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Abstract. Arnold tongues of divergence in the Caputo fractional standard map of nilpotent matrices
are explored in this paper. The scalar iterative variables in the Caputo fractional standard map are
replaced by iterative matrix variables. The divergence effects induced by the nilpotent matrices
result in specific patterns of Arnold tongues. Automatic machine classification techniques help to
identify different types of Arnold tongues according to the dynamics of the transient processes of
the system. Computational experiments are used to validate theoretical insights and to reveal the
patterns of Arnold tongues of divergence.
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1 Introduction

Fractional calculus, which generalizes traditional integer-order calculus by allowing de-
rivatives and integrals of noninteger order, has been widely adopted in the study of com-
plex systems due to its ability to capture nonlocal, memory-dependent dynamics. Frac-
tional derivatives have proven beneficial in modeling systems, where the future state
depends not only on the current state but also on a continuum of past states. Fractional
derivatives are often defined through the Caputo or Riemann–Liouville formulations [2]
and have found applications across diverse fields, such as viscoelasticity, anomalous
diffusion, and electrical circuits [15, 17].

The standard map, also known as the Chirikov–Taylor map [3,4], has served as a fun-
damental tool in exploring the transition from regular to chaotic motion in Hamiltonian
systems. Originally developed to model particle dynamics in magnetic fields, this discrete-
time, area-preserving map represents a simplified system that captures the essence of
chaotic behavior in nonlinear systems. The utility of a standard map to visualize bifurca-
tion scenarios and resonances is illustrated in [23].
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For the first time, the fractional standard map was derived from fractional differential
equation with Caputo and Riemann–Liouville fractional derivative in [31]. The general-
ization of Caputo fractional standard map on arbitrary orders of Caputo and Riemann–
Liouville fractional derivatives are proposed in [24–26]. The first computer simulation of
the fractional standard map is realized in [10, 30].

Arnold tongues, named after the mathematician Vladimir Arnold [1], represent pa-
rameter regions in dynamical systems, where the phase-locking or resonance occurs.
These structures are crucial in systems with periodic driving, as they indicate ranges,
where the system’s response locks onto rational rotation numbers.

The complexity of a discrete-time system can be increased not only by adding new
spatial elements (resulting into coupled map lattices) but also by increasing the dimen-
sionality of a node. Replacing a scalar variable in a classical logistic map by a square two-
dimensional matrix introduces unexpected phenomena, such as finite-time and explosive
divergence [19]. The effect of explosive divergence in the logistic map of matrices occurs
when the Lyapunov exponent of the scalar logistic map becomes positive. Such behavior
is not limited to logistic map of matrices and is typical to a discrete system of matrices if
the mapping function is analytic [18].

The main objective of this study is to explore the Caputo fractional standard map
with scalar iterative variables replaced by matrix iterative variables. While the scalar Ca-
puto fractional standard map provides insight into chaotic behavior of fractional systems,
the matrix extension of the model enables the exploration of more complex dynamical
behaviors. In particular, the major interest is focused on the effects induced by the
matrix variables (the finite-time and explosive divergence). How those effects may change
the properties of the Arnold tongues observed in the scalar Caputo fractional standard
map is the main question raised in this paper. This paper aims to further enrich the
theoretical framework of Caputo fractional systems, contributing both to the fractional
calculus applied for nonlinear dynamical systems and to the real-world applications that
require modeling of complex multidimensional systems.

This manuscript is structured as follows. Section 2 discusses the preliminary concepts
required for this research. The Caputo fractional standard map of matrices is formulated in
Section 3, exploring the complex dynamics induced by idempotent and nilpotent matrices.
Section 4 focuses on the use of H-ranks to identify Arnold tongues and their relevance in
the Caputo fractional standard map. Section 5 introduces a novel approach to classifying
transient processes using k-means clustering. Discussion and concluding remarks are
given in Section 6.

