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Abstract. In this paper, a new fractional model for the simultaneous saccharification and
fermentation process of rice wine is proposed. To begin with, the existence and uniqueness of
solution to the new model are proved by using some fixed point theorems. In addition, the
stability at the equilibrium point and the Ulam–Hyers stability of the fractional simultaneous and
saccharification fermentation model are analyzed. Then the approximate solutions of the fractional
simultaneous saccharification and fermentation model are obtained by using the generalised
Euler method. Finally, numerical simulations are given to verify the rationality of the fractional
simultaneous saccharification and fermentation model. The new model proposed in this paper can
more sensitively capture changes in the reaction.

Keywords: simultaneous saccharification and fermentation, fixed point theorem, stability analysis,
generalized Euler method, numerical simulation.

1 Introduction

Rice wine, a traditional fermented wine, has a long history and deep cultural background
in China [23]. It is rich in nutrients, containing a small amount of protein, glucose,
fructose, sucrose, vitamins B and C, etc. [17, 19, 21]. Rice wine is made by adding wheat
Qu and yeast to steamed glutinous rice or rice, where steamed glutinous rice replaces
starch as the basic material, and wheat Qu replaces purifying enzymes [24]. The fer-
mentation process of rice wine includes initial fermentation stage and post-fermentation
stage. In the initial fermentation stage, the saccharification of starch and the fermentation
of sugar take place simultaneously, which is called as simultaneous saccharification and
fermentation (SSF) [8]. It protects the yeast cells from high concentrations of sugar and
helps produce high quality ethanol. The post-fermentation stage refers to the process
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in which microorganisms continue to ferment to improve the taste of rice wine after the
initial fermentation process is completed. This paper focuses on the initial fermentation
stage of rice wine.

Fractional calculus is widely used in many fields such as physics [4], signal processing
[26], biomedical engineering [11], and so on. In 2017, Singh et al. [14] established a new
smoking cessation model with fractional derivatives and demonstrated the existence and
uniqueness of the solution of the model. Subsequently, they used the iterative perturbation
method to obtain the solution of the model. Finally, numerical simulations were presented
to prove that the fractional derivatives are very important to simulate real-world problems.
In 2020, Zhang et al. [25] studied a Caputo–Hadamard-type fractional turbulence flow
model by using the method of upper and lower solutions combined with monotonic
iteration technique. In 2022, Wu et al. [20] used Caputo fractional derivative to establish
a general plastic model for rockfill materials. They used the proposed model to simulate
drainage triaxial compression tests of five rockfill materials. By comparing the test results
and simulation results, it is obtained that the proposed model can effectively simulate
the stress and strain behavior of rockfill materials. In 2024, Huang et al. [3] proposed
a new fractional wine fermentation model and made qualitative analysis and numerical
simulation for the new model. They show the advantages of the proposed fractional
wine fermentation model, which provides the optimal strategy for the control of heat
in the production process, which further provides a good support for the high-quality
production of wine. To sum up, fractional derivatives help us to better understand and
describe complex behaviour in systems. The advantages of fractional derivatives such
as “memory” and “heritability” make it possible to better describe the SSF process of
rice wine. Among them, the Caputo derivative has significant advantages. Its initial
conditions are consistent with those of integer-order differential equations, offering clear
interpretations and facilitating the connection with practical problems. Additionally, it
performs excellently in characterizing complex systems with memory and hereditary
properties. The Caputo fractional derivative of a function N(t) with order η is defined
to be

CDη
tN(t) =

1

Γ(n− η)

t∫
0

N (n)(ξ)(t− ξ)n−η−1 dξ,

where n − 1 < η 6 n, n ∈ N. Based on this, we will establish a fractional SSF model
and study its related properties.

Currently, some dynamic models of the SSF process for ethanol production have
been established. In 2006, Kroumov et al. [7] established a two-hierarchic-level unstruc-
tured model of transgenic Saccharomyces cerevisiae YPB-G SSF process for ethanol
production. In 2007, Ochoa et al. [10] studied the SSF process of the recombinant
Saccharomyces cerevisiae strain to produce ethanol. Then they proposed an unstructured
model and a cybernetic model to describe the process. In 2014, Wang et al. [18] studied
the process of ethanol production by simultaneous saccharification co-fermentation in
batches with complementary material of birch wood. They established a dynamic model
to simulate the process well. In 2015, Liu et al. [9] conducted rice wine experiments at
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different temperatures. Then they proposed a dynamic model with adjustable parameters
for the SSF process in the rice wine experiment. Subsequently, they compared the simu-
lation results of the model with the experimental results at different temperatures. Finally,
it was concluded that the proposed model can effectively describe the dynamic behavior
of the rice wine SSF process.

