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Abstract. The main objective of this article is to analyse the stability properties of a model involving
humans, animals and contaminated environment. As a first step, the model is formulated, and its
biological well-posedness is proved. Then the basic reproduction number is derived using the next
generation matrix (NGM) method. The local and global asymptotic stability of the system at the
disease free and endemic equilibrium points are also established. Finally, numerical simulations to
illustrate the validity of the theoretical results are performed.
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1 Introduction

Infectious diseases and the casualties caused by their rapid spread pose a global threat,
especially to the poor and resource deficient countries. The aftermath of the rapid spread
of infectious diseases are beyond the damages in public health as they can significantly
affect the day to day life and global economy.

Leptospirosis is a notable infectious disease, which is zoonotic in nature and predomi-
nantly prevalent in the tropical and subtropical regions. The disease caused by the bacteria
Leptospira affects both humans and animals alike. Leptospires enter into humans either
directly through contact with infected animals (rats, livestock, dogs, pigs, cats etc.) or
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indirectly through the soil and water contaminated with the urine, tissues or other bodily
fluids of infected animals. Leptospirosis can cause severe health problems in both humans
and animals. Interested readers may go through the monographs [9, 28] and references
therein for further details. The above discussion underlines the need to understand the
transmission dynamics of leptospirosis, forecast potential outbreaks and develop effective
control strategies.

Mathematical modelling is an effective tool for describing and analysing complex
real-world phenomena, providing insights into their current dynamics and aiding in the
prediction of their future dynamics. Differential equations models are widely used across
various fields to describe systems in which time changes are of significant interest. In
particular, they are widely used in the studies of population dynamics, epidemiology,
climate modelling, cancer research [1], ecological systems such as food chains [17],
predator–prey interactions [4] etc.

Infectious diseases are primarily studied using compartmental differential equations
models, which subdivide populations into compartments based on the disease status.
The flow of population among compartments are described by system of differential
equations. The theory of compartmental differential equations models in the context of
infectious diseases originated from the pioneering work of Kermack and Mckendrick
in 1927 [11]. Formulating and analysing the compartmental models provide valuable
insights into the transmission dynamics of the disease spread, which can aid in predicting
potential outbreaks, formulating public policies, assessing impact of interventions and
effective disease control.

There is abundant literature on compartmental models [11], which studied the trans-
mission dynamics of leptospirosis. Rodents being considered as primary reservoir of
leptospires [28], a lot of works have been done focusing the infection in rodents and
the spreading in humans and rodents. Some of the works worth mentioning are [7, 16,
27]. Pimpunchat et al. proposed a compartmental model to investigate the dynamical
behaviour of leptospirosis [24]. The article [5] studied the leptospirosis spread in the
endemic states of India and performed sensitivity analysis to show that the meteorological
factors triggering the incidence rate are rainfall, fishing, climate, agriculture etc. Based on
their study, preventive strategies to reduce the spread of leptospirosis were also suggested.
For more works, readers can refer the monographs [6, 13, 26] and references therein.

The article [13] presented a compartmental model involving the presence of leptospira
bacteria in the environment to study leptospirosis and discussed how the exposure of
living organisms to these bacteria significantly facilitates the transmission of the disease.
Studies indicate that leptospires in a free-living state may persist in wet soil or surface
water from a few weeks to almost a year even during dry season and it reproduces in
contaminated environment [13, 29]. In fact, contaminated environment – particularly sur-
face water and waterlogged soil – acts as a secondary reservoir for free-living leptospires.
Heavy rainfall and flood create favourable conditions for leptospires to survive and repro-
duce [13]. Hence outbreaks of leptospirosis often tend to follow up after rainy season.
Occupation in fields like agriculture, animal husbandry, veterinary health care, waste
management etc., which requires close contact with animals or exposure to contaminated
environment, elevates the risk for contracting leptospirosis [10].
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Stability analysis of leptospirosis compartmental model 3

Although earlier studies have considered the influence of contaminated environment
in the disease spread, it still has not been completely explored. In [16], Holt developed
a system of ordinary differential equations to study the interaction between rodents and
leptospira bacteria alone. An age structured SIR model involving cattles and free-living
bacteria is considered in [6]. Though Triampo et al. [27] proposed a more accurate model
with humans, vectors and bacteria, the direct transmission from bacteria to humans is
not explored. In [7], Baca-Carrasco et al. put forward a SI model incorporating the direct
transmission from bacteria to humans. But recovered class is a key component in study-
ing disease dynamics whose inclusion is necessary for far more accurate and complete
representation. In [3], the authors have proposed and analysed stability properties of
a fractional-order compartmental model for leptospirosis, including recovered class in
humans and considering the environmental effects. Stability analysis of a simple ODE
model to study the dynamics of leptospirosis by incorporating recovered classes in both
human and vector populations, along with the contaminated environment, is given in
[15].

Stability analysis of dynamical systems studies its long-time behaviour by analysing
the impact due to small perturbations near equilibrium points. Such a study in epidemic
models eventually investigates whether the disease will die out, persist or continue to
spread in the population. For this reason, many researchers have performed stability
analysis for compartmental models, which are often formulated to provide a general
framework for a class of diseases with similar nature of spread or to govern the spread
of some specific disease. These are some of the works on stability analysis of epidemic
models: [2, 14, 18, 24, 25].

To the best of our knowledge, no ODE compartmental model for leptospirosis with
the environmental compartment considered the global stability at the endemic equilibrium
point. This motivated the authors to develop a leptospirosis model following the ideas
in [13] and analyse the stability at both disease-free and endemic equilibrium points.

Novelties of the work. In the formulated model, we have considered human and
animal populations, each categorised into susceptible, infected and recovered classes,
along with free-living leptospira population, giving significant attention to the direct and
indirect transmission of the disease. We have considered logistic growth for the free-living
leptospira in the environment, providing more accurate and realistic representation of the
growth limited by the carrying capacity of environment. Though some earlier studies
considered the transmission of leptospirosis under the influence of free-living leptospires
in contaminated environment, our model is expected to provide a more comprehensive
understanding of the transmission of leptospirosis due to the novelties of our model.

