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Abstract. In this paper, we examine two problems on applied probability, which are directly
connected with the dependence in presence of heavy tails. The first problem is related to max-
sum equivalence of the randomly weighted sums in bivariate setup. Introducing a new dependence,
called generalized tail asymptotic independence, we establish the bivariate max-sum equivalence
under a rather general dependence structure when the primary random variables follow distributions
from the intersection of the dominatedly varying and the long-tailed distributions. Based on this
max-sum equivalence, we provide a result about the asymptotic behavior of two kinds of ruin
probabilities over a finite-time horizon in a bivariate renewal risk model with constant interest rate.
The second problem is related to the asymptotic behavior of the tail distortion risk measure in
a static portfolio called background risk model. In opposite to other approaches on this topic, we
use a general enough assumption that is based on multivariate regular variation.

Keywords: joint tail behavior, randomly weighted sums, tail distortion risk measure, bivariate
renewal risk model, interdependence, multivariate regular variation.

1 Introduction

1.1 Concepts and motivation

In last decades, the distributions with heavy tails play a crucial role in applied probability,
and especially in risk theory and risk management; see [17, 18,22], etc.

Simultaneously, the dependence modeling among risks seems to have equally im-
portant impact on insurance applications, while keeps the mathematical interest with
respect to generalizations either of some independent results or of some counterexamples
in which the independent results cannot be generalized. Hence, we observe that the study
of dependent models, combined with the presence of heavy tails, presents a useful tool in
applications and, at the same time, a strong mathematical support.

In this paper, we will explore the concept of interdependence in the sense of a complex
dependence between two sequences of random variables whose distributions are from the
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heavy-tailed class. In order to make it clear, we depict in two ways the interdependence
that are used in this paper and in the frame of the new results.

At first, we understand the interdependence as a structure between two finite se-
quences of primary random variables X1, ..., X, and Y7, ..., Y,,, which are heavy-tailed
distributed. Each sequence contains dependent components, but simultaneously the two
sequences are also mutually dependent. In this sense, we introduce a new dependence
structure, called generalized tail asymptotic independent, symbolically, GTAI, in Defini-
tion 1 below, which belongs to the family of second-order asymptotic independence. Next,
in Section 2, we establish the max-sum equivalence of randomly weighted sums within
bivariate framework, where random weights ©1,...,0,,, A1, ..., A,, are bounded from
above, nonnegative, and nondegenerate to zero. These weights are arbitrarily dependent
on each other and independent of X, ..., X,, and Y1, ...,Y,, under dominatedly varying
and long-tailed distributions for the primary variables. Namely, we establish the asymp-
totic relation
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as x Ay — oo. The study of relation (1) through this kind of interdependence covers
a gap in the literature, and it includes many of the already existing results as it is discussed
in Section 2. Next, in Section 3, the establishment of the asymptotic equivalence in (1)
helps to provide asymptotic expressions for two types of ruin probability over finite-time
horizon within the frame of bivariate, continuous-time risk model. This model assumes
a constant force of interest and a common renewal counting process for the two lines of
business. In Section 4, we meet a second type of interdependence. In this section, we focus
on asymptotic behavior of a risk measure, called the tail distortion risk measure, symbol-
ically, TDRM, with respect to a model known as background risk model. Accordingly,
the following types of quantities play a direct role:

3 6,x. @)
i=1

They are called randomly weighted sums. The interdependence is now expressed by the
dependence among the components of vectors © = (61, ...,0,,) and X=(X1,..., X,),
and simultaneously between the vectors © and X. Such dependence structures were
studied in the literature under the framework of multivariate regular variation for the dis-
tribution of X. However, in larger classes of heavy tailed distributions for the components
of X, the interdependence effect appears rarely. The reason lies in the difficulty to find
max-sum equivalence for the randomly weighted sums, namely,

P
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as r Ay — oco. We refer to [18,34] for papers that studied relation (3) under a variety of
dependence structures and several classes of heavy-tailed distributions. In the paper [7],
relation (3) was established for the first time through interdependence in the case n = 2
within distribution classes larger than regular variation.

We remain in the frame of regular variation for some of ©1 X1, ..., 6, X,, but under
the relaxed assumption that ©X follows a multivariate regular varying distribution. We
allow a wide spectrum of dependencies among the components of the sum in relation (2).
Furthermore, our assumption for the products is easily verified when one of @ and X fol-
lows multivariate regularly varying distribution through several applications of Breiman’s
theorem on multivariate setup.

Finally, in the last section, we study the asymptotic behavior of TDRM in a back-
groung risk model, which satisfies the general assumption that ©X follows MRV.

1.2 Notations

In this subsection, after some necessary notations, we introduce the preliminary material

for the heavy-tailed distribution classes. Let us denote x = (z1,...,x,), the scalar
product cx = (cx1,...,¢xy), z Ay = min{z,y},  Vy = max{z,y}, z7 = z V0,
x— = (—x V 0), |z] is the integer part of x, and e; represents the vector whose all the

components are 0, except the ith that is 1. By 1;4) we denote the indicator function on
the set A. For two positive functions f and g, we write f(z) = O(g(z)) as ¢ — oo if

lim sup M < 00
v—o0 9(T)
and f(z) = o(g(z)) as x — oo if
tim 1) _ g,
200 (33

We write f(z) ~ cg(z) as © — oo for some ¢ € (0, 00) if

lim M:c

rrme g(z)

We write f(z) < g(z) if both f(z) =O(g(z)) and g(x) = O(f(x)) hold as x — oo. All
the previous asymptotic notations hold for z A y — co when we have positive, bivariate
functions. For example, we write f(x,y) ~ cg(x,y) as x A y — oo with ¢ € (0, 00) if

flz,y)

lim =c.
any—oo g(z,y)
( x) the distribution of the random variable Z and by

Let us denote by V (z)
Via) =1~ V(a) =

P(Z ) 1ts tail.
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Let us now consider the classes of heavy-tailed distributions and their properties. We
assume that all the distributions have infinite right endpoint that means V (z) > 0 for all
x > 0. We say that distribution V' has heavy tail, and we write V' € H if for any € > 0,
the following relation is true:

oo

/ eV (dx) = oo.

We say that distribution V' has long tail (symbolically, V' € £) if for any (or, equiva-

lently, for some) a > 0, we have
lim V=9

The class £ represents a subclass of heavy-tailed distributions £ C H. If V' € L, then
there exists some function a : [0, 00) — (0, 00) such that a(x) — oo, a(z) = o(x), and
V(zta(z))~V(x)as x— oo. This a(-) is called insensitivity function with respect to V.