Although the integer-order model [9] for describing the SSF process of rice wine
has been proposed and numerical simulations have been carried out, there is still some
meaningful work that needs to be supplemented and improved such as optimization of
the model, existence and uniqueness of the solution, and stability analysis. In this con-
text, taking into account the advantages of fractional derivatives, inspired by the models
mentioned above, this paper extends the integer-order model [9] to the fractional SSF
model (1). Subsequently, the existence and uniqueness of the solution of fractional SSF
model and the stability of the model are analyzed. Finally, numerical simulations of the
fractional SSF model are presented. Our work not only fills the theoretical knowledge
gap in the SSF process of rice wine, but also provides guidance for rice wine brewers to
produce high-quality rice wine.

Since in our applications d/dt has the unit of hour−1, dη/dtη has the unit of hour−η ,
taking 0 < η 6 1 and τ a parameter that possesses the dimension of hour, then the unit
of [(1/τ1−η)dη/dtη] is hour−1. Therefore, the fractional form of the integer-order model
in [9] can be introduced in the following way:

1

τ1−η
CDη

t S(t) = −k1SE,

1

τ1−η
CDη

tR(t) = k10F − k5
R

Ks1 +R

O

Ks2 +O
C,

1

τ1−η
CDη

tM(t) = k11F − k6
M

Ks3 +M

O

Ks2 +O
C − k7

M

Ks4 +M
C,

1

τ1−η
CDη

tG(t) = k12F − k8
G

Ks5 +G

O

Ks2 +O
C − k9

G

Ks6 +G
C,

1

τ1−η
CDη

tC(t) = k13
R

Ks1 +R

O

Ks2 +O
C + k14

M

Ks3 +M

O

Ks2 +O
C

+ k15
G

Ks5 +G

O

Ks2 +O
C,

1

τ1−η
CDη

tA(t) = k16
M

Ks4 +M
C + k17

G

Ks6 +G
C,

1

τ1−η
CDη

tO(t) = −k5
R

Ks1 +R

O

Ks2 +O
C − k6

M

Ks3 +M

O

Ks2 +O
C

− k8
G

Ks5 +G

O

Ks2 +O
C +Oin,

1

τ1−η
CDη

tE(t) = −k1SE + (k2 + k3 + k4)F,

1

τ1−η
CDη

t F (t) = k1SE − (k2 + k3 + k4)F.
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Table 1. The symbols for the concentration of the different
materials.

Symbol Material Symbol Material
S starch E wheat Qu
R maltotriose C yeast cells
M maltose O oxygen
G glucose A ethanol
F starch-Qu comple

If k = τ1−ηk̄, for every constant k, the new fractional SSF model proposed in this
paper can be written as

CDη
t S(t) = −k1SE,

CDη
tR(t) = k10F − k5

R

Ks1 +R

O

Ks2 +O
C,

CDη
tM(t) = k11F − k6

M

Ks3 +M

O

Ks2 +O
C − k7

M

Ks4 +M
C,

CDη
tG(t) = k12F − k8

G

Ks5 +G

O

Ks2 +O
C − k9

G

Ks6 +G
C,

CDη
tC(t) = k13

R

Ks1 +R

O

Ks2 +O
C + k14

M

Ks3 +M

O

Ks2 +O
C

+ k15
G

Ks5 +G

O

Ks2 +O
C,

CDη
tA(t) = k16

M

Ks4 +M
C + k17

G

Ks6 +G
C,

CDη
tO(t) = −k5

R

Ks1 +R

O

Ks2 +O
C − k6

M

Ks3 +M

O

Ks2 +O
C

− k8
G

Ks5 +G

O

Ks2 +O
C +Oin,

CDη
tE(t) = −k1SE + (k2 + k3 + k4)F,

CDη
t F (t) = k1SE − (k2 + k3 + k4)F

(1)

with initial conditions

S(0) = S0 > 0, R(0) = R0 > 0, M(0) = M0 > 0,

G(0) = G0 > 0, C(0) = C0 > 0, A(0) = A0 > 0,

O(0) = O0 > 0, E(0) = E0 > 0, F (0) = F0 > 0.