Difficulties of the work. The method of Lyapunov functions is widely used to perform
global asymptotic stability for dynamical systems. But the absence of a general procedure
for constructing Lyapunov functions makes it a challenging task in higher dimensions.
The Li–Muldowney geometrical approach of autonomous system [19] and a general cri-
terion for proving global asymptotic stability of equilibria for nonlinear autonomous
systems has been proposed in [20]. To our knowledge, no previous studies have applied
this method in five or higher dimensions. This article presents the first exploration of the
method to investigate the global stability at the endemic equilibrium in five dimensions.
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2 Model description

In this section, we formulate an ODE compartmental model for leptospirosis transmis-
sion dynamics with a special focus on contaminated environment. While formulating
a mathematical model to study an infectious disease dynamics, one needs to make some
assumptions regarding population characteristics, disease status etc. Leptospirosis, being
an endemic in many countries, requires the consideration of its long-term dynamics,
leading to incorporation of birth and death rates into the model. Leptospirosis is primarily
transmitted through infected animals and contaminated environment [13]. Deaths due to
leptospirosis are relatively small, transmission from mother to offspring does not occur or
is rare [27] and offers only temporary immunity after recovery [13]. Also, all newborns
are considered non-immunized [27], and we assume constant human (Nh) and animal
(Na) populations to reduce complexity of the model without significantly compromising
its accuracy [24]. In the absence of shedding from infected animals, the growth of lep-
tospira bacteria is not enough to maintain itself in the environment due to its decay [8].
In light of the above discussions, the following key assumptions were adopted to formu-
late the model.

(A1) Both human and animal populations are assumed to be constant.
(A2) Every newborn is susceptible.
(A3) Recovered humans and animals loss immunity over time.
(A4) Humans cannot transmit the disease neither directly nor indirectly.
(A5) Vertical transmission of the disease is absent.
(A6) There is no disease related death.
(A7) Pathogen population cannot maintain itself through growth in the contaminated

environment. So µL > µg . For that, we refer to Table 1.

Based on the disease status, both human and animal population are subdivided into 3
disjoint compartments. Let Sh, Ih and Rh denote susceptible, infected and recovered
humans, respectively. Sa, Ia and Ra denote their counterparts in animal population. In
addition to this, a compartment L representing free-living leptospires in the environment
is also incorporated, which holds greater importance in disease spread as contaminated
environment is a secondary reservoir for the leptospires. If Nh(t) and Na(t) denote the

Table 1. Parameters with units used for the model.

Notation Parameter description Notation Parameter description
µh Birth (death) rate of humans µa Birth (death) rate of animals
βha Transmission rate from animal βaa Transmission rate from animal

to human to animal
βhL Transmission rate from contaminated βaL Transmission rate from contaminated

environment to human environment to animal
γh Recovery rate of humans γa Recovery rate of animals
νh Rate of loss of immunity for humans νa Rate of loss of immunity for animals
µL Pathogen decay rate µg Pathogen growth rate
ω1 Pathogen shedding rate c Per capita carrying capacity
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Figure 1: Flow chart of leptospirosis spread

where Γ =
βhaShIa

Nh
+

βhLShL

Nh
, Λ =

βaaSaIa
Na

+
βaLSaL

Na
.

2.1 Biological well-posedness of the model

We now proceed to prove the biological well-posedness of (1) to ensure the exis-
tence and uniqueness of a non-negative bounded solution. Throughout this article,
let R denote the real line with norm | · | and Rn, n ≥ 2, denote the Euclidean space
with Euclidean norm || · ||. Additionally, let Rn

+ denote the set of all points in Rn

with non-negative coordinates.

Lemma 1 (Non-negativity). Let (Sh(t), Ih(t), Rh(t), Sa(t), Ia(t), Ra(t), L(t)) ∈
R7 be the solution to the model (1) with the initial condition (Sh(0), Ih(0), Rh(0),
Sa(0), Ia(0), Ra(0), L(0)) in R7

+. Then (Sh(t), Ih(t), Rh(t), Sa(t), Ia(t), Ra(t), L(t))
remains non-negative for all t ≥ 0.

Proof. Using the positivity of parameters, from the first equation of the system
(1), we obtain the following inequality [14]:

dSh

dt
≥ −

(
βhaIa
Nh

+
βhLL

Nh
+ µh

)
Sh.

A direct integration of the above yields

Sh(t) ≥ Sh(0)e
−

∫ t
0

(
βhaIa(τ)

Nh
+

βhLL(τ)

Nh
+µh

)
dτ ≥ 0.

6

Figure 1. Flow chart of leptospirosis spread.

total human and animal populations at time t, we have

Nh(t) = Sh(t) + Ih(t) +Rh(t) and Na(t) = Sa(t) + Ia(t) +Ra(t) ∀t.
Based on (A1)–(A7), an ODE compartmental model of coupled nonlinear autonomous

system is formulated as shown below:

dSh
dt

= µhNh −
βhaIa
Nh

Sh −
βhLL

Nh
Sh − µhSh + νhRh,

dIh
dt

=
βhaIa
Nh

Sh +
βhLL

Nh
Sh − µhIh − γhIh,

dRh
dt

= γhIh − νhRh − µhRh,
dSa
dt

= µaNa −
βaaIa
Na

Sa −
βaLL

Na
Sa − µaSa + νaRa,

dIa
dt

=
βaaIa
Na

Sa +
βaLL

Na
Sa − µaIa − γaIa,

dRa
dt

= γaIa − νaRa − µaRa,
dL

dt
= ω1Ia − µLL+ µg(1− cL)L

(1)

subject to the initial conditions

Sh(0) > 0, Ih(0) > 0, Rh(0) > 0,

Sa(0) > 0, Ia(0) > 0, Ra(0) > 0, L(0) > 0.

It may be noted that all the parameters appearing in model (1) are assumed to be positive
and are given in Table 1.

A schematic diagram of the transmission dynamics of the leptospirosis across the
compartments of the model (1) is given in Fig. 1, where

Γ =
βhaShIa
Nh

+
βhLShL

Nh
, Λ =

βaaSaIa
Na

+
βaLSaL

Na
.
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2.1 Biological well-posedness of the model

We now proceed to prove the biological well-posedness of (1) to ensure the existence and
uniqueness of a non-negative bounded solution. Throughout this article, let R denote the
real line with norm |·| and Rn, n > 2, denote the Euclidean space with Euclidean norm
‖·‖. Additionally, let Rn+ denote the set of all points in Rn with non-negative coordinates.