We say that distribution V' belongs to the class of subexponential distributions and
write V € § if for all (or, equivalently, for some) n = 2,3, ...,

Vn*

im f(x) =n,
where V™" is the n-fold convolution of distribution V' with itself. The classes S, £, and
‘H were introduced by Chistyakov.

We say that V' has dominatedly varying tail and write V' € D if
Vit
lim sup 7( ?) < 00

for all (or, equivalently, for some) 0 < ¢ < 1. Let us make clear that D C H and
DZS, S EZD.However, DNL =DNS C S. Now, we remind some properties of
regular variation. A random variable Z with distribution V' is regularly varying with index
a € (0,00), and we write V € R_, if

V(tx)

lim — =t

for any ¢ > 0. The following inclusion is true:

R = UR,achﬁcScﬁcH;
a>0

—

see, for example, [17, p. 21, Remark 2.1]. Let us now consider the limits
_ Vit — Vit
V.(t) :=1lim infﬁ, V' (t) := limsup 7( ?)

forallt > 1.

https://www.journals.vu.lt/nonlinear-analysis
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For some distribution V/, the upper and lower Matuszewska indexes are given by

. log V. (t) _ log V' (t)
JEi=inf{——="2" > 1 Jo i=s ——t>1
vom { logt ’ Z v TSP logt ’ Z

respectively. For these indexes, the following relations hold: V' € D if and only if 0 <
Jy < J‘}L < oo, andif V € R_g, then Jy, = J‘J,r = «; see [17, Sect. 2.4].

The class of regularly varying distributions have many closure properties; see, for
example, [17]. One of this properties is the asymptotic behavior of the tail of product
convolution, which is the popular Breiman’s theorem. In [10], we find the following result.

If Z and © are two independent random variables with distribution of Z from class
R _a, then for some a € (0, 00) and ©, which is nonnegative, nondegenerate to zero, and
such that E[©*"€] < oo for some € > 0,

P(OZ > z) ~E(0%)P(Z > x)

as © — oo, which further means that the distribution of the product ©Z belongs to R_,,.

Now, we can go to the extension of regular variation in random vectors. Let X be
arandom vector in the space [0, co]™. We remind that X follows the multivariate regularly
varying distribution, symbolically, MRV, if there exists a function b : R, — R, and
a nondegenerate to zero Radon measure p such that for every u-continuous Borel, namely,
with (0B) = 0 where 9B represents the border of B, set B C [0, 00]™ \ {0}, we obtain
that

X
Tlgrgo P {b(m) € B} = u(B). )

For the normalizing function b(-), we have that b(-) € Ry, as is indicated in [23,
Sect. 2.4]. We write X € MRV («, b, it). This measure p is homogeneous, namely, for
any Borel set B C [0, 00]™ \ {0}, we obtain

u(tB) =t~ u(B)

for any ¢ > 0. Another representation of (4) is in the following form:
1 X
(x)

for a distribution V' € R_,.

MRV is a well-known multivariate distribution class with rich properties. We refer
to [23] for several treatments and to [4, 15, 19] for applications on risk theory and risk
management.

It is worth to mention that recently there were some attempts to extend the heavy-tailed
distributions to multivariate setup; see, for example, [16,24] for such kind of approaches
and survey of classes.

Now, let us remind the strong asymptotic independence that we need later; see [21,
Asm. A]. We should notice that in [21], the convergence in the next dependence structure

Nonlinear Anal. Model. Control, 30(Online First):1-29, 2025
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was defined in the general case as (z,y) — (00, 00), but for sake of compactness of the
text, we use here the convergence x A y — oco. Let X and Y be two real-valued random
variables with distributions F' and G, respectively. We say that X and Y are strongly
asymptotically independent, symbolically, SAI, if

G(y)],
(-v)],

P(X™ >z, Y >y) =0[F(-x)
P(X >z Y >y =O0[F(z)G
P(X > Y >y ~ C’F(x)é(y

~—

as ¢ A y — oo for some constant C' > 0.

Remark 1. It is easy to see that SAT contains the independence as a special case. In the
case where X and Y are nonnegative (or, generally, bounded from below), X and Y are
SATif

P(X >z, Y >y)~CF(z)G(y)

as x Ay — oo. The SAI covers a wide spectrum of dependence as, for example, Ali—
Mikhail-Haq, Farlie-Gumbel-Morgenstern, and Frank copulas; see [21].

2 Generalized tail asymptotic independence

Next, we establish the following relation:

P(Xn(0) >, YVin(A) > y) ~ > Y P(O:X; >z, AjY; >y) (5)
i=1 j=1
as x Ay — oo, where

) = i@ixi, Ym(A) = iA Y.
i=1 j=1

with {©;,A;,4,j € N}, arbitrarily dependent nonnegative random variables, called
random weights, and the primary random variables {(X;,Y;), ¢ € N} are such that X;
and Y; are SAI (but X; and Y; are independent for any i # j) with P(X; > z) = F;(z) €
DNLand P(Y; > z) = Gj(z) e DN L.

The study of the joint tail behavior of the tail of two randomly weighted sums provides
arealistic framework for the insurance applications since most insurance companies main-
tain several portfolios, which are subject to dependence environment; see for relation (5)
under several heavy-tailed distribution classes and several dependence structures in [20,
25,31]. Indeed, we find mostly two forms of dependence structure. Firstly, {©;, Aj}
are arbitrarily dependent, while {(X;,Y;)} are independent random vectors within each
random vector appears some dependence structure. Secondly, {©;, A;} are arbitrarily de-
pendent, and in each sequence {X;} and {Y;}, there appears some dependence structure,
while the two sequences {X;} and {Y;} are independent. In this paper, we combine these

https://www.journals.vu.lt/nonlinear-analysis
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two approaches through the following definition. In next definition, we use the random
variables X1,..., X, and Y7, ...,Y,, that follow distributions with supports, which are
not bounded from above.

Definition 1. Let X1,...,X,, and Y7,...,Y}, be real valued random variables. Then we
say that Xy,..., X, Y1,...,Y,, are generalized tail asymptotic independent, symboli-
cally, GTALI, if both following relations hold:
ol PO 0] X, > ) =0 ©
foralll<k#i<n,j=1,...,m,and
lim P>y, | Xi >, e >yr) =0 (7

T; \Y; \Yr—>00
foralll<j#k<m,i=1,...,n.

