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Abstract. We consider a semilinear 2n-order problem with nonconstant coefficients. We deduce
existence results by using variational methods in two directions. We primarily treat the existence
when the nonlinearity has asymptotic linear behaviour at infinity and is either asymptotically
sublinear or linear at zero. Secondly, we discuss the superlinear case at infinity and prove three
existence results showing that our problem has at least one or two nonzero solutions.
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1 Introduction

In this paper, we focus on the following boundary value problem:

u(2n) −
(
A(x)u′′

)′′ − (B(x)u′
)′

+ C(x)u = f(x, u) in Ω = (0, L),

u = u′′ = · · · = u(2n−2) = 0 on ∂Ω,
(P)

where A ∈ C2(Ω̄), B ∈ C1(Ω̄), and C ∈ C0(Ω̄) are some given functions, f is a con-
tinuous function on Ω × R, and n ∈ N.

We deal with existence of solution for problem (P) under different conditions and
suitable behaviour of the nonlinear term f .

Several authors have obtained existence and multiplicity results to (P) in the fourth-
order case, i.e., n = 2 (see, for instance, [6] and [7]), or the sixth-order case, i.e., n = 3,
but under different assumptions, for example, sign restrictions on f(x, u) or F (x, u) =∫ u

0
f(x, s) ds.
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Existence of nontrivial solutions for a class of 2n-order ODE 1049

We mention the fourth-order case treated in [12] and [20], where functions A, B, and
C are constants with A = 0, B > 0, and C < 0; f(x, s) = b(x)s3, b > 0, and in the
paper [4], where existence results are obtained under the assumptions A = 0,

max

{
− B
π2
,− C

π4
,− B

π2
− C

π4

}
< 1

and
F (x, s) > 0 for every (x, s) ∈

(
[0, 3/8] ∪ [5/8, 1]

)
× [0, d]

for some positive constant d.
In the sixth-order case, existence and multiplicity results were obtained in [21] when

f(s) = s3, A2 < 4B (A, B positive constants), and C = 1 in Ω, and in [13], when
C > 0, f(x, s) = b(x)s3, where b is an even continuous 2L-periodic function. A more
general existence and multiplicity result was given in [17] by using variational methods
and the Brézis and Nirenberg’s linking theorems in the case

F (x, s)

s2
→ +∞ uniformly with respect to x as |s| → ∞,

but under the restriction F (x, s) > 0.
In [18], the authors studied the existence of positive solutions of a general sixth-

order nonlinear boundary value problem using the Krein–Rutman theorem and the Global
Bifurcation Theory under the restriction f > 0.

In the paper of Bonanno and Livrea [10], problem (P), where n = 3 and L = 1, was
treated by requiring an oscillation on f(x, ·) at infinity. Under some additional restrictions,
including

F (x, s) > 0 for every (x, s) ∈
(
[0, 5/12] ∪ [7/21, 1]

)
× R,

the authors obtained that the problem admits an unbounded sequence of classical solu-
tions.

It is worth mentioning an existence result due to Bonanno and et al. [5] in the case
when n = 3, f(s) = λg(s) that holds without any sign restriction of g; see [5, Cor. 2].
The authors proved the result under some restriction on λ > 0 and under the following
condition (here G is the potential of g):

lim sup
s→0+

G(s)

s2
= +∞.

The purpose of this paper is to establish existence results for the semilinear 2n-order
problem (P) when n > 4. For simplicity, we shall consider the case when n is even.
Similar results can be established when n is odd; see, for instance, [15].

In Section 2, we introduce some useful preliminaries and explain the variational set.
In Section 3, we prove that problem (P) has nontrivial solutions if f is asymptotically

linear at infinity, i.e.,

lim
|s|→∞

f(x, s)

s
= L1(x) uniformly a.e. in Ω, (H1)
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and if f is sublinear at zero, i.e.,

lim
s→0+

f(x, s)

sα
= L2(x) and lim

s→0+
F (x, s) = 0 uniformly in a.e. Ω, (H2)

where L1, L2 ∈ L∞(Ω), L2(x) > 0, ‖L2‖L∞(Ω) > 0, 0 < α < 1 are satisfied; see
Theorem 1.

We also treat the linear case at zero (Theorem 2), i.e., we assume that instead of (H2),
f satisfies

lim
|s|→0

f(x, s)

s
= L3(x) uniformly a.e. in Ω. (H3)

In Section 4, we discuss the superlinear case at infinity and prove three existence re-
sults. The first result (Theorem 5) is a general one (exponential nonlinearities are allowed;
see Example 2) and shows that under suitable conditions on the nonlinearity, problem (P)
has at least one nonzero solution. The second result (Theorem 6) provides the existence
of at least two nonzero solutions under the Ambrosetti–Rabinowitz condition.

