 6 10−14 6 10−14

• As shown in Fig. 2(a), the values of xn approach the same common fixed point
regardless of the form of tn. The convergence curves nearly overlap, indicating
that the iteration is not sensitive to the choice of tn.

• Table 2 confirms uniform error reduction across all sequences. By the 47th itera-
tion, wn has dropped below 10−14 in every case, indicating high accuracy.

• As shown in Fig. 2(b), the plot of log(ωn) versus the iteration number demonstrates
that the convergence is linear with the error magnitude decreasing exponentially at
each step.

From the numerical results it is clearly demonstrated that the iterative process con-
verges strongly to the common fixed point z = 0 for a wide range of initial guesses x0 ∈
[−1, 1] \ {0} and for various choices of the sequence {tn}n∈N∪{0}. The error values ωn
consistently decrease with each iteration, confirming the theoretical convergence results.
From the tabulated values and graphical plots of log(ωn) it is evident that the iterative
process exhibits exponential convergence regardless of the starting point or the form
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of tn. Moreover, the rate of convergence remains stable and efficient across all consid-
ered scenarios, indicating the robustness and reliability of the proposed scheme. These
results validate that the Krasnoselskii process, under appropriate conditions, is not only
theoretically sound but also practically effective for common fixed point approximation
in numerical settings.

5 Conclusions and future work

We first introduced an enriched Chatterjea-type semigroup by defining it in normed spaces.
Also, we established weak and strong convergence theorems for enriched Chatterjea-type
semigroups using the proposed iterative process in the setting of uniformly convex Banach
spaces. Numerical examples are given to support that there exists an enriched Chatterjea-
type semigroup in the sense of Definition 3, and the numerical experiment is presented to
illustrate that the proposed iterative process converge strongly to the unique common fixed
point of an enriched Chatterjea-type semigroup under certain assumptions in Theorem 3.

In light of the findings of this study, several promising directions for future research
can be pursued. It would be of particular interest to explore the applicability of the
proposed enriched Chatterjea-type mappings in broader mathematical settings such as
smooth Banach spaces, CAT(0) spaces, or modular function spaces. Additionally, we
could look into how these mappings work in b-metric spaces, particularly by including
ideas of weakly T -Kannan and weakly T -Chatterjea contractions as mentioned by Kadel-
burg et al. in [11]. Such generalizations would contribute to extending the semigroup
framework to more general.

Another direction involves analyzing the convergence properties of the proposed iter-
ation process under weaker contractive conditions or through the use of hybrid iterative
schemes that combine various types of contractive mappings. Inspired by the work of
Borcut et al. in [6], investigating tripled fixed point theorems or multi-tupled fixed point
problems for enriched Chatterjea-type mappings, particularly in partially ordered Banach
spaces, represents an intriguing theoretical expansion.

From a computational perspective, extending the numerical experiments to higher-
dimensional problems or applying the method to real-world scenarios, such as image
processing, machine learning, or nonlinear systems modeling, may offer valuable in-
sights. Additionally, conducting a comparative analysis of the proposed algorithm with
other existing iterative methods, focusing on the rate of convergence and computational
efficiency, could enhance its practical relevance and applicability in applied mathematics
and engineering.
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