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Abstract. In this manuscript, we investigate a Leslie-Gower predator—prey model with Crowley—
Martin-type functional response. We also explore the dynamics of reaction—diffusion as well
as reaction—diffusion—advection model. Specifically, our study focuses on an ecological model
involving a generalist predator that induces fear, has carry-over effects, and experiences competitive
interference. For the temporal model, a detailed mathematical analysis is carried out, investigating
the positivity and boundedness of the solutions. We observe both monostability and bistability
phenomena, and explore various local and global bifurcations by varying the fear and carry-over
parameters. Interestingly, the fear and its carry-over effects have opposing roles in influencing
stability within the temporal model. We incorporated prey-taxis into a general reaction—diffusion
framework to represent the directed movement of predators towards regions with higher prey
densities or when tracking signals such as scent to locate their prey. We perform the complete
analysis of diffusion-driven and taxis-driven instability for reaction—diffusion and reaction—
diffusion—advection models, respectively. Our findings emphasize the significant influence of
predator diffusion and prey-taxis on pattern formation, revealing that increased random predator
movement, combined with a moderate level of prey-taxis, can stabilize the model.
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1 Introduction

Predator—prey dynamics remain a central focus of research in both ecology and evo-
lutionary biology with mathematical models playing a key role in understanding their
complexity. Within predator—prey systems, predation plays a vital role in species persis-
tence, raising the fundamental question of how predators influence prey. Predators affect
prey both directly, by hunting and killing them, and indirectly, by inducing behavioral
and physiological changes through fear [1]. Fear can drive prey to adopt antipredator
strategies such as increased vigilance, reduced foraging, avoidance of risky habitats,
altered reproductive activity, and relocation to safer areas [15]. Experimental work on
song sparrows (Melospiza melodia) by Zanette et al. [22] showed that predator fear altered
nesting, feeding, and flight behaviors, reducing offspring production by 40%. Inspired by
such evidence, Wang et al. [21] introduced the first mathematical model capturing the role
of fear in prey dynamics, which was followed by many subsequent studies examining its
impact on predator—prey models [5,17].

The term “carry-over effects” stems from extensive clinical research and refers to how
an organism’s previous experiences and history can affect its current performance [14].
On the flip side, these effects can become detrimental when high-quality habitats are
lost. The degree and nature of population changes depend on (i) the demographic factors
during specific periods causing significant carry-over effects and (ii) the quantity and the
quality of the lost habitat. Experimental studies [4, 12] show that carry-over effects can
arise within a single season across various species such as amphibians, insects, and marine
invertebrates. Consequently, including carry-over effects in population models is essential
for understanding potential connections between reproductive costs and life-history trade-
offs.

Reaction—diffusion models have gained significant attention as a valuable tool for
understanding the mechanisms underlying pattern formation. In such models, predators
actively hunt prey, while prey attempt to escape, resulting in population density fluctua-
tions across different spatial regions. The interplay between space and time drives popula-
tion dynamics in response to the unpredictable movements of individuals. Various factors
can influence organism movement, including the search for food, predator avoidance, or
escaping high-risk areas for infection. The spatial distribution of organisms can lead to
instability, known as Turing instability [20], which can cause the emergence of spatial
patterns. Gierer and Meinhardt [6] developed a biological framework for a Turing model.
Misra et al. [13] explored various spatiotemporal patterns in a cholera transmission model.
Recently, extensive research has been done on exploring spatial patterns in spatiotemporal
models [2,5].