2 Auxiliary results and variational settings

We consider the Hilbert space

H(Ω) =

{
u ∈ Hn(Ω)

∣∣∣ u(2j) = 0, 0 6 j <
n

2
on ∂Ω

}
,

which, for n even, becomes

H(Ω) =
{
u ∈ Hn(Ω)

∣∣ u = u′′ = · · · = u(n−2) = 0 on ∂Ω
}

endowed with the standard inner product

(u, v)Hn(Ω) =

∫
Ω

(
uv + u′v′ + u′′v′′ + · · ·+ u(n)v(n)

)
dx

and standard norm
‖u‖Hn(Ω) = (u, u)

1/2
Hn(Ω).

Now, we point out some useful inequalities.

Lemma 1. For each u ∈ Hn(Ω), it results

‖u‖Cn−1(Ω̄) 6 η‖u‖Hn(Ω), (1)

where η := (2 max{1/L2, 1})1/2.
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Existence of nontrivial solutions for a class of 2n-order ODE 1051

Proof. By formula (3.8) in [11] it is easy to prove that for each u ∈ Hn(Ω), one has∥∥u(n−i)∥∥2

∞ 6 max

{
1

L2
, 1

}(∥∥u(n−i)∥∥2

L2(Ω)
+
∥∥u(n−i+1)

∥∥2

L2(Ω)

)
for each i ∈ {1, 2, . . . , n}. This relation leads to

‖u‖2Cn−1(Ω̄) = max
06i6n−1

‖u(i)‖2∞ 6 η2‖u‖2Hn(Ω). �

Remark 1. It is clear that constant η in (1) also describes the constant of the embedding
Hn(Ω) ↪→ C0(Ω̄).

Lemma 2. The following relations hold true for any u ∈ H(Ω):∫
Ω

(
u(i)
)2

dx 6

(
L

π

)2 ∫
Ω

(
u(i+1)

)2
dx, i = 0, 1, 2, . . . , n− 1, (2)

∫
Ω

u2 dx 6

(
L

π

)2i ∫
Ω

(
u(i)
)2

dx, i = 1, 2, . . . , n. (3)

Proof. The case i = 0 is the usual Poincaré inequality. If i = 2, 4, . . . , n − 2, then
relation (2) follows directly from Poincaré’s inequality. Hence, (2) is proved for i =
0, 2, 4, . . . , n− 2.

Suppose now that i = 1, 3, . . . , n− 1.
Integrating by parts, using Hölder’s inequality and (2) with i replaced by i − 1 (bear

in mind that i− 1 is even), we get

∫
Ω

(
u(i)
)2

dx = −
∫
Ω

u(i−1)u(i+1) dx 6

(∫
Ω

(
u(i−1)

)2
dx

)1/2(∫
Ω

(
u(i+1)

)2
dx

)1/2

6

((
L

π

)2 ∫
Ω

(
u(i)
)2

dx

)1/2(∫
Ω

(
u(i+1)

)2
dx

)1/2

from which ∫
Ω

(
u(i)
)2

dx 6

(
L

π

)2 ∫
Ω

(
u(i+1)

)2
dx.

Inequality (3) follows from (2).

Remark 2. An immediate consequence of Lemma 2 is the inequality

1

C̃(L, n)
‖u‖Hn(Ω) 6 ‖u(n)‖L2(Ω) 6 ‖u‖Hn(Ω) (4)

with C̃(L, n) := (
∑n−1
i=0 (L/π)2(n−i) + 1)1/2 and u ∈ H(Ω).
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Indeed, from (2) one has∥∥u(i)
∥∥2

L2(Ω)
6

(
L

π

)2(n−i)∥∥u(n)
∥∥2

L2(Ω)

for each i ∈ {0, 1, 2, . . . , n− 1}, and so (4) is easily obtained.

Remark 3. Using (4), we get that the scalar product

(u, v)H(Ω) =

∫
Ω

u(n)v(n) dx

induces the norm on H(Ω)

‖u‖∗ = (u, u)
1/2
H(Ω)

equivalent to the norm ‖·‖Hn(Ω) in the space H(Ω).

Lemma 3. Let u ∈ H(Ω). Then we have the estimate∫
Ω

u2 dx 6

(
L

π

)2n∥∥u(n)
∥∥2

L2(Ω)
. (5)

Proof. We get inequality (5) by rewriting inequality (3) with i = n.

In the sequel, we will put

A− := min
x∈[0,L]

A(x), A+ := max
x∈[0,L]

A(x),

B− := min
x∈[0,L]

B(x), B+ := max
x∈[0,L]

B(x),

C− := min
x∈[0,L]

C(x), C+ := max
x∈[0,L]

C(x).

The following extension of Lemma 8 in [20] is one of the main tools.

Lemma 4. Let u ∈ H(Ω). Suppose that one of the following relations holds true:

(i) A,B,C > 0 in Ω.

(A+)2 < 4B−,
(A+)2

4B−
6 C− − 1, (6)

(A+)2 < 4C−, B− > C−,
(A+)2

4C−
6 C− − 1, (7)

A+ 6 B−/2, C− > 1, 2A+ < nα for some α ∈ (0, 1). (8)

(ii) A < 0, B,C > 0 in Ω.