2 Preliminaries

2.1 The universal map

Let us consider the universal equation of motion [31]

ẍ(t) +KG
[
x(t)

] ∞∑
k=1

δ

(
t

T
− k
)

= 0, (1)
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where perturbation is a delta-function-type kick with period T , K is an amplitude of
a pulse, and G(x) is a real-valued function. This equation can be represented in the Ham-
iltonian form:

ṗ+KG(x)

∞∑
k=1

δ

(
t

T
− k
)

= 0, ẋ = p.

It is well known that this equation can be represented in the form of discrete map [37]:

p(k+1) = p(k) −KTG
(
x(k)

)
,

x(k+1) = x(k) + Tp(k+1).

If function G(x) = sinx (with period T = 1), the standard Chirikov–Taylor map is
obtained [4]:

p(k+1) = p(k) −K sinx(k),

x(k+1) = x(k) + p(k+1).

2.2 Fractional generalization of the universal map and the standard map

Let us consider a fractional generalization of differential equation (1) [25]

C
0D

α
t x(t) +KG

[
x(t)

] ∞∑
j=1

δ

(
t

T
− j
)

= 0, (2)

where α is the order of fractional derivative, m − 1 < α < m; C
0D

α
t is the Caputo

fractional derivative with the initial conditions
C
0D

s
tx(0) =

(
Ds
tx
)
(0) = (s)x(0),

where s = 0, 1, . . . ,m − 1. This Cauchy-type problem for fractional differential equa-
tions (2) is equivalent to the discrete map equations [25]

(s)x(k+1) =

m−s−1∑
j=0

(j+s)x(0)

j!
(k + 1)jT j

− KTα−s

Γ(α− s)

k∑
j=1

(k + 1− j)α−1−sG
(
x(j)

)
.

Let us note that if the fractional order 1 < α < 2 and notations of p(k) = (1)x(k) and
x(k) = (0)x(k) are introduced, then the map is expressed as

p(k+1) = p(0) − KTα−1

Γ(α− 1)

k∑
j=1

(k + 1− j)α−2G
(
x(j)

)
,

x(k+1) = x(0) + (k + 1)Tp(0) − KTα

Γ(α)

k∑
j=1

(k + 1− j)α−1G
(
x(j)

)
.
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If the functionG(x) = sinx and period T is set to 1, then the following Caputo fractional
standard map (1 < α < 2) is obtained:

p(k+1) = p(0) − K

Γ(α− 1)

k∑
j=1

(k + 1− j)α−2 sinx(j) (mod 2π),

x(k+1) = x(0) + (k + 1)p(0) − K

Γ(α)

k∑
j=1

(k + 1− j)α−1 sinx(j) (mod 2π).

The introduction of V sα (m) helps to reduce the Caputo fractional standard map to a more
common form [6, 20]:

p(k+1) = p(k) − K

Γ(α− 1)

(
k−1∑
j=0

V 2
α (k − j + 1) sinx(j) + sinx(k)

)
(mod 2π),

x(k+1) = x(k) + p(0) − K

Γ(α)

k∑
j=0

V 1
α (k − j + 1) sinx(j) (mod 2π),

(3)

where k = 0, 1, 2, . . . , K is the parameter of the standard map, α is the fractionality
parameter (1 < α 6 2), and

V sα (m) = mα−s − (m− 1)α−s, m = 1, 2, . . . .

Note that the summation
∑k−1
j=0 V

2
α (k − j + 1) sinx(j) in Eq. (3) is not executed at

k = 0 (p(1) = p(0) −K sinx(0)/Γ(α− 1) (mod 2π)). Usually, x(0) is set to 0 [6].

2.3 Idempotents and nilpotents

Let us consider a square matrix X ∈ R2×2 and its eigenvalues λ1, λ2 ∈ R.
X can be expressed in the form comprising conjugate idempotents if λ1 6= λ2:

X = λ1D1 + λ2D2.