The symbols for the concentrations of the different substances are given in Table 1.
Here Ks1 ∼ Ks6 are the half-saturation constants, and Oin is the rate of dissolved

oxygen addition [9]. k1 ∼ k17 are the reaction rate. The main products of this reaction are
maltotriose, maltose, glucose, and ethanol. Starch–Qu complex is combined by starch and
Qu at the rate of k1. The starch in Starch–Qu complex is decomposed into maltotriose,
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maltose, and glucose at rates of k2, k3, and k4, respectively. Meanwhile, maltotriose,
maltose, and glucose provide carbon sources for yeast growth at rates of k5, k6, and
k8, respectively. Maltose and glucose are metabolized into ethanol at rates of k7 and k9.
Maltotriose is consumed for yeast growth and maintenance, but it is not metabolized into
ethanol.

The structure of this paper is as follows. In Section 2, the existence and uniqueness of
the solution for the fractional SSF model and the stability of the model are analysed. In
Section 3, the numerical simulations of the fractional SSF model are presented. Conclu-
sions are presented in Section 4.

2 Existence, uniqueness, and stability analysis

This section first presents the existence and uniqueness of the solution for the fractional
SSF model and then analyzes the stability at the equilibrium point and the Ulam–Hyers
stability of the fractional SSF model.

In the fractional SSF model (1), let

Θ1 = −k1SE,

Θ2 = k10F − k5
R

Ks1 +R

O

Ks2 +O
C,

Θ3 = k11F − k6
M

Ks3 +M

O

Ks2 +O
C − k7

M

Ks4 +M
C,

Θ4 = k12F − k8
G

Ks5 +G

O

Ks2 +O
C − k9

G

Ks6 +G
C,

Θ5 = k13
R

Ks1 +R

O

Ks2 +O
C + k14

M

Ks3 +M

O

Ks2 +O
C

+ k15
G

Ks5 +G

O

Ks2 +O
C,

Θ6 = k16
M

Ks4 +M
C + k17

G

Ks6 +G
C,

Θ7 = −k5
R

Ks1 +R

O

Ks2 +O
C − k6

M

Ks3 +M

O

Ks2 +O
C

− k8
G

Ks5 +G

O

Ks2 +O
C +Oin,

Θ8 = −k1SE + (k2 + k3 + k4)F,

Θ9 = k1SE − (k2 + k3 + k4)F.

Then model (1) can be written as

CDηN(t) = Φ
(
t,N(t)

)
, 0 < η 6 1,

N(0) = N0,
(2)
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where t ∈ [0, T ] and

N(t) =
(
S(t), R(t),M(t), G(t), C(t), A(t), O(t), E(t), F (t)

)T
,

N0 = (S0, R0,M0, G0, C0, A0, O0, E0, F0)T,

Φ
(
t,N(t)

)
= (Θ1, Θ2, Θ3, Θ4, Θ5, Θ6, Θ7, Θ8, Θ9)T.

Lemma 1. (See [12].) The solution of the problem
CDη

t x(t) = g(t), 0 < q 6 1,

x(0) = x0

is given by

x(t) = x0 +
1

Γ(η)

t∫
0

(t− ξ)η−1g(ξ) dξ.

By Lemma 1, the solution of system (2) satisfies the following equation:

N(t) = N0 +
1

Γ(η)

t∫
0

(t− ξ)η−1Φ
(
ξ,N(ξ)

)
dξ. (3)

Let C9[0, T ] = {N(t) | N(·) : [0, T ] → R9 is continuous}, then C9 is a Banach space
with the norm ‖N‖ = sup06t6T |N(t)|. Next, we define an operator B : C9[0, T ] →
C9[0, T ] as follows:

BN(t) = N0 +
1

Γ(η)

t∫
0

(t− ξ)η−1Φ
(
ξ,N(ξ)

)
dξ,

then the fixed point of operator B is the solution of Eq. (3).
In order to obtain the required theorem, we need the following assumptions:
(A1) There exist positive functions Z(t), I(t) ∈ Lq[0, T ] with q > 1/η such that∣∣Φ(t,N(t)

)∣∣ 6 Z(t)
∣∣N(t)

∣∣α + I(t),

where α > 0;
(A2) There exists a positive function Q(t) ∈ Lq[0, T ] with q > 1/η such that∣∣Φ(t,N(t)

)
− Φ

(
t,N(t)

)∣∣ 6 Q(t)
∣∣N(t)−N(t)

∣∣.
Next, we present the existence and uniqueness of the solution for the fractional SSF

model.