(B−)2

−A+
6 4C−, (9)

(B−)2

−4A+
− 4A+ 6 C− − 1. (10)
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(iii) A = 0, B < 0, C > 0 in Ω.

C− − 1 >
B− − nB−

n

(
−2B−

αn

)1/n

for some α ∈ (0, 1), (11)

(B−)2 < 2C−,
(B−)2

2C−
6 C− − 1. (12)

(iv) A, B, C functions of arbitrary sign.

max
{
A+Kn−2, A+Kn−2−B−Kn−1, A+Kn−2−B−Kn−1− C−Kn

}
< 1,

where K = (L/π)2.

Then there exists a constant k such that∫
Ω

[(
u(n)

)2 −A(x)(u′′)2 +B(x)(u′)2 + C(x)u2
]

dx > k‖u‖2Hn(Ω). (13)

Proof. The proof follows from Lemmas 2.3, 2.5, and 2.6 in [14] if we are under assump-
tions (6), (7), (9), (10), and (12).

Case (iv) is proven in Proposition 2.2 of [10] when n = 3. Our general case follows
by using similar arguments.

To prove inequality (13) under hypothesis (8), we can use the same technique based
on the Fourier transform presented in the proof of Lemma 2.5 in [14]. Hence, it suffices
to show that there exists α ∈ (0, 1) such that

A+ξ4 6 αξ2n +B−ξ2 + C− − 1 ∀ξ ∈ R, (14)

which is equivalent to show that there exists α ∈ (0, 1) such that

A+t2 6 αtn +B−t+ C− − 1 ∀t > 0.

Let ϕ : [0,∞)→ R,

ϕ(t) = αtn +B−t+ C− − 1−A+t2.

B− > 2A+ implies that ϕ′ > 0 on [0, 1]. We see that

ϕ′(t) = B− + nαt

(
tn−2 − 2A+

nα

)
.

Due to the inequality

1− 2A+

n
> 0,

it follows that ϕ′ > 0 on [1,∞). Hence, ϕ′ > 0 on [0,∞). Since ϕ(0) > 0, we get (14).
To prove the result under hypothesis (11), we show that there exists α ∈ (0, 1) such

that
−B−ξ2 6 αξ2n + C− − 1 ∀ξ ∈ R,
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i.e., we have to prove that

−B−t 6 αtn + C− − 1 ∀t ∈ [0,∞). (15)

We define ϕ : [0,∞)→ R,

ϕ(t) = αtn +B−t+ C− − 1,

and see that ϕ has a global minimum at t0 = (−B−/(nα))1/(n−1) > 0.
To prove (15), we have to show that ϕ(t0) > 0, which means that

t0

(
α
−B−

nα
+B−

)
+ C− − 1 > 0,

which is equivalent to (11) and hence is true.

In order to prove existence when f is asymptotically linear at infinity, we also need
the next elementary result, which is stated without proof.

Lemma 5. The polynomial Q∗(ξ) = ξ2n −A+ξ4 +B−ξ2 +C− is bounded from below
by a strictly positive constant δ (and hence, Q(ξ) = ξ2n − Aξ4 + Bξ2 + C is bounded
by the same constant) on the interval [π/L,∞), where δ can be chosen as follows (n is
even):

(i) C > 0 in Ω.

• If A 6 0, B > 0 in Ω, then we can take δ = (π/L)2n.
• If A 6 0, B < 0 in Ω, the following two situations may occur:

1. Q∗ has no positive roots. Then we can choose δ = n−1
√

(B−/C−)2.
2. Q∗ has exactly two positive roots 0 < ξ0 < ξ1. Suppose there is a natural

number k > 1 such that kπ/L < ξ0 and (k + 1)π/L > ξ1. In this case, we
can choose

δ = min

{
Q∗
(
π

L

)
, . . . , Q∗

(
kπ

L

)
, Q∗

(
(k + 1)π

L

)}
. (16)

• If A > 0, B < 0 in Ω the following three situations may occur:
1. Q∗ has no positive roots (case when Q∗ > 0). We can choose δ = Q∗(ν2),

where ν is the only root of ntn−12A+t+B− = 0.
2. Q∗ has exactly one positive root ξ0. Suppose that there is a natural number
k > 1 such that kπ/L < ξ0 and (k+1)π/L > ξ0. We can take δ as in (16).

3. Q∗ has exactly two positive roots 0 < ξ0 < ξ1. Suppose that there is
a natural number k > 1 such that kπ/L < ξ0 and (k + 1)π/L > ξ1.
Then δ is given by relation (16).

• If A > 0, B = 0 in Ω the following two situations may occur:
1. Q∗ has no positive roots (case when Q∗ > 0). Then δ = Q∗(ν), where
ν = n

√
A+/2.

https://www.journals.vu.lt/nonlinear-analysis
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2. Q∗ has exactly two positive roots 0 < ξ0 < ξ1. Suppose that there is
a natural number k > 1 such that kπ/L < ξ0 and (k + 1)π/L > ξ1.
Then δ is given by relation (16).