Remark 2. This dependence structure allows dependence between X7, . .., X,,, between
Yi,..., Yy, and dependence between X; and Y} (not only for ¢ = 7). In this paper, we
restrict ourselves in the case with X, Y; to be SAI dependent for the same 4, and X, Y}
independent for any 7 # j. We have to note that the GTAI structure belongs to the family
of “second-order asymptotic independence” that means that the probability of three or
more extremal events is negligible with respect to the probability of two extremal events,
namely, one in each sequence.
Notice that if X; and Y} are independent for any 4, j € N (i.e., the two sequences are
independent), then relationships (6), (7) can be written as follows:
lim  P(|X;| > | Xp>x) =0 (8)

TiNTp—>00
forall1 <i# k < n,and

yJ/\l;iIL)OOP(D/J‘ > Yj ’ Y >yk) =0 9
forall 1 < j # k < m. Through (8) and (9) we obtain the definition of tail asymptotic
independence of X1,..., X, and Y7,...,Y,,, respectively, introduced in [14]. We won-
der if the results of our paper can be identified using instead of GTAI the TAI over the
Xq,..., X, Y7 ...,Y, as we find under similar frame in [6]. The reply is no because,
in spite of the presence of “interdependence” in both cases, GTAI studies second-order
asymptotic independence events, while TAT studies only first-order asymptotic indepen-
dence events. Hence, in Theorem 1 below, we demonstrate the “insensitivity” with respect
to dependence in a more extremal event compared to the TAI case.

As follows from the last remark, if we choose two mutually independent sequences,
where each one has tail asymptotic independent terms, then the structure GTAI is satis-
fied. We present now two examples, which contain interdependence among the two se-
quences and also satisfy the GTAI structure. For sake of simplicity, we restrict ourselves
on nonnegative random variables with n = m = 2.

Nonlinear Anal. Model. Control, 30(Online First):1-29, 2025
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Example 1. Let X1, X5, Y1, Y5 be nonnegative random variables, and let 71, Zs, Z3, Z4
be random variables with Z; € {X;, X2,Y7,Y5}, where Z; # Z; forany 1 < i # j < 4.
Let z1, 22, 23, 24 With z; € {21, 22,y1,y2} admit z; = z; forany 1 < ¢ # j < 4. We
assume that 7y, Zs, Z3, Z, are widely upper orthant-dependent; see [28]. Namely, for any
integer n = 1,...,4, there exists a positive number g,,(n) such that for any z; € R with
i=1,...,n, we have

P

D{Zi > Z;}] < gu(n) HP[Zi > 2]

Further, for any 1 < 7 # 7 < 4 we assume that

. PZ; > 2z, Z; > 2]
lim : -
ziNzj—>00 P[ZZ > ZAP[Z] > Zj]

for example, if Z;, Z; are SAI with C' = 0 (see in [21]), then the last condition is not
valid. From these conditions and with n = 3 on the first relation, the GTAI structure
follows directly.

Except the advantage to imply the GTALI structure, in the next example, we get an
idea about the dependence frames that satisfy the conditions of Theorem 1 below.

Example 2. Under the notation of Example 1, we consider that 7, Zs, Z3, Z, are SAI for
any two of them, namely, say for any Z;, Z;, where ¢ # j, there exists a constant Cy; > 0
suchthat P[Z; > z;, Z; > z;] ~ Ci;P[Z; > 2 |P[Z; > z;] as z; A zj — oo. Further, we
consider that there are SAI for any three of them, namely, say for any Z;, Z;, Z;,, where
i # j # k, there exists a constant C;;;, > 0 such that

P[Zz >z, Zj > Zj, Ly, > Zk] ~ CzykP[Zz > Zi]P[Zj > Z]}P[Zk > Zk]
as z; A zj A 2, — oo. From the triple SAI structure there is directly implied the GTAL
Now, we can give the first assumption for the main result of the section.

Assumption 1. We assume that the following random variables X, ..., X,, Y7,..., Y,
are GTAI and the random weights @1, ...,0,,, A1,..., A, are nonnegative and nonde-
generate to zero random variables that follow distributions whose supports are bounded
from above and independent of X1,..., X, Y1,...,Y,,.

In the next lemma, we see that under Assumption 1, the GTAI structure remains
invariant with respect to products.

Lemma 1. Under Assumption 1, we obtain that all products @1 X4, ...,0, X, A1Y],
o, ApY,, are GTAL

Proof. By definition of GTAI, for any € > 0, there exist some constant kg > 0 such that
for any x; A i A y; > Ko, the relation P(|X;| > x; | X > xx,Y; > y;) < € holds

https://www.journals.vu.lt/nonlinear-analysis
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foralll <i#k<n, j=1,...,m Let P(O; < b;)) =1, P(4; < d;) =1, where
bi,d; > Oforalli =1,...,nand j = 1,...,m. Then, for x;, ), y; sufficiently large,
namely, x;/b; > Ko, 2 /by > Ko, and y;/d; > Ko, we have that

P(|@X| > xy, OpXE > 1y, AYJ > yj)
b; by d

/// {|X I>Z ‘%: Y, > ?]P(@i € dei, O € dey, A; € d))
J

b; by d;

/] ['X'

x P(©; € d¢;, O € deg, A; € d)))
< GP(Qka > Tk, AJY; > yj).

Tk Y;
, Y P|X —, Y. > =
>>\] {k>0k’J>Aj

By arbitrariness of € > 0 we have the first relation of GTAI. The symmetrical relation,
namely,

P(|AY| > Yy, @zXz > x;, AkYk > yk) < EP(@ZXZ > x;, AkYk > yk)

forany 1 < j # k < m,i=1,...,n, can be easily obtained through similar arguments,
and this completes the proof. O

Assumption 2. Let {(X;,Y;), ¢ € N} be some sequence of random vectors with marginal
distributions F; € DN L and G; € DN L, respectively, for all 7 € N. Assume that X; and
Y; are SAI for the same 4 with constant C; > 0, and X, Y; are independent for any  # j.

The next lemma plays crucial role in the proof of Theorem 1.
Lemma 2. Under Assumptions 1 and 2, we find
P(0,X; >z, A;Y; >y, Okl Xy| > a(z)) = o(P(60;X; >z, A;Y; >y))

asx Ny = ooforanyl <i#k<nwithj=1,...,m, where a(x) > 0 is such that
a(x) = oo, a(z) = o(x).

Proof. We can see that
P(@iXi >, AjY; >y, O Xi| > a(x))
=P (04| Xi| > a(z) | ©:X; >z, 4;Y; > y)P(6:;X; >z, A;Y; > y)
=0o[P(0:X; >z, A}Y; > y)]
as x A\ y — oo, where at the last step, we used Lemma 1. O
Now, we can present the first main result.