Theorem 1. Under assumption (A1), the fractional SSF model (1) has at least one
solution N(t) ∈ C9[0, T ] such that

‖N‖ 6
(
‖N0‖+

‖I‖L1T η

Γ(η + 1)

)
Eη
(
‖Z‖L1T η

)
∀t ∈ [0, T ].
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Proof. Let us show that operator B is continuous. For N(t) ∈ C9 with ‖N‖ 6 k,

∣∣BN(t)
∣∣ =

∣∣∣∣∣N0 +
1

Γ(η)

t∫
0

(t− ξ)η−1Φ
(
ξ,N(ξ)

)
dξ

∣∣∣∣∣
6 |N0|+

1

Γ(η)

t∫
0

(t− ξ)η−1
∣∣Φ(ξ,N(ξ)

)∣∣dξ
6 |N0|+

1

Γ(η)

[
‖Z‖Lq

t∫
0

(
(t− ξ)η−1

)q/(q−1)∣∣N(ξ)
∣∣α dξ

+ ‖I‖Lq

t∫
0

(
(t− ξ)η−1

)q/(q−1)
dξ

]

6 |N0|+
kα‖Z‖Lq + ‖I‖Lq

Γ(η)

t∫
0

(
(t− ξ)η−1

)q/(q−1)
dξ

6 |N0|+
(kα‖Z‖Lq + ‖I‖Lq )(q − 1)T (qη−1)/(q−1)

Γ(η)(qη − 1)
. (4)

Hence, B is bounded. Let 0 < t1 < t2 < T , one has∣∣BN(t2)−BN(t1)
∣∣

=

∣∣∣∣∣ 1

Γ(η)

t2∫
0

(t2 − ξ)η−1Φ
(
ξ,N(ξ)

)
dξ − 1

Γ(η)

t1∫
0

(t1 − ξ)η−1Φ
(
ξ,N(ξ)

)
dξ

∣∣∣∣∣
6

1

Γ(η)

t1∫
0

(
(t2 − ξ)η−1 − (t1 − ξ)η−1

)∣∣Φ(ξ,N(ξ)
)∣∣dξ

+
1

Γ(η)

t2∫
t1

(t2 − ξ)η−1
∣∣Φ(ξ,N(ξ)

)∣∣dξ
6

1

Γ(η)

[
‖Z‖Lq

t1∫
0

(
(t2 − ξ)η−1 − (t1 − ξ)η−1

)∣∣N(ξ)
∣∣α dξ

+ ‖I‖Lq

t1∫
0

(
(t2 − ξ)η−1 − (t1 − ξ)η−1

)
dξ

]

+
1

Γ(η)

[
‖Z‖Lq

t2∫
t1

(t2 − ξ)η−1
∣∣N(ξ)

∣∣α dξ + ‖I‖Lq

t2∫
t1

(t2 − ξ)η−1 dξ

]

6
1

Γ(η + 1)

(
kα‖Z‖Lq + ‖I‖Lq

)(
tη2 − t

η
1

)
.
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When t2 → t1, it can be obtained that∥∥BN(t2)−BN(t1)
∥∥→ 0.

So, B is equicontinuous. According to the Arzelà–Ascoli theorem, it can be inferred that
B : C9[0, T ]→ C9[0, T ] is a completely continuous operator.

For 0 < µ < 1, N(t) = µBN(t). Similar to the derivation of (4), there are∣∣N(t)
∣∣ =

∣∣µBN(t)
∣∣

6 ‖N0‖+
‖I‖LqT η

Γ(η + 1)
+
‖Z‖Lq

Γ(η)

t∫
0

(t− ξ)η−1
∣∣N(ξ)

∣∣α dξ.

By applying the generalized Gronwall inequality [22], we have

‖N‖ = sup
06t6T

∣∣N(t)
∣∣ 6 (‖N0‖+

‖I‖LqT η

Γ(η + 1)

)
Eη
(
‖Z‖LqT η

)
,

where Eη is the Mittag-Leffer function defined by Eη(u) =
∑∞
n=0 u

n/Γ(nη + 1).
According to the Leray–Schauder fixed point theorem, the fractional SSF model (1)

has at least one solutionN(t) ∈ C9[0, T ] such that ‖N‖ 6 (‖N0‖+‖I‖LqT η/Γ(η + 1))×
Eη(‖Z‖LqT η).

Theorem 2. Under assumption (A2), if T η‖Q‖L1/Γ(η + 1) < 1, then the fractional SSF
model (1) has a unique positive solution.