Lemma 1 [Non-negativity]. Let (Sh(t), Ih(t), Rh(t), Sa(t), Ia(t), Ra(t), L(t)) ∈ R7

be the solution to model (1) with the initial condition (Sh(0), Ih(0), Rh(0), Sa(0), Ia(0),
Ra(0), L(0)) in R7

+. Then (Sh(t), Ih(t), Rh(t), Sa(t), Ia(t), Ra(t), L(t)) remains non-
negative for all t > 0.

Proof. Using the positivity of parameters, from the first equation of system (1) we obtain
the following inequality [14]:

dSh
dt
> −

(
βhaIa
Nh

+
βhLL

Nh
+ µh

)
Sh.

A direct integration of the above yields

Sh(t) > Sh(0) exp

{
−

t∫

0

(
βhaIa(τ)

Nh
+
βhLL(τ)

Nh
+ µh

)
dτ

}
> 0.

By similar calculations, we obtain

Sa(t) > Sa(0) exp

{
−

t∫

0

(
βaaIa(τ)

Na
+
βaLL(τ)

Na
+ µa

)
dτ

}
> 0,

Ih(t) > Ih(0)e−(µh+γh)t > 0, Ia(t) > Ia(0)e−(µa+γa)t > 0,

Rh(t) > Rh(0)e−(µh+νh)t > 0, Ra(t) > Ra(0)e−(µa+νa)t > 0

for all t > 0. Now, it remains to prove the non-negativity of L(t). If possible, let L(t) < 0
for some t > 0. Then, by intermediate value theorem, L(s) = 0 for some s < t. Then, at
t = s, dL/dt = ω1Ia. Since L(t) is decreasing at t = s, dL/dt is negative at t = s. But
ω1Ia is always non-negative, a contradiction. Hence (Sh(t), Ih(t), Rh(t), Sa(t), Ia(t),
Ra(t), L(t)) ∈ R7

+ for all t > 0.

Lemma 2 [Boundedness]. The solution (Sh(t), Ih(t), Rh(t), Sa(t), Ia(t), Ra(t), L(t))
in R7

+ to model (1) with the initial condition (Sh(0), Ih(0), Rh(0), Sa(0), Ia(0), Ra(0),
L(0)) in R7

+ is uniformly bounded.

Proof. From Lemma 1 and assumption (A1) it follows that
∣∣Sh(t)

∣∣2 +
∣∣Ih(t)

∣∣2 +
∣∣Rh(t)

∣∣2 6 3N2
h , (2)

∣∣Sa(t)
∣∣2 +

∣∣Ia(t)
∣∣2 +

∣∣Ra(t)
∣∣2 6 3N2

a . (3)
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Since 0 6 Ia 6 Na, dL/dt 6 ω1Na − (µL − µg)L − µgcL2. Thus if M is the unique
positive zero of the quadratic polynomial ω1Na − (µL − µg)L − µgcL2, it follows that
L(t) 6M for all t > 0. This fact, together with (2) and (3), gives

∥∥(Sh(t), Ih(t), Rh(t), Sa(t), Ia(t), Ra(t), L(t)
)∥∥

6
[
3N2

h + 3N2
a +M2

]1/2
. �

Let

Ω =
{(
Sh(t), Ih(t), Rh(t), Sa(t), Ia(t), Ra(t), L(t)

)
∈ R7:

Sh(t), Ih(t), Rh(t), Sa(t), Ia(t), Ra(t), L(t) > 0,

Sh(t) + Ih(t) +Rh(t) = Nh, Sa(t) + Ia(t) +Ra(t) = Na,

L(t) 6M
}
.

From Lemmas 1 and 2 it follows that Ω is a positively invariant set. We establish the
existence of a unique solution for (1) in Ω in the following theorem.

Theorem 1 [Existence and uniqueness]. Given an initial condition (Sh(0), Ih(0),
Rh(0), Sa(0), Ia(0), Ra(0), L(0)) in Ω, for all t > 0, model (1) admits a unique solution
(Sh(t), Ih(t), Rh(t), Sa(t), Ia(t), Ra(t), L(t)) in Ω.

Proof. Model (1) can be rewritten in the matrix form as Ẋ = f(X), where

X(t) =




Sh(t)
Ih(t)
Rh(t)
Sa(t)
Ia(t)
Ra(t)
L(t)




, f(X) =




µhNh − βhaIa
Nh

Sh − βhLL
Nh

Sh − µhSh + νhRh
βhaIa
Nh

Sh + βhLL
Nh

Sh − µhIh − γhIh
γhIh − νhRh − µhRh

µaNa − βaaIa
Na

Sa − βaLL
Na

Sa − µaSa + νaRa
βaaIa
Na

Sa + βaLL
Na

Sa − µaIa − γaIa
γaIa − νaRa − µaRa

ω1Ia − µLL+ µg(1− cL)L.




.

Ω is a compact subset of R7
+, and f ∈ C1(Ω) is globally Lipschitz on Ω. Also, X0 =

X(0) ∈ Ω. Thus it follows that system (1) with the initial condition X0 has a unique
solution in Ω; see [23, pp. 188–189, Thm. 3].

3 Equilibrium points

For an epidemic model, there are two kind of equilibrium points associated with it:
disease-free equilibrium (DFE) and endemic equilibrium (EE), whose definitions are
given in [26]. Model (1) is said to be at equilibrium if all the time derivatives in (1)
are zero simultaneously. Hence, equating (1) to zero and substituting Ih = Ia = L = 0,
we obtain the disease-free equilibrium of model (1) as

E0 =
(
S0
h, I

0
h, R

0
h, S

0
a, I

0
a , R

0
a, L

0
)

= (Nh, 0, 0, Na, 0, 0, 0).

Nonlinear Anal. Model. Control, 30(Online First):1–25, 2025

https://doi.org/10.15388/namc.2025.30.42973


8 M. Sooryadas et al.

Equating (1) to zero and assuming (Ih, Ia, L) 6= (0, 0, 0), we obtain the endemic equilib-
rium (EE) as E∗ = (S∗h, I

∗
h, R

∗
h, S

∗
a , I
∗
a , R

∗
a, L

∗), where

S∗h =
2cµgNh(νhγhNhφ+ θNhµh(νh + µh))

θ(νh + µh)(2cµgβhaI∗a + βhL(α+
√
α2 + 4cµgω1I∗a ) + 2cµgµhNh)

,

I∗h =
Nh(βhL(α+

√
α2 + 4cµgω1I∗a) + 2cµgβhaI

∗
a)

θ
,

R∗h =
γhNh(βhL(α+

√
α2 + 4cµgω1I∗a) + 2cµgβhaI

∗
a)

(νh + µh)θ
,

S∗a =
2cµgNa(µa + γa)I∗a

2cµgβaaI∗a + βaL(α+
√
α2 + 4cµgω1I∗a)

,

R∗a =
γaI
∗
a

µa + νa
, L∗ =

α+
√
α2 + 4cµgω1I∗a

2cµg

with

α = µg−µL, k = 1+
γh

νh+µh
, φ = βhL

(
α+
√
α2+4cµgω1I∗a

)
+2cµgβhaI

∗
a ,

θ = 2cµgNh(γh+µh)+2cµgkβhaI
∗
a+βhLk

(
α+
√
α2+4cµgω1I∗a

)
.