The word “taxis” is derived from the Greek term “taxis”, meaning arrangement. Taxis
occurs when organisms adjust their movement patterns, known as kinesis, in response to
a stimulus. Othmer et al. [19] defined taxis as either positive or negative, depending on
whether the movement is directed toward or away from the external stimulus influencing
the movement. In this way, taxis can be seen as random motion with a directional bias,
while kinesis refers to random motion with a spatial bias. Lee et al. [9] investigated the
key conditions necessary for pattern formation in prey-taxis models. The advection term
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encapsulates the dynamics of predator locomotion predicated on the hypothesis of prey-
taxis, wherein the acceleration of predators is directly related to the gradient of prey
density. The mechanism of predation is conceptualized as an amalgamation of stochastic
movement, facilitated by diffusion, and purposeful movement, driven by prey-taxis. In
plankton populations, random movement at different velocities can lead to spatial pattern
formation [11], while the directed movement of zooplankton, driven by their foraging
behavior toward areas with high phytoplankton density, plays a role in pattern formation
in plankton community models [10].

Based on the literature reviewed, we propose a prey-generalist predator model that in-
tegrates competitive interference, predator-induced fear along with its carry-over effects,
constant prey refuge, self-diffusion, prey-taxis, and predator velocity. To the best of the
authors’ knowledge, a model with this combination of factors has not been previously
developed. In this article, our goal is to accomplish the following research objectives:

1. Analyze how predator-induced fear and its carry-over effects along with constant
prey refuge influence the dynamics of both prey and predator populations.

2. Investigate how predator diffusion affects the random movement of species.

3. Evaluate the role of prey-taxis in shaping the directed movement of species toward
or away from prey density gradients.

The structure of this paper is outlined as follows: Section 2 introduces the primary eco-
logical model, incorporating predator-induced fear, its carry-over effects, and diffusion
terms. A predator—prey model with prey-taxis is developed to represent these dynamics.
In Section 3, we examine the existence and stability of steady states as well as investigate
local bifurcation scenarios associated with the model. Sections 4 and 5 focus on the
stability analysis of diffusion-driven and taxis-driven models, respectively. Numerical
simulations are presented in Section 6 to support the analytical results. Lastly, Section 7
discusses the ecological implications of the major findings with relevant ecological exam-
ples.

2 Model formulation

Gupta et al. [7] conducted an investigation into a predator—prey model characterized by
a constant prey refuge and Holling type II functional response:

du  ru U qa(l —m)uv
at 1+ fv ° ! (a+q(1 —m)u)
dv Bv

ar - S”<1 gl -mut (1 —q>O‘AQA>7

where u and v denote the quantities of prey and generalist predator species, respectively;
r signifies the intrinsic growth rate associated with the prey species; m represents a con-
stant prey refuge constrained within the interval m € (0,1); ¢ indicates the predator’s
preference rate for sustenance, where ¢ € (0, 1); « is characterized as the maximum rate
of prey removal per capita resultant from predation; s denotes the growth rate pertaining

)

(1)
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Table 1. Overview of parameters in model (2) and their numerical values for simulations.

Parameter Description Units Value Source

r Prey intrinsic growth rate (time) ! 1.6 Assumed
c Carry-over effect of fear (biomass) ~! 0.7 Assumed
f Cost of fear (biomass) ~! 0.9 [7]

70 Prey natural death rate (time)~1 0.5 [7]

r1 Prey intraspecific competition ~ (biomass) ~!(Time)~! 0.1  Assumed
q Predator preference rate dimensionless 0.63 Assumed
@ Max per capita prey removal (time) 1 0.45 [16]

m Refuge parameter dimensionless 0.85 Assumed
a Half-saturation constant biomass 0.1 [7]

b Half-saturation constant biomass 0.02 Assumed
s Predator intrinsic growth rate (time)~1 0.05 Assumed
B Max per capita predator removal (time) 1 0.1  Assumed
aa Energy from additional food (time) 1! 0.3 [7]

Qa Additional food density biomass 1.8 [7]

to the generalist predator; 3 represents the maximum rate of predator removal per capita;
and a4 along with @ 4 account for the decline in predator populations attributable to
the availability of its preferred food source and an additional food source maintained
at a constant density A. Model (1) has been enhanced through the integration of the
following factors:

1.

Predators influence prey not only through direct killing but also by inducing fear,
which reduces prey reproduction and generates long-term carry-over effects on
population density. The prey growth rate is given by R(c, f,u,v) = (1 + cu)/
(14 cu + fv) with properties consistent with [5].