Proof. For N(t), N(t) ∈ C9[0, T ], there are∣∣BN(t)−BN(t)
∣∣

=

∣∣∣∣∣ 1

Γ(η)

t∫
0

(t− ξ)η−1Φ
(
ξ,N(ξ)

)
dξ − 1

Γ(η)

t∫
0

(t− ξ)η−1Φ
(
ξ,N(ξ)

)
dξ

∣∣∣∣∣
6

1

Γ(η)

t∫
0

(t− ξ)η−1
∣∣Φ(ξ,N(ξ)

)
− Φ

(
ξ,N(ξ)

)∣∣ dξ
6
‖Q‖L1

Γ(η)

t∫
0

(t− ξ)η−1
∣∣N(t)−N(t)

∣∣dξ 6 T η‖Q‖L1

Γ(η + 1)
‖N −N‖.

Since T η‖Q‖L1/Γ(η + 1) < 1, then ‖BN − BN‖ < ‖N − N‖. Hence, the fractional
SSF model (1) has a unique solution by using the Banach contraction theorem. Similar to
the proof of Theorem 2.1 in [13], it is easy to prove that the solution of the fractional SSF
model we proposed is positive.

Next, we analyze the stability of the fractional SSF model at the equilibrium point.
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Definition 1. (See [16].) A point x∗ is called to be an equilibrium point of the system

CDη
t x(t) = f

(
t, x(t)

)
, η ∈ (0, 1),

if and only if f(t, x∗) = 0.

Lemma 2. (See [6].) The equilibrium point x = 0 of ẋ = Ax is stable if and only if
all eigenvalues of A satisfy Re[λi] 6 0 and for every eigenvalue with Re[λi] = 0 and
algebraic multiplicity qi > 2, rank(A − λiI) = n − qi, where n is the dimension of x,
and qi is the multiplicity of λi when λi = 0 in det(λiI −A).

Theorem 3. The fractional SSF model (1) is stable at the equilibrium point.

Proof. Let CDηN(t) = 0. The equilibrium point of the fractional SSF model (1) can be
calculated as D0 = (0, 0, 0, 0, 0, 0, 0, 0, 0) and D1 = (0, 0, 0, 0, 0, 0,−(k9 + ks2 + ks5)/
(k8 + ks6 + k9ks5), 0, 0). We further calculate the Jacobian matrix of the fractional SSF
model (1) at the equilibrium point as follows:

JD0 = JD1 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 k10
0 0 0 0 0 0 0 0 k11
0 0 0 0 0 0 0 0 k12
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 k2 + k3 + k4
0 0 0 0 0 0 0 0 −(k2 + k3 + k4)


.

We evaluate the characteristic equation depending on λ of JD0 as given below:

λ9 + (k2 + k3 + k4)λ8 = 0.

It is easy to see that all eigenvalues of matrix JD0 satisfy Re[λi] 6 0. Among them, the
eight multiplicity eigenvalues of JD0 are 0, and the other one is less than 0. At the same
time, the following formula holds:

rank(A− 0I) = 9− 8 = 1.

According to Lemma 2, the fractional SSF model is stable at the equilibrium point.

Next, in order to comprehensively and deeply understand the dynamic characteristics
of the fractional SSF model of rice wine, ensure the reliability of this model on a long-time
scale and improve the accuracy of predicting the system trends, the Ulam–Hyers stability
and the generalized Ulam–Hyers stability of the fractional SSF model are analyzed. Let
ε satisfy the following inequality:∣∣CDηN(t)− Φ

(
t,N(t)

)∣∣ 6 ε, (5)

where t ∈ [0, T ], ε = max(εj)
T > 0, j = 1, 2, . . . , 9.

Nonlinear Anal. Model. Control, 30(6):1031–1047, 2025
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Definition 2. (See [1].) Assume that Ñ(t) ∈ C9 satisfies (5) andN(t) ∈ C9 is the unique
solution of (2). For any ε > 0, if there exists UΦ > 0 such that∣∣Ñ(t)−N(t)

∣∣ 6 UΦε, t ∈ [0, T ],

where UΦ = max(UΦj
)T, j = 1, 2, . . . , 9, then the fractional SSF model (1) is Ulam–

Hyers stable.

Definition 3. (See [5].) Assume that Ñ(t) ∈ C9 satisfies (5) andN(t) ∈ C9 is the unique
solution of (2). For any ε > 0, if there exist a continuous functionW : R+ → R+ and
W(0) = 0 such that ∣∣Ñ(t)−N(t)

∣∣ 6WΦ(ε), t ∈ [0, T ],

whereWΦ = max(WΦj )T, j = 1, 2, . . . , 9, then the fractional SSF model (1) is general-
ized Ulam–Hyers stable.