Theorem 1. Under Assumptions 1 and 2, for every pair (n,m) € N2, we obtain (5) as
T ANy — 00.

Nonlinear Anal. Model. Control, 30(Online First):1-29, 2025
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Proof. Let us follow the line of [20, Thm. 1]. We consider the following events:
AT ::{\/@Z»Xi>ac:|:a(gc)}7 Aj[ ::{\/Aj)/}>y:|:a(y)},
i=1 j=1

where a(x) > 0 is such that a(x) — o0, a(xz) = o(x), and a € Ro. Now, let us define
the probabilities

L(z,y) == P(Xn(@) >, Y (4) >y, AL, A;)7
I(z,y) == P(Xn(@) >z, Y (4) >y, (A;)C),
Is(z,y) := P(Xn(Q) >z, Y (4) >y, (Ay_)c)
Hence, we can see that
P(X,(0) >z, Y;n(4) > y) < Li(z,y) + La(z,y) + I3(z,y). (10)

Therefore, for the upper bound of the probability in the left-hand side of (10), it remains
to estimate [ (x, y), Is(x,y), and I3(x, y).

Li(z,y) <P(A;, Ay \/QX >z — a(x), \/Aij>y—a(y)

i=1 j=1
< ZZP[QiXi >z —a(z), A4;Y; >y —aly)]
i=1 j=1
~ YN PO:X > w, A > )
i=1 j=1

as x A\ y — oo, where at the last step, we used [20, Lemma 3(ii)] (as far as X; and Y; are
SAI). Next,

I2(xvy) =P

X, (0) >z, Y (A) >y,\/9X> \/AY> , (AD)°

i=1

=P |X,(0) >z, Y (A) >y, \/ex >f
i=1
\/AjY] > \/@ka x — a(x)
j=1 k=1

YT Y plosZ Ay Lo 1)
- 0(2213(@)(@ >z, AjY; > y)>

i=1 j=1

https://www.journals.vu.lt/nonlinear-analysis
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as x Ay — oo, where at the last step, we used Lemma 2 and [20, Lemma 3(i)] due to
F.GeDNLCD.
Symmetrically, we find

I3(2,y) = 0<ZZP(91‘X¢ >z, 4;Y; > 3/))

i=1 j=1
as x Ay — 0o. So from (10) we obtain

P(X,(0) >z, Vin(A) > y) S Y P(O:X; > 2, AY; > )

i=1 j=1
asT Ay — oo.
For the lower bound of P(X,,(©) > z, Y;,,(4) > y), we get the following inequality:

P(X,(0) >z, V;n(4) > y) 2 P(X,(0) >z, Yin(4) >y, AL, A)).
Applying Bonferroni inequality twice, we obtain
P(X,(0) >z, Yn(4)>y, A7, AF)
>3 D P(X,(0)>w, Vi(A)>y, 0,Xi >3 +a(z), A;Y;>y+ a(y))

i=1 j=1

_ Z ZP(@iXi>x+a(x), OrXp>z +a(z), A;Y; >y +ay))

1i<k<n j=1
—Z Z P(0,X; >z +a(x), A;Y; >y +aly), AYe>y+aly)), (A1)
i=11<j<k<m

and further, by [20, Lem. 3 (ii)] and by Lemma 1 the last two terms in (11) are asymptot-
ically negligible with respect to 31 | 337" | P(0;X; > 2, A;Y; > y)asz Ay — 0.
For the first term of right-hand side in (11), we find a lower bound

YD P(6iXi >z +alz), 4Y; >y +a(y)

i=1 j=1
7ZZP 0,X; >z +a(x), A;Y; >y+aly), Z@ka < x]
i=1 j=1 k=1
fZZP 0, X; >z +a(z), 4;Y; >y+aly), ApYr <y
i=1 j=1 k=1
> Y P(O:X; >z +alx), A;Y; >y +aly))
i=1 j=1

Nonlinear Anal. Model. Control, 30(Online First):1-29, 2025
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n m n

-> > > P
i=1 j=1itk=1

n m m

2.0 > P

i=1 j=1 j£k=1

0,X; >z +a(x), 4;Y; >y+aly), OpXi < —a(nx)l

0, X; >z +a(x), 4;Y; >y+aly), ApYr < _a7(ny)17
which by Lemma 2 and [20, Lemma 3(ii)] is asymptotically greater than the double sum

iiP(@iXi >z, A;Y; > y)

i=1 j=1
as ¢ A y — oo, and thus we have the asymptotic relation (5). O
Remark 3. We proved asymptotic estimation (5) when Xi,...,X,, Y¥7,...,Y,, are

GTALI as it comes by Definition 1. X;, Y; are SAI, and ©;, A; are upper bounded
and nonnegative random variables. This restriction is relatively small compared to the
extension made in terms of dependence and at the same time reasonable in these models
since ©; and A; depict the discount factors.

Let us remind that C; > 0 is the constant from SAT condition on each pair (X;,Y;),
1 =1,...,n A m; see Assumption 2. Now, applying [20, Lemma 3 (iii)] in Theorem 1,
we have the following consequence.

Corollary 1. Under the conditions of Theorem 1 with the restriction that F; € R_,, and
G; € R_ay with a;, o’ € [0,00) for any i, j € N, we obtain

P(X,(0) >z, Yy, (A)>y)
~3 S BON AN ()T, nfanE or AT (0Tl) (1)

i=1 1=j#1i
asr Ny — o0.
Remark 4. We write X(0) = Y 0,X;5, VE(A) = Y7 A;Y". We see

that the corresponding maximums for X, (@) and Y,,(A), namely, \/!_; X;(©) and
v i1 Y;j(A), satisfy the inequalities

P(Xn(0) > z,Y,,(4) >y) <P

0) >z, \/Yi(4) >y
% j=1

<P(XF(0) >z, VI (A) > y).

<=
S

Il
_

Therefore, Theorem 1 and Corollary 1 are also satisfied, namely, relations (5) and (12)
after replacement of the pair (X,,(0), ¥;,(4)) with (\V/;_, Xi(0), V-, Y;(4)).
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Finally, we present an application on bidimensional discrete-time risk model. Re-
cently, the discrete-time, one-dimensional models have attracted attention by many re-
searchers; see [22,32]. On the other hand, more researchers study the multivariate risk
models because it is rarely for an insurance company to operate with one line of business;
see [8,9, 15] among others.

We limit us in only two portfolios and discrete time, where X; and Y; depict the net
loss in ith period in the first and second line of business, respectively, @; and A;, they
continue to be discount factors of the ith period.