The roots of the polynomial ω1I
∗
a + (µg − µL)L− cµgL2 are (α+

√
α2 + 4cµgω1I∗a)/

(2cµg) and (α−
√
α2 + 4cµgω1I∗a)/(2cµg). We have chosen L∗ to be the positive zero

of the polynomial since E∗ is a point in Ω.

Lemma 3. The endemic equilibrium point E∗ of system (1) is unique.

Proof. To establish that E∗ is unique, it suffices to identify an I∗a in [0, Na], which
uniquely solves the equation

2cµgNa(µa + γa)I∗a
2cµgβaaI∗a + βaL(α+

√
α2 + 4cµgω1I∗a)

+ I∗a +
γaI
∗
a

µa + νa
= Na.

Let

f(Ia) =
2cµgNa(µa+γa)Ia

2cµgβaaIa+βaL(α+
√
α2+4cµgω1Ia)

+Ia+
γaIa
µa+νa

−Na.

Then f is continuous on [0, Na], f(0) < 0 and f(Na) > 0. Then, by the intermediate
value theorem, it follows that there exist at least one Ia, say I∗a ∈ (0, Na), such that
f(I∗a) = 0. Now,

f ′(Ia) =
2βaLcµgNa(µa+γa)[α+

√
α2+4cµgω1Ia− 4cµgω1Ia

2
√
α2+4cµgω1Ia

]

[2cµgβaaIa+βaL(α+
√
α2+4cµgω1Ia)]2

+
γa

µa+νa
+ 1

https://www.journals.vu.lt/nonlinear-analysis
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Stability analysis of leptospirosis compartmental model 9

for all Ia ∈ (0, Na). Since

√
α2+4cµgω1Ia −

4cµgω1Ia

2
√
α2+4cµgω1Ia

=
α2+4cµgω1Ia

2
+

α2

2
√
α2+4cµgω1Ia

> 0,

it follows that f ′(Ia) > 0, f is strictly increasing on [0, Na], which ensure the uniqueness
of I∗a .

4 Basic reproduction number

Basic reproduction number, usually denoted by R0, is an important concept in epidemi-
ology that predicts whether an infection will spread in a population. The epidemiological
definition of R0 is that it is the average number of secondary infections produced by
single infectious host introduced into a totally susceptible population [8]. We employ the
next-generation matrix (NGM) method proposed by Diekmann, Heesterbeek and Metz
to calculate the basic reproduction number for model (1). In the next-generation matrix
method, R0 is defined as the spectral radius of the next-generation matrix. A detailed
theory on R0 can be found in [8, 21].

In (1), the infected compartments are Ih, Ia and L. Transmissions occurring in the
infected compartments are rewritten as F −V , where F represents the rate of appearance
of new infection in the compartment, and V is the net outcome (difference between incom-
ing infected individuals and outgoing infected individuals) of the remaining transmissions
like recovery, disease progression, death, birth etc. in the compartment. Here

F =




βhaShIa
Nh

+ βhLShL
Nh

βaaSaIa
Na

+ βaLSaL
Na

ω1Ia + µg(1− cL)L


 , V =




(γh + µh)Ih
(γa + µa)Ia

µLL


 .

If JF and JV denote the Jacobian matrices associated with F and V , respectively,

JF (E0) =




0 βha βhL
0 βaa βaL
0 ω1 µg


 , JV (E0) =



µh + γh 0 0

0 µa + γa 0
0 0 µL


 .

The next-generation matrix is then given by

JF (E0)J−1V (E0) =




0 βha

γa+µa

βhL

µL

0 βaa

γa+µa

βaL

µL

0 ω1

γa+µa

µg

µL




and

R0 =
βaaµL+µg(µa+γa)+

√
[βaaµL−µg(µa+γa)]2+4ω1βaLµL(µa+γa)

2µL(µa+γa)
.
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5 Stability analysis at disease free equilibrium point

Stability of solutions is crucial in determining biological significance to the system since
solutions that shows large changes to small perturbations are often unreasonable and
meaningless. The definitions of local and global asymptotic stability for an equilibrium
point are given in [12, 21]. Since (A1) holds, replacing Sh by Nh − Ih − Rh and Sa by
Na−Ia−Ra, the 7-dimensional system (1) can be reduced to an equivalent 5-dimensional
system given by

dIh
dt

=
βhaIa(Nh − Ih −Rh)

Nh
+
βhLL(Nh − Ih −Rh)

Nh
− µhIh − γhIh,

dRh
dt

= γhIh − νhRh − µhRh,
dIa
dt

=
βaaIa(Na − Ia −Ra)

Na
+
βaLL(Na − Ia −Ra)

Na
− µaIa − γaIa,

dRa
dt

= γaIa − νaRa − µaRa,
dL

dt
= ω1Ia − µLL+ µg(1− cL)L (4)

subject to the initial conditions

Ih(0) > 0, Rh(0) > 0, Ia(0) > 0, Ra(0) > 0, L(0) > 0.

The DFE and EE for the reduced system (4) areE′0 = (0, 0, 0, 0, 0) andE′∗ = (I∗h, R
∗
h, I
∗
a ,

R∗a, L
∗), respectively. Now, it suffices to establish the local and global stability at E′0 and

E′∗ of (4). The positively invariant region for (4) is given by

Ω′ =
{(
Ih(t), Rh(t), Ia(t), Ra(t), L(t)

)
∈ R5: Ih(t), Rh(t), Ia(t), Ra(t), L(t) > 0,

Ih(t) +Rh(t) 6 Nh, Ia(t) +Ra(t) 6 Na, L(t) 6M
}
.

Lemma 4. Ω′ is a compact absorbing subset of R5
+ under system (4).