Remark 1. A function Ñ(t) ∈ C9 satisfies (5) if and only if there exists a function
v(t) ∈ C9 with the following properties:

(i) |v(t)| 6 ε, t ∈ [0, T ].

(ii) CDηÑ(t) = Φ(t, Ñ(t)) + v(t), t ∈ [0, T ].

Theorem 4. Under assumption (A2), if Γ(η + 1) > T η‖Q‖L1 , then the fractional SSF
model (1) is Ulam–Hyers stable and generalized Ulam–Hyers stable.

Proof. If Ñ(t) satisfies the inequality given by (5) and N(t) is a unique solution of (2),
then for all ε > 0, t ∈ [0, T ], together with Remark 1, we have∣∣Ñ(t)−N(t)

∣∣
=

∣∣∣∣∣ 1

Γ(η)

t∫
0

(t− ξ)η−1
(
Φ
(
ξ, Ñ(ξ)

)
+ v(ξ)

)
dξ − 1

Γ(η)

t∫
0

(t− ξ)η−1Φ
(
ξ,N(ξ)

)
dξ

∣∣∣∣∣
6

1

Γ(η)

t∫
0

(t− ξ)η−1
∣∣v(ξ)

∣∣dξ +
1

Γ(η)

t∫
0

(t− ξ)η−1
∣∣Φ(ξ, Ñ(ξ)

)
− Φ

(
ξ,N(ξ)

)∣∣dξ
6

T η

Γ(η + 1)
ε+

T η

Γ(η + 1)
‖Q‖L1‖Ñ −N‖.

Thus, we have
‖Ñ −N‖ 6 UΦε, (6)

where UΦ = T η/(Γ(η + 1) − T η‖Q‖L1). By Definition 2, the fractional SSF model (1)
is Ulam–Hyers stable. In (6), if we takeWΦ(ε) = UΦε, thenWΦ(0) = 0. According to
Definition 3, the fractional SSF model (1) is generalized Ulam–Hyers stable.
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3 Numerical simulation of fractional SSF model

In this section, we give the approximate solution of the fractional SSF model (1). Then
numerical simulations are carried out with the proposed method.

Here we apply the generalised Euler method in [2] to the fractional SSF model (1).
Let [0, a] be the interval of solution for problem (2). We subdivide the interval [0, a] into
q subintervals [tq, tq+1] by using the nodes tq = qh, where h = a/m represents the
length of subintervals, q = 0, 1, 2 . . . ,m− 1. By using the generalized Euler method, the
iterative form of N(t) at tq+1 = tq + h is

S(tq+1) = S(tq) +Θ1

(
S(tq), R(tq),M(tq), G(tq), C(tq), A(tq), O(tq), E(tq), F (tq)

)
× hη

Γ(η + 1)
,

R(tq+1) = S(tq) +Θ2

(
S(tq), R(tq),M(tq), G(tq), C(tq), A(tq), O(tq), E(tq), F (tq)

)
× hη

Γ(η + 1)
,

M(tq+1) = S(tq) +Θ3

(
S(tq), R(tq),M(tq), G(tq), C(tq), A(tq), O(tq), E(tq), F (tq)

)
× hη

Γ(η + 1)
,

G(tq+1) = G(tq) +Θ4

(
S(tq), R(tq),M(tq), G(tq), C(tq), A(tq), O(tq), E(tq), F (tq)

)
× hη

Γ(η + 1)
,

C(tq+1) = C(tq) +Θ5

(
S(tq), R(tq),M(tq), G(tq), C(tq), A(tq), O(tq), E(tq), F (tq)

)
× hη

Γ(η + 1)
,

A(tq+1) = A(tq) +Θ6

(
S(tq), R(tq),M(tq), G(tq), C(tq), A(tq), O(tq), E(tq), F (tq)

)
× hη

Γ(η + 1)
,

O(tq+1) = O(tq) +Θ7

(
S(tq), R(tq),M(tq), G(tq), C(tq), A(tq), O(tq), E(tq), F (tq)

)
× hη

Γ(η + 1)
,

E(tq+1) = E(tq) +Θ8

(
S(tq), R(tq),M(tq), G(tq), C(tq), A(tq), O(tq), E(tq), F (tq)

)
× hη

Γ(η + 1)
,

F (tq+1) = F (tq) +Θ9

(
S(tq), R(tq),M(tq), G(tq), C(tq), A(tq), O(tq), E(tq), F (tq)

)
× hη

Γ(η + 1)
,

where q = 0, 1, 2, . . . ,m− 1.
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It can be written as

N(tq+1) = N(tq) +
hη

Γ(η + 1)
Φ
(
tq, N(tq)

)
.