Therefore, the stochastic surplus process of insurer at time n € N is described by

Sy = (Sin, Son) = (m =D OiXi,y—) Aﬂ&') )
i=1 j=1

where = and y are initial capitals in each line of business. Hence, one type of ruin
probability is given as

n n

\/Xi(@) >, \/ Y;(4) > y]

i=1 j=1

Y(x,y,n) =P

for any n € N. This ruin probability depicts the probability that both portfolios have been
with negative surplus during the n first periods, but not necessarily simultaneously.

Corollary 2.

(1) Under the conditions of Theorem 1, we obtain

(2, y,n) ~ ZZP(QiXi >z, AjY; > y)

i=1j=1
asx /Ny — oQ.
(i) Under the conditions of Corollary 1, we obtain

¥(z,y,n)
<3 3 BlON AN @G ) + Y. CE[EN AT |F (@)Ci(y)
i=1 1=j5#i i=1
asx /Ny — oo.

Proof. Directly from Remark 4, the definition of ruin probability, Theorem 1, and Corol-
lary 1, respectively. O

3 Application on bidimensional renewal risk model
Recently, the bidimensional risk model has gained popularity due to its improved ability

to address practical insurance problems, while at the same time providing a relatively
flexible mathematical framework compared to multidimensional models; see [6,21,30],
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etc. All these papers studied various models, not necessarily renewal ones, and explored
different dependence structures: either among claims from the two business lines, be-
tween interarrival times and claims, or both. However, we find interdependence among
the two lines of business only in [6] with TAT claims. Inspired by the simple and concise
risk model found in [30] and [21], we attempt a partial extension using Theorem 1.

The discounted bivariate surplus process (Uy (t), U (t))T for ¢t > 0 has the form

(Ul(t)) _ (x> N Jo_emeC(ds)) (DM 13)
Ua(t) Y Jo_e "o Ca(ds) DP(t) )’

where (z,y) is the vector of the initial capitals for the two lines of business; r > 0 is
the constant interest rate; DV (t) = SN x0T DB (1) = E;V:(? Yie ™% are
the discounted aggregate claims of each line up to time ¢ > 0; {(C1(t), C2(t)), t > 0}
is the premiums accumulation process for the two business lines, which represent non-
decreasing cadlag paths with (C1(0), C2(0)) = (0,0); and {(X;,Y:), ¢ € N} is the se-
quence of claims, which arrive at the time moments {77, i € N} that represents a renewal
counting process

N(t) = lin<n
i=1

for any ¢ > 0 with finite renewal mean
At) =E[N(t)] =) _P[T; < 1.
i=i

{N(t), t > 0} represents a homogeneous renewal process, namely, {6;, n € N} with
0, = Ty and 0; = T; — T, for any integer ¢« > 2, representing the interarrival
times between two successive arrival times, is a sequence of independent and identically
distributed, positive random variables.

In risk model (13), we can examine several kinds of ruin probability over finite-time
horizon of length 7" > 0 such that it satisfies A(T") > 0. Let us define the ruin probability
as follows:

Uo(z,y;T) = P[T. < T | (U1(0),U2(0)) = (z,9)], (14)
where x* is either “max’ or “and”, and as T, we consider
I inf{t > 0: [U1(t) v Ua(t)] < 0},

Topd = inf{t > 00 inf Ui(s) <0, inf Us(s) < 0}. (15)

0<s< 0<s<

By relations (14) and (15) we understand that ¢, depicts the probability that both
portfolios get simultaneously negative surplus in the interval [0, T'], while t,,q depicts

https://www.journals.vu.lt/nonlinear-analysis


https://www.journals.vu.lt/nonlinear-analysis

Background risk model in presence of heavy tails under dependence 15

the probability that both portfolios get negative surplus in the interval [0,77], but not
necessarily simultaneously. Hence, we observe that

wmax(maﬁU;T) < wand(xayQT)- (16)

The following result represents a partial generalization of [21, Thm. 1.1]. Although we
consider more general dependence structures, by restricting the claim distribution class to
DN L C S, the convergence is as z A y — oo instead of (z,y) — (00, 00).

We can observe that in this risk model, except the dependence structures appearing
in the conditions on the claims, the two business lines are also dependent through the
common renewal process. We note that C' > 0 is the common constant of SAI property
for any (X,Y") since these random pairs are identically distributed.

Theorem 2. Let consider the bivariate renewal risk model (13) with r > 0. We assume
that {(X;,Y;), 1 € N}, {(C1(¢),Ca(t)), t = 0}, and {N(t),t > 0} are mutually
independent and the sequence of pairs (X;,Y;) satisfies the conditions of Theorem 1
under the restriction that (X;,Y;) are identically distributed random pairs with marginal
distribution F' and G, respectively. Then, for any finite T > 0 such that A\(T') > 0, we
have that as x N\ y — oo,

wmax(ma Y; T) ~ zz}and (l.a Y; T)

~ // [F(:Eer(t“))é(ye”) Jrf(xe”)é(ye’"(t“))] A(ds) A(dt)

s,t20, s+t<T
T

+ C/F(me”)é(ye”) A(dt) =: Az, y; T).
0

Before presenting the proof of the main result, we need a preliminary lemma that has
it own merit as it provides the joint tail of the discounted aggregate claims.

Lemma 3. Under the conditions of Theorem 2,
P[D(T) > 2, DP(T) > y] ~ Az, y; T) (17)
asx Ny — o0.
Proof. For any m € Nand xz A y > 0, we obtain
P[DM(T) > 2, DI(T) > y]
N(T) N(T) 1

Z Xie " > 1, Z Yie i >y
i=1 j=1

(55

n=m-+1

=P

n

ZXie_TT" >z, ZYje_TTJ' >y, N(T)=n
i=1

Jj=1

Dz, y;T) + Lo, y; T). (18)
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For the second term with any p > J; V Jg , by Markov’s inequality, the SAT dependence,
and the fact that F, G € DN L C D we can find some constant L > 0 such that

[(zAy)/L] 00 n n
Iy(z,y; T ( Z + Z )P ZX¢>x,ZYj>y
i=1 j=1

n=m+1  n=|(eAy)/L]+1

x P[N(T) = n]
[(zAy)/L] r y z Ay
2
< Z n P[Xi > Y; > n]P[N(T) =n] +P[N(T) > =7 ]
n=m+1
L(mAy)/L] o
< Y Kn*PTVF(@)G(y)P[N(T) = n]
n=m-+1
—2(p+1)
T Ay 2(p+1
+( 7 ) B[N L iv s an/n)]