Here D1,D2 ∈ R2×2 are conjugate idempotents (D1 + D2 = I, where I denotes the
identity matrix) satisfying the following properties:

detD1 = detD2 = 0, (D1)2 = D1,

(D2)2 = D2, D1D2 = D2D1 = Θ,

where Θ is the null matrix.
Otherwise (if λ1 = λ2 := λ0), X can be expressed in the form comprising a nilpotent:

X = λ0I + µN,

where µ ∈ R, N = T[ 0 1
0 0 ]T−1, T ∈ R2×2, detT 6= 0, and N is a nilpotent satisfying

the following relationships:

detN = 0, N2 = Θ.
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3 The Caputo fractional standard map of matrices

Scalar variables x(k) and p(k) in Eq. (3) can be replaced by the square matrices

X(k) =

[
x
(k)
11 x

(k)
12

x
(k)
21 x

(k)
22

]
, x

(k)
11 , x

(k)
12 , x

(k)
21 , x

(k)
22 ∈ R,

and

P(k) =

[
p
(k)
11 p

(k)
12

p
(k)
21 p

(k)
22

]
, p

(k)
11 , p

(k)
12 , p

(k)
21 , p

(k)
22 ∈ R.

Then the discrete map of matrices reads

P(k+1) = P(k) − K

Γ(α− 1)

(
k−1∑
j=0

V 2
α (k − j + 1) sinX(j) + sinX(k)

)
(mod 2π),

X(k+1) = X(k) + P(0) − K

Γ(α)

k∑
j=0

V 1
α (k − j + 1) sinX(j) (mod 2π),

where k = 0, 1, 2, . . . .

3.1 The Caputo fractional standard map of idempotent matrices

Corollary 1. Let P(0) = c1D1 + c2D2, where D1 and D2 are conjugate idempotents,
and c1, c2 ∈ R. Then

sinP(0) = sin(c1)D1 + sin(c2)D2.

Proof.

sinP(0) =

∞∑
j=0

(−1)j

(2j + 1)!
(c1D1 + c2D2)2j+1

=

∞∑
j=0

(−1)j

(2j + 1)!

((
2j + 1

0

)
(c1)2j+1(D1)2j+1

+

(
2j + 1

1

)
(c1)2jc2(D1)2jD2 + · · ·+

(
2j + 1

2j

)
c1(c2)2jD1(D2)2j

+

(
2j + 1

2j + 1

)
(c2)2j+1(D2)2j+1

)
=

∞∑
j=0

(−1)j

(2j + 1)!

(
(c1)2j+1D1 + (c2)2j+1D2

)
= sin(c1)D1 + sin(c2)D2. �
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Lemma 1. Let the matrices of initial conditions P(0) and X(0) be idempotent matrices
with the same conjugate idempotents:

P(0) = λ
(0)
1,pD1 + λ

(0)
2,pD2 and X(0) = λ

(0)
1,xD1 + λ

(0)
2,xD2, λ

(0)
1,x, λ

(0)
2,x ∈ R,

where λ(0)1,x, λ
(0)
2,x 6= 0. Then iterative matrices P(k+1) and X(k+1) (k = 0, 1, 2, . . . ) are

also idempotent matrices with the same conjugate idempotents D1 and D2.

Proof. Let us suppose that P(k) = λ
(k)
1,pD1 + λ

(k)
2,pD2 and X(k) = λ

(k)
1,xD1 + λ

(k)
2,xD2.

Then

P(k+1) = P(k) − K

Γ(α− 1)

(
k−1∑
j=0

V 2
α (k−j+1) sinX(j) + sinX(k)

)
=
(
λ
(k)
1,pD1 + λ

(k)
2,pD2

)
− K

Γ(α−1)

(
k−1∑
j=0

V 2
α (k−j+1) sin

(
λ
(j)
1,xD1 + λ

(j)
2,xD2

)
+ sin

(
λ
(k)
1,xD1 + λ

(k)
2,xD2

))

=

(
λ
(k)
1,p −

K

Γ(α−1)

(
k−1∑
j=0

V 2
α (k−j+1) sinλ

(j)
1,x + sinλ

(k)
1,x

))
D1

+

(
λ
(k)
2,p −

K

Γ(α−1)

(
k−1∑
j=0

V 2
α (k−j+1) sinλ

(j)
2,x + sinλ

(k)
2,x

))
D2 (mod 2π),

X(k+1) = X(k) + P(0) − K

Γ(α)

k∑
j=0

V 1
α (k−j+1) sinX(j)