The exact solution of the fractional SSF model is as follows:

N∗(tq+1) = N0 +
1

Γ(η)

tq+1∫
0

(tq+1 − ξ)η−1Φ
(
ξ,N∗(ξ)

)
dξ.

= N0 +
1

Γ(η)

tq∫
0

(tq+1 − ξ)η−1Φ
(
ξ,N∗(ξ)

)
dξ

+
1

Γ(η)

tq+1∫
tq

(tq+1 − ξ)η−1Φ
(
ξ,N∗(ξ)

)
dξ.

For (1/Γ(η))
∫ tq+1

tq
(tq+1 − ξ)η−1Φ(ξ,N∗(ξ)) dξ, by using the mean value theorem of

integrals, there exists ξq ∈ (tq, tq+1) such that

1

Γ(η)

tq+1∫
tq

(tq+1 − ξ)η−1Φ
(
ξ,N∗(ξ)

)
dξ =

hη

Γ(η + 1)
Φ
(
ξq, N

∗(ξq)
)
.

Thus,

eq+1 = N∗(tq+1)−N(tq+1) = eq +
hη

Γ(η + 1)

[
Φ
(
ξq, N

∗(ξq)
)
− Φ

(
tq, N(tq)

)]
,

|eq+1| 6 |eq|+
hη

Γ(η + 1)

[∣∣Φ(ξq, N∗(ξq))− Φ(ξq, N(tq)
)
|

+
∣∣Φ(ξq, N(tq)

)
− Φ

(
tq, N(tq)

)∣∣]
6 |eq|+

hη

Γ(η + 1)

[
L
∣∣N∗(ξq)−N(tq)

∣∣+
∣∣Φ(ξq, N(tq)

)
− Φ

(
tq, N(tq)

)∣∣]
6 |eq|+ Chη|eq|+O

(
hη+1

)
=
(
1 + Chη

)
|eq|+O

(
hη+1

)
.

When q = 0, e0 is the initial error. Suppose eq 6M(1 + Chη)q|e0|+O(hη), then

|eq+1| 6
(
1 + Chη

)[
M(1 + Chη)q|e0|+O(hη)

]
+O

(
hη+1

)
= M

(
1 + Chη

)q+1|e0|+O
(
hη
)
.

When h → 0, (1 + Chη)q+1 → 1, so limh→0 |eq+1| = 0, meaning that the numerical
method converges.
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Table 2. Initial values of each substrate concentration [9].

Substrate Initial value Substrate Initial value
concentration [g/L] concentration [g/L]
S(0) 151.68 A(0) 0
R(0) 0 O(0) 0.042
M(0) 0 E(0) 24.26
G(0) 0 F (0) 0
C(0) 5.6

Table 3. Estimated values of the model parameters [9].

Parameter Value Parameter Value Parameter Value
k1 0.007 k9 0.062 k17 0.032
k2 1.695 k10 1.758 Ks1 5.970
k3 20.818 k11 21.984 Ks2 6.900
k4 0.685 k12 0.761 Ks3 30.900
k5 0.643 k13 0.054 Ks4 30.500
k6 2.929 k14 0.258 Ks5 6.315
k7 0.886 k15 0.037 Ks6 6.315
k8 0.412 k16 0.476

The local truncation error is Tq+1 = O(hη+1),

|eq+1| 6
(
1 + Chη

)
|eq|+ |Tq+1|,

|eq| 6
(
1 + Chη

)q|e0|+ q−1∑
k=0

(
1 + Chη

)k|Tk+1|

=
(
1 + Chη

)q|e0|+ (1 + Chη)q − 1

Chη
+O

(
hη+1

)
.

When h is sufficiently small, (1 + Chη)q ≈ 1 + qChη , then the overall error bound is

|eq| 6
(
1 + qChη

)
|e0|+

1 + qChη − 1

Chη
O
(
hη+1

)
=
(
1 + qChη

)
|e0|+ qO

(
hη+1

)
.

Based on previous research, it can be recognized that 28 ◦C is the most suitable temper-
ature for rice wine fermentation [15]. The initial values and parameter values at 28 ◦C is
shown in Tables 2 and 3.