S KF@GWE[ND] " ™ 1 nerysm]

as r A y — 0o, where the constant K can be found in [20, Lemma 3(i)]. At the last step,
we used that, since F, G € D and p > J;: \% ng then it follows

(z Ay)~* = o[F(2)G(y)] (19)
as z Ay — oo. Indeed, we see that
(xAy) P <aP=o[F(z)], (2Ay) P <y " =0[G(y)]

as x — oo and y — o0, respectively, from where we obtain (19).
We observe that
T T
/P[Xe_rt >z, Ye 't > y| Mdt) ~ C/F(me”)é(ye”) A(dt)
0 0
because T' > 0 if finite. Furthermore,
T
/P[Xe*” >z, Ye 't > y| A(dt)
0
>P[Xe ™" >z, Yeo'l > y|\T) < F(z)G(y)MT) (20)

as x A y — oo, where at the last step, we used again [20, Lemma 3(i)]. So, we find that

lim limsup —= L,y T)
m=o0 apy—oo [FP[Xe T >z, Ye rt > y| A(dt)
K 1

2(p+1)
< 3 A sy BN @] T nmysmy] =0,

https://www.journals.vu.lt/nonlinear-analysis


https://www.journals.vu.lt/nonlinear-analysis

Background risk model in presence of heavy tails under dependence 17

where the constant M > 0 stems from relation (20), while at the last step, we used [26,
Lemma 3.2]. Therefore, we obtain that

lim limsup IQ(x’ﬁ; ) =
MO0 gAY — 00 C’fo (xet)G (yert) A(dt)

21

Now, we estimate I (z,y; T). At first, through the dominated convergence theorem
and Theorem 1, because 0 < e~ "7 < 1, we obtain

ZXe s g ZYe Ti>y, N(T)=n

/ / ZXe s, ZYe ">y

0<t1 <Kt KT 77
tnt1>T

Pl edty, ..., Thyr€dty1]

~

n n
> Y P[Xie s, Yie T >y]> P[Ty€dty, ..., Tpi1€dt, 1]

0<t1<---<tn<T<i—1 J=t
tn+1 >T

~> S PXe i >, Ve T >y, N(T) = n) (22)
i=1 j=1

as x A y — oo. Therefore, from relations (18) and (22) we conclude

m n n

Li(x,y; T) ~ Z ZZP[X,»efTT"’ >, Vel >y, N(T) = n

I
/~
8

|
[
~——
F N <
\gh

i

I

@

\%

8

~

@

\%

@

=

3

n=1 n=m-+1 =1 j=1
4
=: ZIl(m,y; 7). (23)
=3

Further, we follow the line from [30, Lemma 3.4], but for convenience, we present here
the full argument. For the first term, we obtain

Ii(x,y; T) = Z Z ZP[Xie_TTi >, Yje_TTj >y, N(T) = n]

=1 n=t j=1
33 (E T Yl o ve o v =
=1 n=1 j=1 i j=i+1

:i i P[XieirTi>.’E, .Y:jeiTTj>y7CZWi<Tj|
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+ ZP[Xie_rT" >z, Yie "l >y, T, < T]

i=1
+3 Y PXe >z, Ve >y, T; < T
i=1 j=i+1
3
=Y Iy(a,y; 7). (24)
For the first term I3 (x, y; T'), taking into account that { N'(¢), ¢ > 0} represents a homo-

geneous renewal process, (I; — T}) is independent of T, and furthermore, (T; — T )

T;_;, where the equality here means equality in distribution. Hence, we find

-731($ ZU;T)

(T +(T; T))>x Yje~ TJ’>y,Tj+(Ti—Tj)<ﬂ

uMg |D%g
+M8JM8

/ / P[X;e ") >z Vie " >y| P[Ti_; € ds] P[T}; €di]
s t>0, s+t<T

/ / "G (yet) A(ds) A(db). (25)
5,20, s+t<T

By symmetry we obtain
Iss(2,y; T)
= Z Z P[X,e T >z, Ve " THT=T0) 5 T, 4 (T) — T;) < T
i=1 j=i+1

= // F(;ve”)é(yer(t“)) A(ds) A(de). (26)
s,t20, s+t<T
Finally, by the SAI dependence between X; and Y; we have

Iso(z,y; T Z/P[Xie >z, Yie™" > y| P[T; € di]
i=1
T
~ C/F(Jce”)é(ye”) Adt) =: CI(z,y, F,G,T) 27
0

as x Ay — 00. So, by relations (24)—(27) we find
Is(z,y;T) ~ Az, y; T) (28)

as T Ay — oo.
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Now, we estimate I,(x, y; T). It is easy to see that for sufficiently large = A y, we get

4(z,y; T Z ZZP e i > g, Yje_rT">y7 N(T):n]

n=m+41 =1 j=1

< i i ( i + i )P[Xie_TTl >, Yje_’“T1 >y, T, < T}
n=m+1i=1 \i#j=1 i=j=1
oo n n n T
= Z Z(Z+Z>/P[Xie_rt>x,§/je_”>y]
n=m+1i=1 \i#j=1 i=j=1/ {

x P[N(T —t) > n—1]P[T} € di]

- T
<K Z [n(n —1) + 2n] /F(xer’t)é(ye”)
n=m-+1 0

x P[N(T —t) > n —1]P[T} € di]

<K Y (4t mP[N(T) > nfl]/F( NG(yer!)PIT, € df],

n=m-+1

where the constant ' > 0 comes from [20, Lemma 3(i)]. Hence, for any large enough m
and x Ay > 0, we can find some small enough ¢ > 0 such that Iy(z,y;T) < eK X
I(z,y, F,G,T) < eKI3z,y;T), and letting that m tend to infinity, we can take ¢ | 0.
Thus by relations (23), (28) and last asymptotic inequality we find

L@,y T) ~ Iz, y: T) ~ Az, y; 1) 29)
as x A y — oo. Therefore, by (18), (21), and (29) we reach relation (17). O

Proof. Proof of Theorem 2 For the 1,4, by Lemma 3 we find
T — - 1 i (2) }
Yana(@,3:7) = P| inf UD(6) <0, inf U (1) <0
<P[DI(T) >, DENT) > y] ~ Az, y; T) (30)

as x Ay — oo. On the other hand, for the lower bound of y,,x, following the line
from [30, Thm. 2.1], we obtain

inf {U(1 (t) v U@ (¢ )} < O]

¢max(xvy;T) - |:O<t<

T T
>P|D{ /e*”C& (ds) > z, D®(T) — /e*’“SC’Q(dS) > y]
0 0
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//P [DO(T) > 2+ u, DO(T) > y + 2] H(du, d2)
0