• If A,B > 0 in Ω the following two situations may occur:
1. Q∗ has no positive roots. Then δ = Q∗(C−).
2. Q∗ has exactly two positive roots 0 < ξ0 < ξ1. Suppose that there is

a natural number k > 1 such that kπ/L < ξ0 and (k + 1)π/L > ξ1.
Then δ is given by relation (16).

(ii) C < 0 in Ω.

• If A < 0 in Ω, then Q∗ has exactly one positive root ξ0. Assuming that π/L >
ξ0, we can take δ = Q∗(π/L).

• If A,B > 0 in Ω, the following three situations may occur:
1. Q∗ has exactly one positive root ξ0. Assuming that π/L > ξ0, we can take
δ = Q∗(π/L).

2. Q∗ has two positive roots 0 < ξ0 < ξ1.
(a) Q∗ 6 0 on (0, ξ1). Supposing π/L > ξ0, we can take δ = Q∗(π/L).
(b) Q∗ < 0 on (0, ξ0) and Q∗ > 0 on (ξ0, ξ1). Assuming that there is

a natural number k > 1 such that kπ/L < ξ0 and (k + 1)π/L > ξ1,
we can take δ as in (16).

3. Q∗ has three positive roots 0 < ξ0 < ξ1 < ξ2. Suppose that there is
a natural number k > 1 such that kπ/L ∈ (ξ0, ξ1) and (k + 1)π/L > ξ2.
Then δ is given by relation (16)

Remark 4.
(i) Of course, if A 6 0, B,C > 0 in Ω, then Lemma 4 is always true, i.e., there is

nothing to prove.
(ii) Lemma 4 shows that

‖u‖ =

(∫
Ω

((
u(n)

)2 −A(x)(u′′)2 +B(x)(u′)2 + C(x)u2
)

dx

)1/2

is a norm equivalent to the norms ‖·‖Hn(Ω) and ‖·‖∗ on the space H(Ω).

We also recall the meaning of a weak solution to (P).

Definition 1. A weak solution of (P) is a function u ∈ H(Ω) such that∫
Ω

(
u(n)v(n)−A(x)u′′v′′+B(x)u′v′+C(x)uv−f(x, u)v

)
dx = 0 ∀v ∈ H(Ω). (17)

A classical solution of (P) is a function u ∈ C2n(Ω) that satisfies (P).

Remark 5. Since f is a continuous function on Ω × R, it follows that a weak solution
of (P) belongs to C2n(Ω) (to prove, imitate the proof in [20, p. 493]). Also, this regularity
allows us to obtain the last part of the boundary conditions, i.e., u(i) = 0 on ∂Ω for
i = n, n+ 2, . . . , 2n− 2, and to conclude that any weak solution is a classical solution.
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Indeed, if we choose v ∈ H(Ω) and substitute it in (17), we get by integrating by
parts that

u(n)v(n−1)
∣∣L
0

+ u(n+2)v(n−3)
∣∣L
0

+ u(n+4)v(n−5)
∣∣L
0

+ · · ·+ u(2n−2)v′
∣∣L
0

+

∫
Ω

(
u(2n) −

(
A(x)u′′

)′′ − (B(x)u′
)′

+ C(x)u− f(x, u)
)
v dx = 0.

Since v is arbitrary, it follows that u(i) = 0 on ∂Ω for i = n, n + 2, . . . , 2n − 2 and
that u is a classical solution to (P).

In order to clarify the variational structure of problem (P), we introduce the functionals
Φ, Ψ : H(Ω)→ R defined by

Φ(u) =
1

2
‖u‖2, Ψ(u) =

L∫
0

F
(
x, u(x)

)
dx ∀u ∈ H(Ω), (18)

where F (x, t) =
∫ t

0
f(x, s) ds for every (x, t) ∈ [0, L]× R.

Using standard arguments, one can verify that Φ and Ψ are continuously Gâteaux
differentiable, in particular, for every u, v ∈ H(Ω),

Φ′(u)(v)

=

L∫
0

(
u(n)(x)v(n)(x)−A(x)u′′(x)v′′(x) +B(x)u′(x)v′(x) + C(x)u(x)v(x)

)
dx

and

Ψ ′(u)(v) =

L∫
0

f
(
x, u(x)

)
v(x) dx.

Moreover, we observe that the functional J : H(Ω)→ R, defined by

J(u) = Φ(u)− Ψ(u)

=
1

2

∫
Ω

((
u(n)

)2 −A(x)(u′′)2 +B(x)(u′)2 + C(x)u2
)

dx−
∫
Ω

F (x, u) dx,

is the energy functional related to problem (P), i.e., its critical points are weak solutions
of problem (P).

Now, we recall some general definitions. Let (X, ‖·‖) be a Banach space, its dual
space is X∗. Let J : X → R be a Gâteaux differentiable functional.