=
(
λ
(k)
1,xD1 + λ

(k)
2,xD2

)
+
(
λ
(0)
1,pD1 + λ

(0)
2,pD2

)
− K

Γ(α)

k∑
j=0

V 1
α (k − j + 1) sin

(
λ
(j)
1,xD1 + λ

(j)
2,xD2

)
=

(
λ
(k)
1,x + λ

(0)
1,p −

K

Γ(α)

k∑
j=0

V 1
α (k−j+1) sinλ

(j)
1,x

)
D1

+

(
λ
(k)
2,x + λ

(0)
2,p −

K

Γ(α)

k∑
j=0

V 1
α (k−j+1) sinλ

(j)
2,x

)
D2 (mod 2π). �

Lemma 1 implies that the Caputo fractional standard map of idempotent matrices
splits into four scalar maps of eigenvalues representing two uncoupled scalar Caputo

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis
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fractional standard maps:

λ
(k+1)
1,p = λ

(k)
1,p −

K

Γ(α− 1)

(
k−1∑
j=0

V 2
α (k − j + 1) sinλ

(j)
1,x + sinλ

(k)
1,x

)
(mod 2π),

λ
(k+1)
1,x = λ

(k)
1,x + λ

(0)
1,p −

K

Γ(α)

k∑
j=0

V 1
α (k − j + 1) sinλ

(j)
1,x (mod 2π),

λ
(k+1)
2,p = λ

(k)
2,p −

K

Γ(α− 1)

(
k−1∑
j=0

V 2
α (k − j + 1) sinλ

(j)
2,x + sinλ

(k)
2,x

)
(mod 2π),

λ
(k+1)
2,x = λ

(k)
2,x + λ

(0)
2,p −

K

Γ(α)

k∑
j=0

V 1
α (k − j + 1) sinλ

(j)
2,x (mod 2π),

(4)

where k = 0, 1, 2, . . . . In other words, the complexity of the Caputo fractional standard
map of idempotent matrices is exactly the same as the complexity of the scalar Caputo
fractional standard map.

3.2 The Caputo fractional standard map of nilpotent matrices

Corollary 2. Let P(0) = c0I + c1N, where c0, c1 ∈ R, c1 6= 0. Then

sinP(0) = sin(c0)I + cos(c0)c1N.

Proof.

sinP(0) =

∞∑
j=0

(−1)j

(2j + 1)!
(c0I + c1N)2j+1

=

∞∑
j=0

(−1)j

(2j + 1)!

((
2j + 1

0

)
(c0)2j+1I2j+1 +

(
2j + 1

1

)
(c0)2jc1I

2jN

+ · · ·+
(

2j + 1

2j

)
c0(c1)2jI(N)2j +

(
2j + 1

2j + 1

)
(c1)2j+1(N)2j+1

)
=

( ∞∑
j=0

(−1)j

(2j + 1)!
(c0)2j+1

)
I +

( ∞∑
j=0

(−1)j

(2j + 1)!
(2j + 1)(c0)2j

)
c1N

=

( ∞∑
j=0

(−1)j

(2j + 1)!
(c0)2j+1

)
I + (

∞∑
j=0

(−1)j

(2j)!
(c0)2j)c1N

= sin(c0)I + cos(c0)c1N, k = 0, 1, 2, . . . . �

Lemma 2. Let the matrices of initial conditions P(0) and X(0) share the same nilpotent:

P(0) = λ(0)p I + µ(0)
p N and X(0) = λ(0)x I + µ(0)

x N, λ(0)p , λ(0)x , µ(0)
p , µ(0)

x ∈ R,

where µ(0)
p , µ

(0)
x 6= 0. Then iterative matrices P(k+1) and X(k+1) (k = 0, 1, 2, . . . ) also

share the same nilpotent N.
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Proof. Let us suppose that P(k) = λ
(k)
p I + µ

(k)
p N and X(k) = λ

(k)
x I + µ

(k)
x N. Then

P(k+1)

= P(k) − K

Γ(α− 1)

(
k−1∑
j=0

V 2
α (k − j + 1) sinX(j) + sinX(k)

)