~

0\8 o

/A(z +u, y+ 2; T)H(du,dz)
0

as x A y — oo, where by H we denote the distribution of the

T T
(/e”Cl(ds), /e”C’g(dS)>,

0 0

and at the last step, we used Lemma 3. Therefore, due to the fact that F,G € DNL C L,
we obtain A(z +u, y+2;T) ~ Az, y; T) as © Ay — oo, which in combination of the
last relation. By dominated convergence theorem we find

Ymax (2, y; T) 2 Az, y; T) (31)

as x A\ y — oco. From relations (30), (31), and (16) we get the desired result. O]

4 Tail distortion risk measures

Let us remind the Hadamard product of two nonnegative, n-variate random vectors ©
and X. Here the vector © = (O ..., 0,) has nonnegative and nondegenerate to zero
components and represents the systemic risk factors, while the nonnegative random vector
X = (Xy,...,X,,) describes the losses of n portfolios, namely, the random variable X;
represents the loss of the ith portfolio over a concrete time horizon with ¢ = 1,... n.
Hence, the product © X corresponds to discounted claim of the n portfolios over a con-
crete time horizon.

In order to make the model more realistic, we allocate the initial capital into n lines
of business, in general, of different amounts. Thus, we need nonrandom, positive weights
Wi, ..., W, With Z:’:l w; = 1. Then the discounted aggregate loss of portfolio is

presented as
i=1

This model is called background risk model, and it can describe the systemic risk.
For more details about background risk model, see [1] and [27]. We intent to study a risk
measure, called tail distortion risk measure, symbolically, TDRM, in the background risk
model © X (w) under a condition; see Assumption 3 below, which permits several forms
of dependence, among the systemic risk factors @, among the losses X and between the
© and X simultaneously. Before the definitions, we give a survey of the current literature
on the topic.
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In [5], the distortion tail risk measure was examined in a similar background risk
model. In [5], asymptotic results are developed for the tail distortion risk measure TDRM
of the quantity © X(w) and the weights w; for ¢ = 1,...,n, defined as above, with ©
to be one-dimensional, and therefore, is a common systemic risk factor for all business
lines and independent of X. Also, they assume left-continuous distortion function. In
[33], TDRM was studied for right-continuous distortion function in the X, (@) model,
where multivariate systemic risk factors were permitted. In this work, there were used
either MRV structure for the vector X or some general enough structures of asymptotic
independence for its components (with regularly varying tails), which can provide a direct
asymptotic expression. However, the vectors © and X are still independent.

In this work, we study the © X (w) model that, by means of Assumption 3, allows
arbitrary dependence among each vectors components, and also allows a dependence
between © and X, which is a mathematical generalization with obvious practical impact.
Furthermore, Assumption 3 also allows the domination, with respect to tail heaviness, of
the systemic risk factors versus the losses, while in [5, 33], only the opposite is allowed,
namely, the domination of tails of losses versus the tails of systemic risk factors. The last
case is far from realistic during periods of economic instability.

Assumption 3. Let © X € MRV («, V, i) for some o € (0, 00).

Remark 5. Assumption 3 is satisfied in many cases, where we have X € MRV (a, V, u*)
(or ® € MRV(«, V, u*)) for some Radon measure p* through multivariate versions of
Breiman’s theorem. For example, under some moment conditions for the components of
O (respectively for the components of X), in [2], we find that in case of independent @
and X, the MRV structure remains in the product © X with a new Random measure, but
with same regular variation index and same normalization function. Later, in [13], we have
an extension of the result in dependent © and X. For the special case where © = O'1,
under a rather weak dependence structure between © and X suggested in [19], we can
find in [9] that the product © X keeps the MRV structure with same regular variation
index and same normalizing function.

Remark 6. An important property for the following proofs is the closure of the MRV
class with respect to linear combinations. Namely, if we have a nonnegative random vector
X € MRV (a, V, u*), then the distribution of all the nonnegative, nondegenerate to zero
linear combinations Z?Zl 1; X; belongs to the class R _,, with the same index «; see, for
example, [23, Sect. 7.3.1]. Hence, under Assumption 3, we obtain that OX (w) € R_,.

Now, in the classic one-dimensional background risk model, we study the asymp-
totic behavior of tail distortion risk measure, which is more general than conditional tail
expectation. The following class of risk measures was introduced in [29]. For a given
nondecreasing function g : [0,1] — [0, 1] such that g(0) = 0, g(1) = 1 and for any

nonnegative random variable X with distribution F', the measure
oo

plX) = [ 9[F(@)] do

0
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is called distorted risk measure, and the function g is called distortion function. It is well
known that

VaR,(Z) := inf{z € R: V(z) > p}, CTE,(Z) =E[Z | Z > VaR,(Z)]

are distortion risk measures for some p € (0, 1); see, for example, [35]. In order to stress
on the risk tail introduced by [35], the definition of TDRM follows.

Definition 2. Let g : [0,1] — [0, 1] be nondecreasing such that g(0) = 0 and g(1) = 1.
Then the tail distortion risk measure of a nonnegative random variable X with distribution
F is given by
py[X | X > VaR,(X)] = /QFX|X>V'&RP(X)($)] du,
0

where F x| x5y (2) =P(X >z | X > y).

It is well known that the tail distortion risk measure of a continuous random variable
X 1is a distortion risk measure. Furthermore, if the distortion function is the identical
function g(z) = =, then the tail distortion risk measure coincides with the conditional tail
expectation.

From [35] we find that if X € R_, with a > 0 and, additionally,

T
/g( ak)dy<oo
/ Y

for some 0 < k < c, then pg[X | X > VaR,(X)] ~ Cyr(g) VaR,(X) as p — 1, where

1

T /1
/*Ua (dy) 71+/ <ya)dy.
1

0

This last result was shown for any distortion function without continuity requirement.
From [12] we find for the normalization function Bx defined as quantile of 1/F,

Bx(s) = (;)H(@ —r(1-1) 32)

for any s > 1, and for some right-continuous distortion function g, the following repre-
sentation holds:

pg[X | X > VaR,( / BX< ) g(dy) (33)

for any nonnegative random variable X with distribution F.
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It is clear that the previous asymptotic expressions in Section 4 depends on the dis-
tortion function only though the constant C\,(g), and therefore, the quantiles of random
variables remain clear of distortion. This helps in practical applications since the only
thing we need to apply the model when the distortion function is varying for the same
risks is to calculate the integral.

Further, we study the background risk under Assumption 3. So, in this model, we
allow dependence among the losses of the n lines of business and dependence among the
systemic risk factors with the losses.