Furthermore, the functional response describes the predator’s feeding rate per in-
dividual based on prey availability and predator density. Crowley and Martin [3]
proposed P(u,v) = auv/((14au)(14bv)), where «, a, and b denote capture rate,
handling time, and predator interference, respectively. This form is particularly
suitable for data with asymptotic feeding rates influenced by predator density.

. The refuge parameter m € (0, 1) represents a constant value that denotes the extent

of effectiveness of the refuge in preserving prey species. It affords protection to
a fraction mu of the prey population, while the remaining (1 — m)u of the prey
continue to be vulnerable to predation [8].

Incorporating all the above assumptions, the modified model turns into the following

form:

du  ru(l+ cu) 9 qa(l — m)uv
— = —rou—Tru’ — ,
dt  1+cu+ fo (I+a(l =—m)u)(1+bw)
dv

— :sv<1— p ),
dt ga(l—m)u+ (1 —q)aa@a

2

where %(0),v(0) > 0, and model parameters are specified in Table 1.
We enhance model (2) by integrating diffusion terms, which facilitates the analysis
of both the temporal progression and spatial dynamics associated with species interac-
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tions. The incorporation of spatial variations yields a more holistic comprehension of the
model’s behavior over time and across diverse geographical locations. To further inves-
tigate these spatial dynamics, we introduce a self-diffusion term. Self-diffusion signifies
the relocation of species within populations, thereby permitting the redistribution from
regions of elevated density to areas of diminished density. The subsequent system of
parabolic partial differential equations delineates the spatiotemporal dynamics:

1 1-—
Ou Tu( + cu ) 5 qga(l —m)uw

ot 1+cu+ fo Crow T (1+a(l —m)u)(1l+ bv)
0%u
3
+ 6 P2 3)
v Bv 0%v
_— = 1 — - .
ot sv( ga(l —m)u+ (1 — q)aAQA) 02 Ox?

In this context, the self-diffusion coefficients for prey and predators are denoted by 6; > 0
and 02 > 0, respectively, thereby encapsulating the intrinsic locomotion patterns exhibited
by prey and predators within the spatial domain.

We proceed with the examination of model (3) by taking into account the subsequent
initial conditions:

u(xz,0) >0, wv(xz,0) >0, wherex € 2=][0,L], 4
and zero-flux boundary conditions

%:%:0 on Jf2. 5)
The zero-flux boundary condition (5) implies that no external input is imposed from
outside.

The predator’s movement in the directed component is governed by prey-taxis, based
on the assumption that the acceleration is proportional to the gradient of prey density. The
random movement is modeled by a diffusion term. It is assumed that changes in the preda-
tor’s velocity (acceleration) are influenced by the gradient of prey density, specifically,

9 w9y =
ot "o )Y T o

where the prey-taxis coefficient is represented by 7' > 0, and w(z, t) denotes the predator
velocity.

Incorporating diffusion into the velocity equation governing the predator necessitates
a modification of the equation as follows:

ot " Vor )T Tor T B2

where 03 > 0 signifies the diffusion constant associated with the velocity of the predator.
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Assuming that the velocity or its gradient is sufficiently small, we are permitted to
disregard wow/Ox in the aforementioned equation, thereby resulting in the subsequent
equation:

2

o _ou oo

ot ox Ox?
where w(x,t) denotes the instantaneous velocity of predator movement at each spatial
location [16]. The taxis coefficient T" for the prey describes the sensitivity of predator
movement to changes in prey density distribution. The parameter J3 represents the diffu-
sion coefficient for predator velocity, accounting for the impact of social behavior. Here
we have considered a nonstandard prey-taxis formulation by modeling predator velocity
(w) as a separate variable influenced by prey density gradients and velocity diffusion.
This approach enhances biological realism by capturing gradual predator responses to
prey, allows detailed stability analysis, and reveals the role of predator movement in
pattern formation. It provides a mechanistic view of how prey-taxis and predator diffusion
interact to shape spatiotemporal dynamics.