=
(
λ(k)p I + µ(k)

p N
)
− K

Γ(α− 1)

(
k−1∑
j=0

V 2
α (k − j + 1) sin

(
λ(j)x I + µ(j)

x N
)

+ sin
(
λ(k)x I + µ(k)

x N
))

=

(
λ(k)p −

K

Γ(α− 1)

(
k−1∑
j=0

V 2
α (k − j + 1) sinλ(j)x + sinλ(k)x

))
I

+

(
µ(k)
p −

K

Γ(α− 1)

(
k−1∑
j=0

V 2
α (k − j + 1)µ(j)

x cosλ(j)x

+ µ(k)
x cosλ(k)x

))
N (mod 2π),

X(k+1)

= X(k) + P(0) − K

Γ(α)

k∑
j=0

V 1
α (k − j + 1) sinX(j)

=
(
λ(k)x I + µ(k)

x N
)

+
(
λ(0)p I + µ(0)

p N
)

− K

Γ(α)

k∑
j=0

V 1
α (k − j + 1) sin

(
λ(j)x I + µ(j)

x N
)

=

(
λ(k)x + λ(0)p −

K

Γ(α)

k∑
j=0

V 1
α (k − j + 1) sinλ(j)x

)
I

+

(
µ(k)
x + µ(0)

p −
K

Γ(α)

k∑
j=0

V 1
α (k − j + 1)µ(j)

x cosλ(j)x

)
N (mod 2π).

(5)

The proof is complete.

Lemma 2 implies that Eq. (5) splits into two intertwined scalar maps of the eigenvalues
λ
(k)
p , λ(k)x and the auxiliary parameters µ(k)

p , µ(k)
x :

λ(k+1)
p = λ(k)p −

K

Γ(α− 1)

(
k−1∑
j=0

V 2
α (k − j + 1) sinλ(j)x + sinλ(k)x

)
(mod 2π),

λ(k+1)
x = λ(k)x + λ(0)p −

K

Γ(α)

k∑
j=0

V 1
α (k − j + 1) sinλ(j)x (mod 2π),

(61)

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Arnold tongues in the standard map of matrices 9

µ(k+1)
p = µ(k)

p −
K

Γ(α− 1)

(
k−1∑
j=0

V 2
α (k − j + 1)µ(j)

x cosλ(j)x + µ(k)
x cosλ(k)x

)
,

µ(k+1)
x = µ(k)

x + µ(0)
p −

K

Γ(α)

k∑
j=0

V 1
α (k − j + 1)µ(j)

x cosλ(j)x ,

(62)

where k = 0, 1, 2, . . . . In other words, the complexity of Eq. (5) becomes very much
different compared to the complexity of the scalar Caputo fractional standard map.

Definition 1. The iterative model (6) is denoted as the Caputo fractional standard map of
nilpotent matrices.

4 H-ranks for the identification of Arnold tongues

H-ranks are successfully used to quantify the complexity of the scalar Caputo fractional
standard map when the fractionality parameter α changes from 2 to 1 (the ornament of
Arnold tongues does emerge in the digital image of H-ranks as α tends to 1) [20]. A natu-
ral question is whether Arnold tongues also appear in the Caputo fractional standard map
of idempotent matrices as α tends to 1.

The pattern of H-ranks computed for the scalar Caputo fractional standard map at α =
1.001 is shown in Fig. 1(a). The initial condition x(0) is set to 0, while p(0) ∈ [0, 2π] and
K ∈ [0, 2] (Fig. 1(a)). The maximum H-rank is set to 200 (the observation window for
the computation of the H-rank comprises the first 399 elements of the sequence µ(k)

x ,
k = 0, 1, . . . , 398, for each value of p(0) and K.

Computational experiments are continued with the Caputo fractional standard map
of nilpotent matrices at α = 1.001. The initial conditions are set as follows: λ(0)x = 0,
µ
(0)
p = 1, µ(0)

x = 1, while λ(0)p ∈ [0, 2π] andK ∈ [0, 2] (Fig. 1(b)). It is rather astonishing
to observe that the ornaments of the Arnold tongues in Figs. 1(a) and 1(b) are almost
identical.