Proof. Since Ω is a closed and bounded subset of R5
+, which is positively invariant

under system (1), Ω′ is compact and positively invariant under system (4). When initial
conditions are in Ω′, the positive invariance implies Ω′ is an absorbing set.

5.1 Local stability of disease free equilibrium point

The DFE point E0 of (1) is locally asymptotically stable if all the eigenvalues of the
Jacobian of the reduced system (4) evaluated at E′0 have negative real part [21]. This is
established in the following theorem.

Theorem 2. The DFE E′0 of (4) is locally asymptotically stable if R0 < 1 and unstable
otherwise.
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Proof. The Jacobian matrix of reduced system (4) evaluated at E′0 is given by

J(E′0) =




−µh − γh 0 βha 0 βhL
γh −νh − µh 0 0 0
0 0 βaa − µa − γa 0 βaL
0 0 γa −µa − νa 0
0 0 ω1 0 µg − µL



.

The characteristic equation of J(E′0) is

(−µh − γh − λ)(−νh − µh − λ)(−µa − νa − λ)
(
λ2 +A1λ+A2

)
= 0, (5)

where
A1 = µa + γa − βaa + µL − µg,
A2 = (βaa − µa − γa)(µg − µL)− ω1βaL.

The eigenvalues−µh−γh,−νh−µh,−µa−νa are clearly negative. By Routh–Hurwitz
criterion [21], the remaining eigenvalues of (5) have negative real parts if and only if
A1 > 0 and A2 > 0. For that, it suffices to show that

(βaa − µa − γa)(µg − µL)− ω1βaL > 0 if R0 < 1. (6)

For this implies that (βaa−µa− γa)(µg −µL) is positive, which, together with assump-
tion (A7), gives βaa < µa + γa, and hence (µa + γa−βaa +µL−µg) > 0. Let R0 < 1.
Then we have

µL
[
βaa − 2(µa + γa)

]
+ µg(µa + γa)

< −
√[

βaaµL − µg(µa + γa)
]2

+ 4ω1βaLµL(µa + γa),

which in turn yields the inequality
[(
βaa − 2(µa + γa)

)
µL + µg(µa + γa)

]2

>
[
βaaµL − µg(µa + γa)

]2
+ 4ω1βaLµL(µa + γa).

Rearranging the terms in the above yields

4µL(µa + γa)
{

(µL − µg)(µa + γa) + βaa(µg − µL)
}

> 4µL(µa + γa)ω1βaL. (7)

Using the fact that 4µL(µa + γa) is positive, from (7) we obtain

(µL − µg)(µa + γa − βaa) > ω1βaL.

Thus (µg − µL)(βaa − µa − γa)− ω1βaL > 0. Hence, if R0 < 1, E′0 is locally asymp-
totically stable. Now, for R0 > 1, we have

µL[βaa − 2(µa + γa)] + µg(µa + γa)

> −
√

[βaaµL − µg(µa + γa)]2 + 4ω1βaLµL(µa + γa),
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which yields

[(
βaa − 2(µa + γa)

)
µL + µg(µa + γa)

]2

6
[
βaaµL − µg(µa + γa)

]2
+ 4ω1βaLµL(µa + γa).

Rearranging the terms and taking out the positive quantity 4µL(µa + γa), we obtain
(µg − µL)(βaa − µa − γa) − ω1βaL 6 0. Hence, if R0 > 1, E′0 is asymptotically
unstable.

5.2 Global stability of disease free equilibrium point

The global stability at E′0 is established using Theorem 9.2 in [12, p. 403]. The method
is summarized as follows: let X = (Ih, Ia, L)T and Y = (Rh, Ra)T denote the infected
and uninfected compartments of (4), respectively. Then system (4) can be rewritten as

dX

dt
= −AX − F̄ (X,Y ),

dY

dt
= G(X,Y ),

where

A =



µh + γh −βha −βhL

0 γa + µa − βaa −βaL
0 −ω1 µL − µg


 , G(X,Y ) =

[
γhIh − νhRh − µhRh
γaIa − νaRa − µaRa

]

and

F̄ (X,Y ) =



βhaIa(1− (Nh−Ih−Rh)

Nh
) + βhLL(1− (Nh−Ih−Rh)

Nh
)

βaaIa(1− (Na−Ia−Ra)
Na

) + βaLL(1− (Na−Ia−Ra)
Na

)

cµgL
2


 .

If the matrix A is a non-singular M-matrix and F̄ (X,Y ) > 0 for all (X,Y ) ∈ Ω′, then
DFE E′0 is globally asymptotically stable.

Remark 1. (See [12].) A matrix A is an M-matrix if it can be expressed in the form
A = sI − B, where B > 0 (B is a non-negative matrix) and s > ρ(B) with ρ(B) being
the spectral radius of B.

Theorem 3. The DFE E′0 of (4) is globally asymptotically stable if R0 < 1 and unstable
otherwise.

Proof. We have det(A) = (µh + γh)[(γa +µa−βaa)(µL−µg)−ω1βaL]. Equation (6)
shows that A is non-singular. Now, A can be rewritten as A = sI −B, where

B =



−µh − γh + s βha βhL

0 βaa − γa − µa + s βaL
0 ω1 µg − µL + s


 .
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Choosing s > {µh + γh, |ξ|}, where

ξ =
1

2

(
µL − µg − βaa + γa + µa

±
√

(µL−µg−βaa+γa + µa)2 − 4(µL−µg)(γa+µa−βaa) + 4ω1βaL
)
,

gives s > ρ(B). This, together with B > 0 (from the choice of s), proves that A is an
M-matrix. By Lemma 1, F̄ (X,Y ) > 0 for all (X,Y ) ∈ Ω′. Hence, by Theorem 9.2
in [12, p. 403], X(t) = (Ih(t), Ia(t), L(t))T → (0, 0, 0)T as t→∞. Solving dRh/dt =
γhIh − µhRh − νhRh, we obtain

Rh(t) = e−(µh+νh)tRh(0) + e−(µh+νh)t

t∫

0

γhIh(τ)e(µh+νh)τ dτ,

which tends to zero as t → ∞ due to the boundedness of Ih(t) established in Lemma 2.
In a similar manner, solving dRa/dt, we can show that Ra(t) → 0 as t → ∞. Hence
Y (t) = (Rh(t), Ra(t))T → (0, 0)T as t→∞.