Definition 2. We say that J satisfies the Palais–Smale condition (for short, (PS) condi-
tion) if any sequence {um}m∈N ⊆ X such that

(P1) {J(um)}m∈N is bounded,
(P2) {J ′(um)}m∈N converges to 0 in X∗

admits a convergent subsequence in X .
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Definition 3. For a fixed r ∈ R, we say that J = Φ− Ψ satisfies (PS)[r] condition if any
sequence {um} such that

(P1) {J(um)}m∈N is bounded,
(P2) {J ′(um)}m∈N converges to 0 in X∗,
(P3) Φ(um) < r for all m ∈ N

has a convergent subsequence.

Remark 6. By standard computations, J satisfies the (PS) and (PS)[r], r > 0, conditions;
see [17, Lemma 7]) and [2, Remark 2.1], respectively.

3 Asymptotic linear case

Our first existence result is the following theorem.

Theorem 1. Suppose (H1) and (H2) are fulfilled. If one of the conditions of Lemma 5
is satisfied, then the boundary value problem (P) has at least one nontrivial solution,
provided

δ >
2

L
‖L1‖L∞(Ω)

(
L

π

)2n

. (19)

Proof. We first establish that J(u) is bounded from below by a negative constant.
By (H1) we see that there exist M > 0 and ε = ε(M) > 0 such that for all |s| > M

and for all x ∈ Ω,
f(x, s)

s
6 ‖L1‖L∞(Ω) + ε.

Hence, by the continuity of F there exists C > 0 such that

−F (x, s) = −
1∫

0

f(x, st)sdt

> −
(‖L1‖L∞(Ω) + ε)s2

2
− C ∀(x, s) ∈ Ω × R. (20)

We recall that the set of functions {sin(mπx/L), m ∈ N, m > 1} is a complete
orthogonal basis in H(Ω).

Hence, any u ∈ H(Ω) can be written

u(x) =

∞∑
m=1

cm sin
mπx

L
, cm ∈ R,

and its norm in H(Ω) is given by

(
‖u‖∗

)2
=

∞∑
m=1

c2m.

Nonlinear Anal. Model. Control, 30(6):1048–1066, 2025

https://doi.org/10.15388/namc.2025.30.43742


1058 A. Chinnì et al.

We get

J(u) =
1

2
‖u‖2 −

∫
Ω

F (x, u) dx =
L

4

∞∑
m=1

c2mQ

(
mπ

L

)
−
∫
Ω

F (x, u) dx

>
L

4

∞∑
m=1

c2mQ
∗
(
mπ

L

)
−
∫
Ω

F (x, u) dx.

Using Lemma 5, which shows that there exists a constant δ > 0 such that Q∗ > δ on
[π/L,∞), (20), (5), and the fact that ε(M)→ 0 as M →∞, we have that

J(u) >
δL

4

(
‖u‖∗

)2 − (‖L1‖L∞(Ω) + ε)

2

∫
Ω

u2 dx− CL

>
1

2
(‖u‖∗)2

(
δL

2
−
(
‖L1‖L∞(Ω) + ε

)(L
π

)2n)
− CL,

which, by the equivalence of ‖·‖ and ‖·‖∗, shows that J is bounded from below if (19) is
satisfied.

By assumption (H2) we get that µ∗ = infH(Ω) J(u) < 0, and hence, the solution we
are going to find in the sequel is nontrivial. For a proof, see the paper [14].

We now prove the existence of a solution.
Ekeland’s variational principle (see, for instance, [16, Thm. 2.2]) ensures that there

exists a minimizing sequence {um}m in H(Ω) such that

J(um)→ µ∗ and J ′(um)→ 0 as m→∞.

Since J satisties (PS) condition, we get a subsequence {um}m strongly convergent to u0

in H(Ω). Finally, we get that there exists u0 ∈ H(Ω) such that J ′(u0) = 0, J(u0) < 0,
i.e., problem (P) has at least a nontrivial solution.

Now, we solve the case when f is linear at both zero and infinity.

Theorem 2. Suppose that assumptions (H1) and (H3) are fulfilled, whereL1, L3∈L∞(Ω),
‖L1‖L∞(Ω) > 0, ‖L3‖L∞(Ω) > Λn,1 > 0, the coefficients A and B are constant, and
C = 0. If condition (iv) of Lemma 4 with either A < 0, B ∈ R or A,B > 0 holds,
then the boundary value problem (P) has at least one nontrivial solution, provided (19) is
satisfied. Here Λn,1 is the first eigenvalue of (P) in relation to the norm ‖·‖ on H(Ω).

Proof. Since Lemma 5 holds in the case C < 0 with A < 0, B ∈ R or A,B > 0, it
is clear that it also holds if C = 0. Hence, we can follow the arguments presented in
Theorem 1 to conclude the existence of a solution.