Figure 1. The pattern of H-ranks for the scalar Caputo fractional standard map (panel (a)) and Caputo fractional
standard map of nilpotent matrices (panel (b)). Initial conditions for scalar map (panel (a)) are set to α = 1.001,
x(0) = 0, p(0) ∈ [0, 2π], K ∈ [0, 2]. Initial conditions for map of nilpotent matrices (panel (b)) are set to
α = 1.001, λ(0)x = 0, µ(0)p = 1, µ(0)x = 1, λ(0)p ∈ [0, 2π], K ∈ [0, 2].
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(a) (b)

Figure 2. The H-ranks computed for two different time series x1(t) = exp(0.1t) cos(2πt) (panel (a)) and
x1(t) = exp(−0.1t) cos(2πt) (panel (b)). The behavior of these functions is different, although the H-ranks
are equal.

It is well known that the introduction of matrix iterative variables instead of scalar
iterative variables may introduce finite-time or even explosive divergence of the originally
stable system [35]. Also, it is known that periodic orbits do not exist in the fractional-order
models (discrete or continuous), except for fixed points [13, 32–34, 36]. And although an
exact periodic motion is not possible, the asymptotically periodic solutions may be present
in fractional-order systems [7–9, 11, 22]. Therefore, the similarity of the Arnold tongues
in Figs. 1(a) and 1(b) is an even more unexpected phenomenon, which can be explained
by the implications induced by the “no-free-lunch theorems” [35]. In other words, each
algorithm (including the H-rank algorithm) should be used with understanding of its
limitations.

The H-rank algorithm is based on the identification of the number of algebraic com-
ponents needed to approximate the given sequence with a predefined precision [21].
However, the type of algebraic components (in terms of its convergence or divergence) is
not considered by the H-rank algorithm.

This effect is illustrated in Fig. 2. The H-ranks computed for two time series x1(t) =
exp(0.1t) cos(2πt) (plotted in red) and x1(t) = exp(−0.1t) cos(2πt) (plotted in blue) are
both equal to 2 (Fig. 2). This result is correct from an algebraic point of view. However,
it is clear that the H-rank algorithm is not applicable for the detection of divergence
processes induced by nilpotent matrices. This fact is explicitly illustrated in Fig. 3. It
appears that H-ranks of the transient processes of µ(k)

x at λ(0)p = 1.73 and K = 1.12
(Fig. 3(a)) and λ(0)p = 5.40 and K = 1.41 (Fig. 3(b)) are both equal to 64 (although the
first transient process blows up, and the second quiets down).

A similar situation is illustrated in Fig. 3 panels (c) and (d). The transient process of
µ
(k)
x blows up at λ(0)p = 0.47 and K = 1.92 (Fig. 3(c)) but yields a transient approach to

an asymptotically periodic trajectory at λ(0)p = 3.56 and K = 1.57 (Fig. 3(d)). However,
H-ranks of both transient processes are equal to 100 (Fig. 3).

Another argument against using the H-rank algorithm for the classification of different
transient processes of µ(k)

x is based on the limited size of the observation window. As
mentioned previously, the maximum H-rank is set to 200 (resulting into the first 399
values of µ(k)

x used to populate the catalectican Hankel matrix [20]). Larger observation

https://www.journals.vu.lt/nonlinear-analysis
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(a) (b)

(c) (d)

Figure 3. The transient dynamics of µ(k)x : p(0) = 1.73,K = 1.12, and H-rank is 64 (panel (a)); p(0) = 5.40,
K = 1.41, and H-rank is 64 (panel (b)); p(0) = 0.47, K = 1.92, and H-rank is 100 (panel (c)); p(0) = 3.56,
K = 1.57, and H-rank is 100 (panel (d)).

Figure 4. The transient dynamics of µ(k)x at µ(0)x = 1, µ(0)p = 1, λ(0)x = 0, λ(0)p = 2.76, and K = 1.12.
The first 399 values of µ(k)x (plotted in red) are used to compute the H-rank of the sequence (H-rank is 197).
Clearly, the first 399 values are not sufficient to describe the transient dynamics of µ(k)x .

windows would yield into relatively large requirements for the computational hardware
[20]. However, it appears that the Caputo fractional standard map of nilpotent matrices
exhibits long transient processes (Fig. 4) and first 399 values of µ(k)

x are not sufficient to
describe the long-term dynamics of the system.