During the fermentation process, the concentration of reactants usually decreases
rapidly, especially, in the early stages of the reaction. Such rapid changes may lead
to instability and computational difficulties in numerical simulations. In contrast, the
concentration of product changes relatively slow, which makes it easier to perform nu-
merical simulations. Therefore, the following numerical simulations will be conducted
around four main products, maltotriose, maltose, glucose, and ethanol. The concentration
changes of maltotriose, maltose, glucose, and ethanol with time in the fractional SSF
model are shown in Figs. 1(a)–1(d), respectively. The y-axis represents the material con-
centration in g/L, and the x-axis represents the time in h. The blue line in Figs. 1(a)–1(d)
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(a) (b)

(c) (d)

Figure 1. The variation of maltotriose (a), maltose (b), glucose (c), and ethanol (d) concentration with time.
The blue line represents the variation of concentration with time when the order η = 1. The green, red, and
purple lines represent the variation of concentration with time when the order η takes 0.95, 0.90, and 0.85,
respectively.

represents the concentration changes of maltotriose, maltose, glucose, and ethanol with
time when the order η = 1; the green, red, and purple lines represent the concentration
changes of maltotriose, maltose, glucose, and ethanol with time when η = 0.95 (green),
0.90 (red), and 0.85 (purple).

Figure 1(a) shows that the concentration of maltotriose increases over time. When its
concentration reaches 11.4902 g/L, it no longer changes with time.

Figures 1(b) and 1(c) show that the concentrations of maltose and glucose increase
sharply with a short time and reach their peaks, then gradually decrease until reach zero.
The smaller the order η is, the earlier the concentrations of maltose and glucose reach
their peaks.

Figure 1(d) shows that the concentration of ethanol first increases and then stabilizes
when it concentration reaches about 79.773 g/L. From Figs. 1(a)–1(d) the concentra-
tions of maltotriose, maltose, glucose, and ethanol increase first and the concentrations
of maltotriose, maltose, and glucose increase faster than the concentration of ethanol.
Because first starch decomposes into maltotriose, maltose and glucose, then maltose

https://www.journals.vu.lt/nonlinear-analysis
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and glucose are metabolized into ethanol. Also, for this reason, the concentration of
maltotriose reaches stability faster than the concentration of ethanol. The maltotriose
decomposed by starch has a different trend compared to maltose and glucose because
it is only used for the growth and maintenance of yeast.

From Figs. 1(a)–1(d) the smaller the order η, the faster the change rate. Taking
Fig. 1(d) as an example, we analyze the change rate of ethanol concentration from t1 =
8.35 to t2 = 8.55. During this period, the concentration of ethanol is increasing. When
t1 = 8.35, the concentration of ethanol in the fractional SSF model is 32.3114, 24.5965,
18.4503, and 13.6466 when the order η is taken as 0.85, 0.90, 0.95, and 1, respectively.
When t1 = 8.55, the concentration of ethanol in the fractional SSF model is 33.1425,
25.2621, 18.9718, and 14.0483 when the order η is taken as 0.85, 0.90, 0.95, and 1,
respectively. It can be calculated that the change rate of ethanol concentration during the
period [8.35, 8.55] is 4.1555, 3.328, 2.6075, and 2.0085 when the order η is taken as 0.85,
0.90, 0.95, and 1, respectively. It can be seen that the change rate of ethanol concentration
at fractional order is faster than that at integer order. Furthermore, with the increase of the
order, the change rate of ethanol concentration gradually approaches that of the integer
order. The smaller the order, the relatively faster the change rate. Similar results for
maltotriose, maltose, and glucose can be obtained from Figs. 1(a)–1(c). Therefore, the
fractional SSF model can more sensitively capture changes in reaction.

4 Conclusion

During the fermentation process of rice wine, the concentration of substances changes
with time. Because fractional derivatives can better consider the memory effect of the
reaction system, they are more suitable to study the SSF process of rice wine. Therefore, in
this paper, a fractional SSF model was proposed. Firstly, the existence and uniqueness of
the solution for the fractional SSF model were given. Secondly, the Ulam–Hyers stability
and the stability at the equilibrium point of the fractional SSF model were analyzed.
Finally, the numerical simulations of the fractional SSF model were presented. Compared
to integer order, fractional order can perceive changes in the reaction more detail. The
fractional SSF model provides a new analysis tool for rice wine makers. It can help rice
wine brewers to better control the brewing process and improve product quality.
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