It remains to show that the solution is nontrivial, i.e., we must find e ∈ H(Ω) such
that J(e) < 0.
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From (H1) we get that there exists M > 0 and δ1 > 0 such that for all |s| > M and
for all x ∈ Ω,

f(x, s)

s
> ‖L1‖L∞(Ω) − δ1.

As in the proof of Theorem 1, we get that

F (x, s) >
(‖L1‖L∞(Ω) − δ1)s2

2
∀x ∈ Ω, |s| > M. (21)

In a similar manner, using (H3), there exists ε > 0 and δ2 > 0 such that

F (x, s) >
(Λn,1 + δ2)s2

2
∀x ∈ Ω, |s| < ε. (22)

Using (21), (22), and the fact that F is a continuous function, we can find δ > 0 such
that for sufficiently large K, the following inequality holds:

F (x, s) >
(Λn,1 + δ)s2

2
−Ks4 ∀(x, s) ∈ Ω × R. (23)

Now we choose e = sϕ1 ∈ H(Ω), where ϕ1 is the eigenfunction that corresponds to
the eigenvalue Λn,1.

By (23) we get

J(e) =
1

2
‖e‖2 −

∫
Ω

F (x, e) dx

6
s2

2
‖ϕ1‖2 −

s2

2
(Λn,1 + δ)

∫
Ω

(
ϕ1(x)

)2
dx+Ks4

∫
Ω

(
ϕ1(x)

)4
dx.

Since ϕ1 is an eigenfunction, i.e.,∫
Ω

(
ϕ1(x)

)2
dx =

1

Λn,1
‖ϕ1‖2,

it follows that

J(e) 6 − δs2

2Λn,1
‖ϕ1‖2 +Ks4

∫
Ω

(
ϕ1(x)

)4
dx.

Choosing s sufficiently small, we conclude that there exists e ∈ H(Ω) such that
J(e) < 0 and the proof follows.

Finally, we give an application of Theorem 2.

Example 1. Let l, l2 > 0, l1 > Λn,1 > 0. Then the continuous function

f1(s) =

{
ls2+l1s
1+l2s

, s > 0,

l1s ln(arctan s+ e), s < 0,

satisfies the requirements of Theorem 2. Hence, the boundary value problem (P) with f
replaced by f1 has at least one nontrivial solution if (19) holds true.
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4 Superlinear case

In this section, we are going to present multiplicity results. We will use a particular func-
tion belonging to H(Ω), which is presented below.

Let n > 2 and L > 0. We consider α > 2/L and d > 0 and denote by (ā1, ā3, . . . ,
ā2n−3, ā2n−2) the solution of the following linear system of n equations and n unknowns
a1, a3, . . . , a2k−1, . . . , a2n−3, a2n−2:

n−1∑
k=1

a2k−1 + a2n−2 = d,

n−1∑
k=1

(2k − 1)a2k−1 + (2n− 2)a2n−2 = 0,

n−1∑
k=2

(2k − 1)(2k − 2)a2k−1 + (2n− 2)(2n− 3)a2n−2 = 0,

n−1∑
k=2

(2k − 1)(2k − 2)(2k − 3)a2k−1 + (2n− 2)(2n− 3)(2n− 4)a2n−2 = 0,

. . . ,

n−1∑
k=n−2

(2k − 1)!

(2k − n+ 1)!
a2k−1 +

(2n− 2)!

n!
a2n−2 = 0,

n−1∑
k=n−2

(2k − 1)!

(2k − n)!
a2k−1 +

(2n− 2)!

(n− 1)!
a2n−2 = 0.

A straightforward computation shows that the function

v(x) :=

n−1∑
k=1

ā2k−1α
2k−1x2k−1 + ā2n−2α

2n−2x2n−2

satisfies the following conditions:

v

(
1

α

)
= d, v′

(
1

α

)
= 0, v′′

(
1

α

)
= 0, v′′′

(
1

α

)
= 0, . . . ,

v(n−2)

(
1

α

)
= 0, v(n−1)

(
1

α

)
= 0.

Moreover, it is simple to verify that v(0) = v′′(0) = v(4)(0) = · · · = v2n−4(0) = 0.
Now, we denote by wα,d the function defined as follows:

wα,d(x) =


v(x), x ∈ [0, 1

α ],

d, x ∈ [ 1
α , L−

1
α ],

v(L− x), x ∈ [L− 1
α , L].

(24)

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Existence of nontrivial solutions for a class of 2n-order ODE 1061

Properties of function v ensure that wα,d ∈ H(Ω) and

‖wα,d‖2H(Ω)

=

L∫
0

((
w

(n)
α,d(x)

)2−A(x)
(
w′′α,d(x)

)2
+B(x)

(
w′α,d(x)

)2
+ C(x)

(
wα,d(x)

)2)
dx

6

L∫
0

((
w

(n)
α,d(x)

)2−A−(w′′α,d(x)
)2

+B+
(
w′α,d(x)

)2
+ C+

(
wα,d(x)

)2)
dx

6 d2
(
P −A−Q+B+R+ C+S

)
,

where

P :=
2

d2

1/α∫
0

(
v(n)(x)

)2
dx

=
2

d2

1/α∫
0

(
(2n− 3)!