As already demonstrated in analytic and numerical simulations, nilpotent matrices can
cause a rapid divergence of µ(k)

x , which would result in overflow after a sufficient number
of iterations in time. One of the major objectives of this paper is to classify the dynamics
of the transient trajectories of the Caputo fractional standard map of nilpotent matrices.
The first 1000 values of µ(k)

x are used for that purpose (Fig. 4). It appears that standard
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double-precision floating-point arithmetic is sufficient for the Caputo fractional standard
map of nilpotent matrices to avoid overflow (if only the number of iterations is limited
to 1000).

5 Plotting Arnold tongues of divergence by using k-means clustering
of PCA components

The classification of different transient processes produced by the Caputo fractional stan-
dard map of nilpotent matrices is performed using the k-means clustering algorithm [14].
To begin, the principal component analysis (PCA) is applied to the first 1000 values
of µ(k)

x to reduce the dimensionality of the data. The number of principal components
retained in this step is selected based on the variance explained, ensuring that the reduced
features capture the most significant variations in the data. Subsequently, the k-means
clustering algorithm is applied to the reduced feature set. The classification results are
visualized in Fig. 5(a) with 5 clusters and in Fig. 5(b) with 30 clusters, highlighting the
impact of the chosen number of clusters on the classification outcome.

The essential difference between Fig. 1(b) and Fig. 5 is not only in the shape of Arnold
tongues but also in the different types of Arnold tongues. Clearly, the H-rank algorithm
is incapable of revealing those differences due to the reasons explained in the previous
section.

The role of each individual class in Fig. 5 is explained by visualizing transient pro-
cesses of µ(k)

x . For example, the two different points selected from the yellow zone in
the (λ

(0)
p ,K)-parameter plane show oscillating but diverging processes (Fig. 6). The two

points chosen from the blue zone show processes, which quickly converge to the quiet
state (Fig. 8). The two points selected from the orange zone result in transient approach
to asymptotically periodic trajectories (Fig. 7). The two points taken from the green zone
result in monotonously diverging trajectories (Fig. 9). Finally, the two points chosen from
the light blue zone result into monotonous transient processes (Fig. 10).

(a) (b)

Figure 5. The classification of the transient processes of µ(k)x by using the k-means clustering algorithm on the
reduced features. First 1000 values of µ(k)x at µ(0)x = 1, µ(0)p = 1, λ(0)x = 0, λ(0)p ∈ [0, 2π], and K ∈ [0, 2]
are used for the classification. 5 different classes are used in panel (a); 30 classes are used in panel (b).
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Figure 6. The classification of the transient processes of µ(k)x and pattern of Arnold tongues is shown in
panel (a). The two different points selected from the yellow zone result into complex diverging processes as
shown in panel (b).

Figure 7. The classification of the transient processes of µ(k)x and pattern of Arnold tongues is shown in panel
(a). The two different points selected from the orange zone result into oscillating processes with large amplitudes
as shown in panel (b).

Figure 8. The classification of the transient processes of µ(k)x and pattern of Arnold tongues is shown in panel
(a). The two different points selected from the blue zone result into a quick convergence to a quiet state as shown
in panel (b).
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Figure 9. The classification of the transient processes of µ(k)x and pattern of Arnold tongues is shown in panel
(a). The two different points selected from the green zone result into oscillations with a linear diverging trend
as shown in panel (b).

Figure 10. The classification of the transient processes of µ(k)x and pattern of Arnold tongues is shown in
panel (a). The two different points selected from the cyan zone result into relatively slow convergence to steady
oscillations with a relatively small amplitude as shown in panel (b).

6 Discussion and concluding remarks

The concept of Arnold tongues of divergence in the Caputo fractional standard map of
nilpotent matrices is introduced in this paper. It appears that the identification of Arnold
tongues of divergence requires a proper adaptation of the computational techniques used
for that purpose. A straightforward application of the standard H-rank algorithm fails to
reveal the complexity of the emerging structure of Arnold tongues of divergence.