Theorem 3. Let the product ©X satisfy Assumption 3 and condition

7 1
/g(ya/(1+<)>dy<oo (34)
1

1/ae n

pg[6X (W) | 6X (W) > VaR,, (6,X(w))] ~ ca(gﬂl“:a ;VaRp(QiXi) (35)

for some ¢ > 0. Then

asp — 1 with

. P(OX(w) > z) )
w =1 i , I, = /e 36
v :pl>Holo P[Zi:l 6;X; > .’)3] ;761 (36)

Proof. From Assumption 3 we obtain ©X € MRV (¢, V, i), therefore, OX(w) € R_,.
From relation (33) and the fact that

1
VaR, (6X(w)) = Bex (w) (1_]9) (37)
(see (32)) we can show

o
B@X(w) (ﬁ)

o _

Boxn -7 ) old) ~ Calg) 68)

as p — 1. Indeed, from [11, Thm. B.2.18] we get that there exists p, 0 < p < 1, which
depends on ¢ > 0, such that forp < p < 1and 0 < y < 1, we have that

‘BQX(W)(y(ll_p)) - BQX(w)(ﬁ) y e — 1‘ _

B@X(w)(y(l_p)) B y—l/a
3 Boxw) (1) /e

<y /e (39)

3 Box(w) (135) 1/a

Further, we have

Boxw)(ya=)  y~Ve

iBQX(w)(ﬁ) 1/0[

B w 1 1/«
ox(w) (51 p))‘_y (40)

iB@X(w)(ﬁ) 1/a h
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Hence, from relations (39) and (40) we obtain

~(1+0)/o
‘gyl/uy. (41)

’ B@X(w) ( v (11_p) )
[0

B@X(w)(ﬁ)

Since the integral in (34) converges for some ¢ > 0, it follows that

1 1
/y*”“ g9(dy) < /y*““)/“ g9(dy) < o0
0 0

1
—(14+¢)/«
/(1/ _|_y )g(dy)<oo
@
0

Therefore, from (41) and by dominated convergence theorem we find

whence we obtain

1
[ Boxw) (a5 _ Boxw) (=)
lim ﬁg(dy):/hm y(l p) g(dy)
= ) vl Box (w)(1=5)

1
= /y‘l/“ 9(dy) = Cal(g),
0

where the penultimate equality follows from Box(w)(-) € Ri/q: see (32) and [23,
Sect. 2.4]. Therefore, relation (38) is true.
Furthermore, taking into account relation (36) we obtain

Y, VaR,(0:X;) ( Y, PlO: X, >m]]>1/“: I,

ety VaR,(OX(w)) 11—>120 P> w6, X, >x o

(42)

However, we also obtain

pg[OX(w) | ©X (W) > VaR, ( /Bex(w)< )) g9(dy),

while by (37) and (38) we find

[ Bexin (= ) ) ~ Cala) Va, (€X ()
0

as p — 1, and consequently, from relation (42) and the last two expressions we find
relation (35). O]
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Further, we provide a simple corollary, which serves as an extension of the result
from [5, Thm. 3.1] in case when the systemic risk factor is independent of the risk vector
X € MRV.

Corollary 3.

(i) Let X € MRV (av, V, pu*) and O be independent of X. We assume that there exists
some € > 0 such that E(097¢) < oo foranyi = 1,...,n. If the integral in (34)
converges, then

pg[0X(w) | ©X(w) > VaR, (60X (w))]

1/aa n

~ Ca(g) Vlvia 3 [E(68)]Y7 VaR, (X)) @3)

i=1
asp — 1.

(ii) Let ® € MRV («, V, u*) and X be independent of ©. We assume that there exists
some € > 0 such that E(X{**¢) < oo forany i = 1,...,n. If the integral in (34)
converges, then

py[OX(w) | ©X(w) > VaR, (6 X(w))]
1/a n

Nca(g)’ylvj 3 E(X)] Y VaR,(6)) (44)
@ i=1

asp— 1.
Proof. (i) Firstly, we have © X € M RV (a, V, u) from [2]. Hence, by Theorem 3 we
obtain (35). Because ©; and X; are independent, from [3] we find

VaR,(0,X;) ~ [B(62)]"" VaR,(X;) (45)
as p — 1. Hence from relations (44) and (35) we obtain (43).

(i) We follow a entirely similar argumentation as in item (i). O

5 Conclusion

In the corresponding literature, we find a confusion with respect to term multivariate
heavy tails. The reason for this, is that the multivariate distribution tail cannot be de-
termined uniquely. Having in mind the single big jump principle, the d-dimensional,
nonweighted form of (5) is focused on the following joint distribution tail:

ni Nd
PIS xVsa, ., Y X sy
i=1 i=1

niy n

i=1 %

(3

d
PIXY >z, o, XY > 2y (46)
1
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as A%_,z; — oo. Along with approach of the multivariate subexponentiality by [24], we
find in [16], under different conditions, the relation

P ZX“‘) ezA| ~ ZP[X“) € zA] (47)
i=1 i=1
as x — oo, where XM ... X represent d-dimensional random vectors, and A is

some rare set. Although the single big jump approximation in (47) has several good
properties (for example, most of the closure properties of the one-dimensional distribution
classes hold also for the multivariate ones, and further, some results can be generalized to
multidimensional setup), there exist still some basic drawbacks.

The main drawback is that the set A does not represent the joint distribution tail;
see [16, Remark 2.2]. This leads to a “linear” approximation of the single big jump in
the sense that, in order to happen this representation, there should be from 1 to d, out
of a total of n x d, random variables that are sufficiently “large”. As consequence, the
approximation of relation (47) cannot represent the probabilities ,,x and 1,4, Which
are among the four most popular ruin probabilities in multivariate risk models.

In opposite direction, relation (46) studied in Section 2 with d = 2 can solve the
problem with these two ruin probabilities since it is focused on the joint distribution tail.
Furthermore, we can say that relation (46) follows a “nonlinear” approach of the single
big jump since requires d sufficiently “large” random variables, namely, one big jump
for each line of business if you look from the risk theory aspect. In this sense, the two
approaches, described by (46) and (47), work in complementary modes.

Finally, we want to mention that MRV, although can give solutions with respect to
Ymax and Yang, satisfies only the linear single big jump, namely, relation (47). From this
point of view, the study of (46) leads to revision of multivariate heavy-tailed distribu-
tions, even of the well-established ones, like MRV. The events described by relation (47)
do NOT put emphasis in the dimension, in opposite with the events described by rela-
tion (46).
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