6 Stability analysis at endemic equilibrium point

Here we establish the local and global asymptotic stability at the endemic equilibrium
(EE) point E′∗ of system (4).

6.1 Local stability of endemic equilibrium point

Theorem 4. If R0 > 1 and

(C1)
(
−βaa
Na

(Na−2I∗a −R∗a)+βaL
L∗

Na
+µa+γa

)
(µL−µg +2cµgL

∗) > ω1βaL,

then the endemic equilibrium E′∗ of (4) is locally asymptotically stable.

Proof. The Jacobian matrix J(E′∗) of system (4) evaluated at E′∗ is given by

J(E′∗) =




J11 −βhaI
∗
a

Nh
− βhLL

∗

Nh
J13 0

βhL(Nh−I∗h−R∗
h)

Nh

γh −νh − µh 0 0 0

0 0 J33 −βaaI
∗
a

Na
− βaLL

∗

Na

βaL(Na−I∗a−R∗
a)

Na

0 0 γa −µa − νa 0
0 0 ω1 0 µg − µL − 2cµgL

∗



,

where

J11 = −βhaI
∗
a

Nh
− βhLL

∗

Nh
− µh − γh, J13 =

βha(Nh − I∗h −R∗h)

Nh
,

J33 =
βaa(Na − 2I∗a −R∗a)

Na
− βaLL

∗

Na
− µa − γa.
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The characteristic equation of J(E′∗) is obtained as

[
(J11 − λ)(−νh − µh − λ) + γh

(
βhaI

∗
a

Nh
+
βhLL

∗

Nh

)]

×
[
λ3 +A1λ

2 +A2λ+A3

]
= 0,

where

A1 = −J33 + 2cµgL
∗ + µa + νa + µL − µg,

A2 = −J33(µa + νa) + γa(
βaaI

∗
a

Na
+
βaLL

∗

Na
) + J33

(
µg − µL − 2cµgL

∗
)

− ω1βaL(Na − I∗a −R∗a)

Na
− (µa + νa)(µg − µL − 2cµgL

∗),

A3 =

[
J33(µa + νa)− γa

(
βaaI

∗
a

Na
+
βaLL

∗

Na

)]
(µg − µL − 2cµgL

∗)

− ω1βaL
(Na − I∗a −R∗a)

Na
(µa + νa).

By Lemmas 1 and 2, EE point (I∗h, R
∗
h, I
∗
a , R

∗
a, L

∗) is in Ω′. The quadratic factor of the
characteristic equation has positive coefficients. Hence the two eigenvalues have negative
real parts. By Routh–Hurwitz criterion [21], the remaining eigenvalues have negative real
parts ifA1, A2, A3 > 0 andA1A2−A3 > 0. Since µL > µg , ω1βaL > 0 and (C1) holds,

− J33 = −βaa
Na

(Na − 2I∗a −R∗a) +
βaLL

∗

Na
+ µa + γa > 0. (8)

Now, from (8) and (A7) it is immediate that A1 > 0. (C1) along with (8) give

A2 = −J33(µa + νa) + γa

(
βaaI

∗
a

Na
+
βaLL

∗

Na

)
+ (µa + νa)(µL − µg + 2cµgL

∗)

+

{[
−βaa
Na

(Na − 2I∗a −R∗a) +
βaLL

∗

Na
+ µa + γa

]
(µL − µg + 2cµgL

∗)

− ω1βaL

}
+
ω1βaL
Na

(I∗a +R∗a) > 0,

A3 =

{[
−βaa
Na

(Na−2I∗a−R∗a) +
βaLL

∗

Na
+ µa + γa

]
[µL−µg+2cµgL

∗]− ω1βaL

}

× (µa + νa) + γa

(
βaaI

∗
a

Na
+
βaLL

∗

Na

)
(µL − µg + 2cµgL

∗)

+
ω1βaL
Na

(I∗a +R∗a)(µa + νa) > 0,
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and

A1A2 −A3

=

[{(
−βaa
Na

(Na−2I∗a−R∗a) +
βaLL

∗

Na
+ µa + γa

)
(µL−µg+2cµgL

∗)− ω1βaL

}

+ (µa + νa)2
]
(µL − µg + 2cµgL

∗) + γa

(
βaaI

∗
a

Na
+
βaLL

∗

Na

)
(µa + νa)

+

[
(µa + νa)(µL − µg + 2cµgL

∗) +
ω1βaL(I∗a +R∗a)

Na
− J33(µa + νa)

]

× (µL − µg + 2cµgL
∗)− J33

[
A2 + (µa + νa)2

]
> 0. �

6.2 Global stability of endemic equilibrium point

The global stability of the EE point E′∗ is established using the Li–Muldowney geometric
approach [19, 20]. Consider the system

ẋ = f(x), x ∈ D, (9)

where f : D ⊆ Rn → Rn is a continuously differentiable function. Let x(t, x0) be
the solution of system (9) passing through the initial value x(0, x0) = x0 ∈ D. For
system (9), we assume the following hypotheses.

(H1) D is simply connected.
(H2) There exists a compact absorbing set K ⊆ D.
(H3) x∗ is a unique equilibrium of (9), which satisfies f(x∗) = 0.

The solution x∗ will be globally asymptotically stable if it is locally asymptotically stable
and all the trajectories in D converges to the unique equilibrium x∗. For that, it suffices
to rule out the existence of non constant periodic solution for (9).

Let P (x) be a non-singular
(
n
2

)
×
(
n
2

)
matrix-valued function on D for which Pf is

the directional derivative of P along f , and ‖P−1(x)‖ is uniformly bounded. We define

B = PfP
−1 + PJ [2]P−1, (10)

where J [2] is the second additive compound matrix of the Jacobian J of (9). Let µ(B)
denote the Lozinski measure of the matrix B on Rn w.r.t. norm ‖·‖ defined by µ(B) =
limx→0(|I + Bx| − 1)/x. If q̄ = lim supt→∞ supx0∈K(1/t)

∫ t
0
µ(B(x(s, x0)) dt <

0, there won’t be a non-constant periodic solutions for (9). This ensures that no orbit
results in a simple rectifiable curve in D, invariant for (4). The following lemma provides
a sufficient condition for precluding the existence of non-constant periodic solution.