The fact of the existence of Arnold tongues in the Caputo fractional standard map is
not unexpected. Some parallels could be drawn between the Caputo fractional standard
map and the circle map [20], or even the paradigmatic Mathieu’s equation [16]. For
example, the region around the Arnold tongues in the time-periodic Mathieu’s equation
corresponds to the stable quasiperiod motion (the Arnold tongues correspond to the un-
stable exponential growth).
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Figure 11. A schematic diagram illustrating the effects induced by fractional derivatives and nilpotent matrices.

A similar situation can be observed in Fig. 5. The dark blue region below the Arnold
tongues corresponds to a stable quiet state (Fig. 8). The yellow region (including thin
Arnold tongues) corresponds to complex diverging processes (Fig. 6). However, some of
the Arnold tongues are orange (representing transient approach to asymptotically periodic
trajectories in Fig. 7).

The situation becomes even more complex when the 30 classes are used to plot the
colored representation of the Arnold tongues in Fig. 5(b). A more subtle classification
reveals a much more complex structure of the Arnold tongues. The image in 5(b), though
symmetric with respect to the central vertical axis, reveals the entire pallet of Arnold
tongues plotted in different colors. Each tongue could be interpreted as a piano key
producing a different sound. Each tongue shown in different color in Fig. 5(b) represents
a slightly different transient process. It is worth mentioning that this variety of Arnold
tongues is observable in the Caputo fractional standard map of nilpotent matrices. We call
such tongues as Arnold tongues of divergence.

Arnold tongues of divergence are observable in Caputo fractional standard map of
nilpotent matrices. Therefore, it is worth mentioning the basic properties of the standard
map and its nonfractional and scalar counterparts (Fig. 11). As already mentioned in
the Introduction, the paradigmatic standard map is firstly known as the area-preserving
chaotic map. The introduction of fractional derivatives produces the scalar Caputo frac-
tional standard map [5]. It is demonstrated in [20] that the Arnold tongue pattern emerges
in the Caputo fractional standard map when the fractionality parameter α tends to 1.

As discussed in the Introduction, the replacement of the scalar iterative variable in
a discrete chaotic map by the matrix iterative variable may result into the finite-time
or even explosive divergence of the discrete map (if the matrix of initial conditions is
a nilpotent matrix and the Lyapunov exponent of the scalar map is positive). However,
such a replacement of the scalar iterative variable does not generate Arnold tongues
in the standard map (Fig. 11). But Arnold tongues of divergence are generated by the
Caputo fractional standard map of nilpotent matrices. Classical Arnold tongues in Caputo
fractional standard map are transformed into Arnold tongues of divergence by the effects
of finite-time and explosive divergence induced by nilpotent matrices.
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This paper focuses on the study of nilpotent matrices but does not discuss other
matrix types (such as idempotent matrices). The reason for ignoring idempotent matrices
and their influence on Arnold tongues can be explained by the decomposition of model
into decoupled scalar Caputo standard maps (Eq. (4)). Note that the formation of Arnold
tongues in the scalar Caputo standard map is already investigated in [20].

Arnold tongues of divergence provide a much deeper insight into the dynamics of
the system (compared to the paradigmatic Mathieu equation [12] and the scalar Caputo
fractional standard map [20]). Arnold tongues of divergence do not only define regions of
instability, where solutions grow exponentially, but also classify the divergent behavior of
the system.

The dynamics of coupled Caputo fractional standard maps of nilpotent matrices re-
mains an unexplored territory. Such fractional hypermaps of nilpotent matrices could open
new directions for coding, hiding, and transmitting secret digital information, what is
a definite objective of future research.

The article is limited to consideration only of maps that are derived from equations
with Caputo fractional derivative. Different fractional maps are derived for the Riemann–
Liouville [31], Erdélyi–Kober [29], Hadamard [28], and Hilfer [27] fractional derivatives.
The exploration of the extended versions of such maps of nilpotent matrices also remains
a clear objective of future research.
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