(n− 3)!
ā2n−3α

2n−3xn−3 +
(2n− 2)!

(n− 2)!
ā2n−2α

2n−2xn−2

)2

dx,

Q :=
2

d2

1/α∫
0

(
v
′′
(x)
)2

dx

=
2

d2

1/α∫
0

(
n−1∑
k=2

(2k − 1)!

(2k − 3)!
ā2k−1α

2k−1x2k−3 +
(2n− 2)!

(2n− 4)!
ā2n−2α

2n−2x2n−4

)2

dx,

R :=
2

d2

1/α∫
0

(
v′(x)

)2
dx

=
2

d2

1/α∫
0

(
n−1∑
k=1

(2k − 1)!

(2k − 2)!
ā2k−1α

2k−1x2k−2 +
(2n− 2)!

(2n− 3)!
ā2n−2α

2n−2x2n−3

)2

dx,

S :=
2

d2

1/α∫
0

(
v(x)

)2
dx+

(
L− 2

α

)

=
2

d2

1/α∫
0

(
n−1∑
k=1

ā2k−1α
2k−1x2k−1 + ā2n−2α

2n−2x2n−2

)2

dx+

(
L− 2

α

)
.
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Remark 7. For fixed n and L, the constants P,Q,R, and S depend on α > 2/L and can
be easily obtained. For instance,

• when n = 3, it results

v(x) = 2dαx− 2dα3x3 + dα4x4

and

P = 96α5, Q =
48

5
α3, R =

104

35
α, S = L− 263

315α
;

• when n = 4, it results

v(x) =
9

4
dαx− 5

2
dα3x3 +

9

4
dα5x5 − dα6x6

and

P = 3240α7, Q =
95

7
α3, R =

513

154
α, S = L− 5983

8008α
.

The main tools in our approach of the superlinear case are critical point theorems.
Now, for fixed r > 0, we define

ϕ(r) :=
supu∈Φ−1(]−∞,r[) Ψ(u)

r
, ϕ(r) := sup

u∈Φ−1(]0,r[)

Ψ(u)

Φ(u)
.

The following theorem, obtained in [3] as a consequence of [2, Thm. 4.1], guarantees
the existence of at least one nonzero local minimum.

Theorem 3. (See [3, Thm. 2.3].) LetX be a real Banach space, and let Φ, Ψ : X → R be
two continuously Gâteaux differentiable functions such that infX Φ = Φ(0) = Ψ(0) = 0.
Assume that there exists r > 0 such that

ϕ(r) < ϕ(r), (25)

and for each λ ∈ Λr :=]1/ϕ(r), 1/ϕ(r)[, the function Jλ = Φ − λΨ satisfies (PS)[r]

condition. Then, for each λ ∈ Λr, there is uλ ∈ Φ−1(]0, r[) (hence, uλ 6= 0) such that
Jλ(uλ) 6 Jλ(u) for all uλ ∈ Φ−1(]0, r[) and J ′λ(uλ) = 0.

The following theorem established in [8] guarantees the existence of two nonzero
critical points. It is a consequence of the previous nonzero local minimum theorem and
the classical Ambrosetti–Rabinowitz theorem established in [1]; see also [9] and [19].

Theorem 4. Let X be a real Banach space, and let Φ, Ψ : X → R be two functions of
class C1 such that infX Φ(u) = Φ(0) = Ψ(0) = 0. Assume that there is r ∈ R such that
(25) holds and, for each λ ∈ Λr :=]1/ϕ(r), 1/ϕ(r)[, the function Jλ = Φ− λΨ satisfies
(PS) condition, and it is unbounded from below. Then, for each λ ∈ Λr, the function
Jλ admits at least two nonzero critical points uλ,1, uλ,2 ∈ X such that J(uλ,1) < 0 <
J(uλ,2).
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For each α > 2/L, the following technical constant will be useful:

Kα := P −A−Q+B+R+ C+S,

where P ,Q,R, and S are the real numbers we have just introduced. Moreover, we define

A(c) =

L∫
0

max
|s|6c

F (t, s) dt with c > 0,

B(d) =

L−1/α∫
1/α

F (t, d) dt+ inf
s∈[0,d]

( 1/α∫
0

F (t, s) dt+

L∫
L−1/α

F (t, s) dt

)
with d > 0.

4.1 Existence of at least one nonzero solution of (P)

Our first multiplicity result is the following.

Theorem 5. Assume that there exist α > 2/L and two positive constants c, d with d < c
such that

A(c)

c2
<

k

2η2
<
Kα
2

<
B(d)

d2
, (26)

where k and η are introduced respectively in (13) and Lemma 1. Then problem (P) admits
at least one nonzero classical solution ū such that ‖ū‖∞ < c.