Lemma 5. (See [20].) Suppose that conditions (H1)–(H2) are satisfied. Then there are
no non-constant periodic solutions for (4) if the following condition holds:
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(C2) There exist functions hi(t) (i = 1, 2, . . . , n), a large enough T1 > 0 and some
positive numbers α1, α2, . . . , αn such that for all t > T1 and for all x0 ∈ K,

bii(t) +
∑

i6=j

αj
αi
|bij | 6 hi(t),

where lim supt→∞(1/t)
∫ t
0
hi(t) dt < δi < 0 for some δi, for i = 1, 2, . . . , n.

Here bij(t) represent entries of matrix B(x(t, x0)) in (10).

The above condition is a Bendixson criterion robust under C1 local perturbation of f
at all non-equilibrium non-wandering points for (9) and the global asymptotic stability at
the endemic equilibrium point follows. The global stability of the EE point E′∗ of (4) is
proved using Theorem 5 and is stated as Theorem 6.

Theorem 5. (See [20].) Suppose that conditions (H1)–(H3) are satisfied. Then the unique
equilibrium x∗ of (9) is globally asymptotically stable in D if (C2) holds.

Theorem 6. If βaa 6 νa, γh 6 γa and γa 6 νa+νh forR0 > 1, then under assumptions
(H1)–(H3), model (4) is globally asymptotically stable at the endemic equilibriumE′∗ and
unstable otherwise.

Proof. For system (4), choose D = R5
+ and K = Ω′. Then K is a compact absorbing

subset of the simply connected set D. By Lemma 3, E′∗ is unique. Hence assumptions
(H1)–(H3) are verified. Here the fourth additive compound matrix J [4] (of the Jacobian
J of (4)) of order 5× 5 is used instead of J [2] [22] and is given by

J [4] =




A11 0 −βaL(Na−Ia−Ra)
Na

0 −βhL(Nh−Ih−Rh)
Nh

0 A22
−βaaIa
Na

− βaLL
Na

0 0

−ω1 γa A33 0 −βha(Nh−Ih−Rh)
Nh

0 0 0 A44
−βhaIa
Nh

− βhLL
Nh

0 0 0 γh A55



,

where

A11 = −βhaIa
Nh

− βhLL

Nh
− γh − µh − νh − µh −

βaLL

Na
− µa − γa

+
βaa(Na − 2Ia −Ra)

Na
− νa − µa,

A22 = −βhaIa
Nh

− βhLL

Nh
− γh − µh − νh − µh −

βaLL

Na
− µa − γa

+
βaa(Na − 2Ia −Ra)

Na
+ µg − µL − 2cµgL,

A33 = −βhaIa
Nh

− βhLL

Nh
− γh − µh − νh − µh − µa − νa + µg − µL − 2cµgL,

A44 = −βhaIa
Nh

− βhLL

Nh
− γh − µh +

βaa(Na − 2Ia −Ra)

Na
− βaLL

Na
− µa − γa

− µa − νa + µg − µL − 2cµgL,
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A55 = −νh − µh +
βaa(Na − 2Ia −Ra)

Na
− βaLL

Na
− µa − γa − µa − νa

+ µg − µL − 2cµgL.

Now, choose a non-singular, continuously differentiable 5× 5 matrix function P as

P (Sh, Ih, Rh, Sa, Ia, Ra, L) = diag(L, Ia, Ia, Ih, Ih).

The time derivative of P along the direction of f is Pf = diag(L̇, İa, İa, İh, İh). Then
we have

B = PfP
−1 + PJ [4]P−1

+




A11 + L̇
L 0 −L

Ia

βaL(Na−Ia−Ra)
Na

0 −L
Ih

βhL(Nh−Ih−Rh)
Nh

0 A22 + İa
Ia

−βaaIa
Na

− βaLL
Na

0 0
−Ia
L ω1 γa A33 + İa

Ia
0 −Ia

Ih

βha(Nh−Ih−Rh)
Nh

0 0 0 A44 + İh
Ih

−βhaIa
Nh

− βhLL
Nh

0 0 0 γh A55 + İh
Ih



.

Now, taking αi = 1 for i = 1, 2, 3, 4, 5, we will define

hi(t) = bii +

5∑

j=1, j 6=i
|bij | for i = 1, 2, 3, 4, 5. (11)

We have to show that

lim sup
t→∞

1

t

t∫

0

hi(t) dt < δi < 0 for some δi, for i = 1, 2, 3, 4, 5.

The fact that (Ih, Rh, Ia, Ra, L) ∈ Ω′, Lemmas 1 and 2 will be used from this point
onwards wherever necessary. Using (11), we obtain

h1(t) =
L̇

L
+A11 +

L

Ia

βaL(Na − Ia −Ra)

Na
+
L

Ih

βhL(Nh − Ih −Rh)

Nh
.

Since

−βaa
Na

Ia −
βaL
Na

L 6 0, −βha
Nh

Ia −
βhL
Nh

L 6 0 and
Ia
Ih

βha
Nh

(Nh − Ih −Rh) > 0,

we obtain an upper bound for h1(t) by

h1(t) 6
L̇

L
+

[
Ia
Ih

βha
Nh

(Nh − Ih −Rh) +
L

Ih

βhL
Nh

(Nh − Ih −Rh)− γh − µh
]

+

[
βaa
Na

(Na − Ia −Ra) +
L

Ia

βaL(Na − Ia −Ra)

Na
− γa − µa

]

− (µh + νh + µa + νa)

6
L̇

L
+
İh
Ih

+
İa
Ia
− (µh + νh + νa + µa).
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Now,

h2(t) =
İa
Ia
− βhaIa

Nh
− βhLL

Nh
− νh − µh − γh − µh −

βaLL

Na
− µa − γa

+
βaa(Na − 2Ia −Ra)

Na
+ µg − µL − 2cµgL+

βaaIa
Na

+
βaLL

Na
. (12)

Equation (12) and the conditions

−βhaIa
Nh

− βhLL

Nh
6 0, (13)

µg − µL − 2cµgL 6 0 and
L

Ia
βaL

(Na − Ia −Ra)

Na
> 0

yield that

h2(t) 6
2İa
Ia
− (µh + νh + µh + γh).

In a similar manner, we obtain

h3(t) =
Ia
L
ω1 + γa +

İa
Ia

+A33 +
Ia
Ih

βha(Nh − Ih −Rh)

Nh
.

Since γa 6 νa + νh by assumption, using −cµgL 6 0 and (13),

h3(t) 6
İa
Ia

+
L̇

L
+
İh
Ih
− (µh + µa).

From (11) and assumption that βaa 6 νa it follows that

h4(t) =
İh
Ih

+

(
βhaIa
Nh

+
βhLL

Nh

)
− βhaIa

Nh
− βhLL

Nh
− µh − γh

+
βaa(Na − 2Ia −Ra)

Na
− βaLL

Na
− µa − γa − µa − νa

+ µg − µL − 2cµgL

6
İh
Ih
− (µh + γh + µh + νh + µa + µL − µg).

Again using Eq. (11),

h5(t) =
İh
Ih

+ γh − νh − µh +
βaa(Na − 2Ia −Ra)

Na
− βaLL

Na
− µa − γa − µa − νa + µg − µL − 2cµgL. (14)

Equation (14), together with the assumptions γh 6 γa and βaa 6 νa, gives

h5(t) 6
İh
Ih
− (µa + µh + νh + µa + µL − µg).
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By integrating the function h1(t) and taking its limit supremum as t→∞, we obtain

lim sup
t→∞

1

t

t∫

0

h1(t) dt 6 lim
t→∞

1

t

[
ln
L(t)

L(0)
+ ln

Ia(t)

Ia(0)
+ ln

Ih(t)

Ih(0)

]
− (µh+νh+νa+µa)

< −(µh+νh+νa+µa) < 0.

Similarly, we have

lim sup
t→∞

1

t

t∫

0

h2(t) dt 6 lim
t→∞

2

t
ln
Ia(t)

Ia(0)
− (µh+νh+µh+γh) < 0,

lim sup
t→∞

1

t

t∫

0

h3(t) dt 6 lim
t→∞

1

t

[
ln
Ia(t)

Ia(0)
+ ln

L(t)

L(0)
+ ln

Ih(t)

Ih(0)

]
− (µh+µa) < 0,

lim sup
t→∞

1

t

t∫

0

h4(t) dt 6 lim
t→∞

1

t
ln
Ih(t)

Ih(0)
− (µh+γh+µh+νh+µa+µL−µg) < 0,

lim sup
t→∞

1

t

t∫

0

h5(t) dt 6 lim
t→∞

1

t
ln
Ih(t)

Ih(0)
− (µa+µh+νh+µa+µL−µg) < 0.

Hence the EE point E′∗ of (4) is globally asymptotically stable.

7 Numerical simulations

This final part validates the theoretical results obtained through numerical simulations
carried out in SageMath. The parameter values corresponding to R0 ≈ 0.9366 < 1 and
R0 ≈ 8.3487 > 1 are given in Table 2.

Table 2. Parameter values for DFE and EE.

Symbol Values for R0 < 1 Values for R0 > 1 Reference
Nh 80000 80000 assumed
Na 400000 400000 assumed
βhL 4× 10−12 4× 10−10 assumed
βaL 1.5× 10−11 1.5× 10−9 assumed
βha 9.633× 10−5 9.633× 10−5 [5]
βaa 10−4 10−4 [6]
µh 3.9× 10−5 3.9× 10−5 [13]
µa 9.13242× 10−4 9.13242× 10−4 [13]
νh 0.089 0.089 [15]
νa 0.083 0.083 [15]
γh 0.0714285714 0.0714285714 [13]
γa 0.064 0.064 [15]
ω1 7× 107 7× 107 [10]
µL 0.02381 0.02381 [13]
µg 0.005 0.005 assumed
c 10−10 10−10 assumed
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(a) Human population dynamics

(b) Animal population dynamics

(c) Leptospira population dynamics

Figure 2. Behaviour of solutions of model (1) when R0 < 1 and R0 > 1

Figure 2 shows the behaviour of solution of model (1) for R0 < 1 and R0 > 1. It can
be seen that the solution tends to DFE (80000, 0, 0, 400000, 0, 0, 0) when R0 < 1, and
the solution tends to EE (60200, 11000, 8800, 314400, 48000, 36600, 2.573 · 1012) when
R0 > 1.

It is evident from R0 that the parameters βaL, βaa, ω1, µg and µL influence the
leptospirosis transmission dynamics. Figure 3 indicates that an increase in the values of
βaL, βaa, ω1 and µg leads to greater disease spread, whereas increasing µL reduces the
disease spread.

Finally, the leptospirosis model (1) is fitted to the reported case data from Kerala,
India, spanning from January 2021 to December 2022, using the parameter values listed
in Table 2. The reported case data used for fitting is taken from the website of Directorate
of Health Services, Government of Kerala [30] and listed in Table 3. Figure 4 shows the
actual and predicted cumulative number of leptospirosis cases in Kerala over this period.
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Figure 3. Dynamics of leptospirosis for varying values of βaL, βaa, ω1, µg , and µL.
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Table 3. Monthly leptospirosis cases in 2021 and 2022.

Cases Month
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2021 75 111 57 42 40 132 152 181 179 210 285 281
2022 107 109 123 123 167 235 305 377 274 233 226 203

Figure 4. Cumulative number of leptospirosis cases in Kerala from January 2021 to December 2022: predicted
vs. actual data.

8 Conclusion

Leptospirosis is already an endemic in several countries, and the frequent occurrence of
floods along with recurrent climate changes contaminate the environment thereby facili-
tating the spread. Hence the presence of free-living leptospira in the environment requires
far more attention than it currently receives. In this article, we studied the significance
of free-living leptospires in the leptospirosis transmission by formulating a biologically
well-posed model involving humans, animals and contaminated environment. The basic
reproduction number derived for model (1) shows that the parameters βaa, βaL, ω1 and
µg positively affect the value of R0, whereas the parameter µL negatively influences R0.
For better understanding of the long-term behaviour of the disease nature, the local and
global asymptotic stabilities at the disease-free and endemic equilibrium points are also
established. Finally, the numerical simulations are performed to support the theoretical
results obtained, and model (1) is fitted to the reported case data from Kerala, India.

Our study suggest that to reduce the impact of the disease, the presence of free-living
leptospires in environment, transmission between environment and animals, as well as be-
tween animals themselves and the shedding of leptospira must be decreased considerably.
Targeted rodent control, use of protective gear in contaminated environment, improving
sanitation and reducing exposure to leptospira can effectively reduce the transmission of
leptospirosis. As a next step, we plan to carry out sensitivity analysis for the formulated
model to identify the parameters having major impact on the leptospirosis spread and
formulate an optimal control problem to derive necessary optimality conditions to reduce
the leptospirosis disease transmission.
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