Proof. Let Φ and Ψ be defined as in (18) and J = Φ− Ψ . Our aim is to apply Theorem 3
with X = H(Ω) and λ = 1. Clearly, Φ and Ψ satisfy all regularity assumptions (see in
particular Remark 6). Now, we prove (25). To this end, put r = c2k/(2η2). On one hand,
we have

ϕ(r) =
supu∈Φ−1(]−∞,r[) Ψ(u)

r
6

2η2

k

A(c)

c2
. (27)

Indeed, for each u ∈ X with Φ(u) 6 r, due to Lemma 1 and (13), it results

‖u‖∞ 6 ‖u‖Cn−1(Ω̄) 6 η‖u‖Hn(Ω) 6
η√
k
‖u‖ 6 η√

k

√
2r = c. (28)

One has

sup
u∈Φ−1(]−∞,r[)

Ψ(u) 6 sup
‖u‖6

√
2r

L∫
0

F
(
t, u(t)

)
dt 6

L∫
0

max
|s|6c

F (t, s) dt = A(c).

On the other hand, we claim that

ϕ(r) = sup
u∈Φ−1(]0,r[)

Ψ(u)

Φ(u)
>

2

Kα
B(d)

d2
. (29)

For our goal, we consider the function wα,d defined by (24). Clearly, wα,d ∈ X and
‖wα,d‖2 6 Kαd2. Now, taking into account that from d < c one has A(c) > B(d),
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due to (26), it follows that Φ(wα,d) = ‖wα,d‖2/2 6 d2Kα/2 < r. Moreover, since
wα,d(t) ∈ [0, d] for each t ∈ [0, L], one has

Ψ(wα,d) =

L−1/α∫
1/α

F (t, d) dt+

1/α∫
0

F
(
t, wα,d(t)

)
dt+

L∫
L−1/α

F
(
t, wα,d(t)

)
dt

>

L−1/α∫
1/α

F (t, d) dt+ inf
s∈[0,d]

( 1/α∫
0

F (t, s) dt+

L∫
L−1/α

F (t, s) dt

)
= B(d),

so that

ϕ(r) >
Ψ(wα,d)

Φ(wα,d)
>

2

Kα
B(d)

d2
,

and our claim is proved.
From (27), (29) one has

ϕ(r) =
supu∈Φ−1(]−∞,r[) Ψ(u)

r
6 2δ2A(c)

c2
< 1 <

2

Kα
B(d)

d2
6 ϕ(r),

and (25) is achieved.
Hence, Theorem 3 ensures that J admits a local minimum ū, which, due to Remark 5,

is a classical solution of problem (P). Finally, from Φ(ū) 6 r and (28) one has ‖ū‖∞ < c,
and the proof is completed.

Finally, we give two applications of Theorem 5

Example 2. Consider the function f2(s) = ln(|s|+ 1) + |s|/(|s|+ 1) + 1. Note that the
function f2 has no asymptotic sublinear or linear behaviour at zero, and hence, we cannot
apply Theorem 1 or Theorem 2. Since F2(s) = s ln(|s| + 1) + s, we get that for some
c > d > 0, L = 1, and α > 2,

A(c)

c2
=

ln(c+ 1) + 1

c
,

B(d)

d2
=

(
1− 2

α

)
ln(d+ 1) + 1

d
.

Taking c sufficiently large and d sufficiently small, relation (26) holds if for some α > 2,

k

η2
< Kα. (30)

As a consequence, if (30) is fulfilled, then the boundary value problem (P) with f replaced
by f2 has at least one nonzero classical solution if Ω = (0, 1).

Example 3. This example shows that the exponential function f3(s) = es satisfies the
requirements of Theorem 5 if Ω = (0, 1). Indeed, since F3(s) = es − 1, we get that

A(c)

c2
=

ec − 1

c2
= g(c),

B(d)

d2
=

(
1− 2

α

)(
ed − 1

d2

)
.
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We can easily check that infs>0 g(s) < g(1.6) < 1.55. Taking d sufficiently small,
relation (26) holds if for some α > 2, 1.55 6 k/(2η2) < Kα/2. As a consequence, the
boundary value problem (P) with f replaced by f3 has at least one nonzero solution.

4.2 Existence of at least two nonzero solutions of (P)

Our second result is the following.

Theorem 6. Assume that there exist two positive constants c and d with d < c such that
(26) holds and there are σ > 2, M > 0 satisfying

0 < σF (x, s) 6 sf(x, s) ∀x ∈ Ω, ∀|s| > M. (AR)

Then problem (P) admits at least two nonzero classical solutions.

Proof. Our aim is to apply Theorem 4. To this end, we define X , Φ, and Ψ as in the
proof of Theorem 5. Therefore, the same computations of the previous proof ensure that
(25) is verified. Further, by standard computations, condition (AR) implies that J satisfies
(PS) condition and it is unbounded from below; see, for instance, [19]. Hence, Theorem 4
establishes the existence of two nonzero critical points of J , which, due to Remark 5, are
classical solutions of problem (P) and the conclusion follows.
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