By incorporating these factors, we propose a prey—predator model with prey-taxis
represented by the following reaction—diffusion—advection model:

ou ( 14+ cu
=ru

) rgu— el — qa(l — m)uw
1+cu+ fo (1+a(l —m)u)(1+bv)

at
2
+ 51@7

Ox? ©)
@—sv 1- bu —é(vw)—i—é@
ot go(l —m)u+ (1 — q)aaQa Ox 2 9x2’
ot~ oz’ 0a?

with zero-flux boundary conditions
Ju Ov
W= = 0 0 onof? @)

3 Dynamic behavior of the temporal model

3.1 Positivity and boundedness

Lemma 1. Ifu(0) > 0 and v(0) > 0, then all the nonnegative solutions of model (2) lie
within the region

I'={(u,v) € RZ: 0 < u(t) < p, 0<v(t) < v},

where
1-— 1-—
PP (1 Sl Ul VY 2
™ B
Proof. The proof of this lemma follows from [5]. O
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3.2 Feasibility and stability of model’s equilibria

The model equation (2) admits three boundary equilibria: the extinction point £y (0, 0),
the prey-only equilibrium E;((r — rg)/r1, 0), and the predator-only equilibrium Es(0,
(1= q)aaQa/B).

Now a coexistence equilibrium exists only when the nontrivial prey nullcline

r(1+ cu) ga(l —m)v

1—|—cu+fv_r0_r1u_ (1+a(l —m)u)(1+ bv) =0

hi(u,v) =

and the nontrivial predator nullcline

(1 pu —
ha(u,v) = (1 qa(l_m)u+(1—q)ozAQA) !

converge within the positive quadrant of the uwv-plane. In particular, the coexistence
equilibrium is realized at the point, where

. ga(l —m)u* 4+ (1 — qQ)aaQa
B

with u*, which is a positive solution of the equation

Ajut + Aou™ + Agu™® + Agu* + As =0 (8)
with the coefficients

= Briachqa(l —m)? 4+ riafbg®a?(1 — m)3,
Az = BriacDi(1 — m) + bgcaB(ro(1 — m)a + r1)(1 — m)
+ riaga(l — m)?(fD1 + bDs) + fbg*a® (ro(1 — m)a +r1) (1 — m)?,
Ag = Dl{cﬁ(ro( m)a + rl) +7ria(l —m) Dg} + qa(ro(l —m)a+ rl)
X (1 =m)(fD1 4 bD3) + bgaB(roc — ra(l —m))(1 — m)
+¢*a®Be(l —m) +bfg*a®(1 —m)?,
Ay = D1Ds(ro(1 —m)a+r1) + BD1(roc — ra(l — m)) + geaB(1 —m)
X (B4 (1 —q)aaQa) + fi*a?B(1 —m)* 4+ rofqa(l —m)Dy
+ robga(l — m)Dy — rbgafB(1 — m),
As = BqaDa(1 —m) +roD1Dy — BrDy,
Dy = (B+b(1-qaaQa), Da=(B+f(1-q)aaQa).
Due to the complexity of the fourth-degree polynomial, analytical determination of coex-
istence equilibria is difficult. Using Descartes’ rule of signs and the conditions in Table 2,

Eq. (8) indicates that model (2) can admit up to three interior equilibria, depending on the
signs of As, Ay, and As, with A; and A, strictly positive.
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Table 2. Various cases demonstrate the utmost number of
positive real roots.

Signs of A; fori = 3,4,5 Number of interior
(As, Ay, As) equilibrium (atmost)
(+,+,+) 0
(+7+7_)’(_7_7_)’ (+7_,_) 1
(+7_7+)’(_7+7+)’ (_7_7+) 2
(77+7 7) 3

3 3.5

(u, v)=(0.194,2.08)

(u, v)=(1.993, 2.845)

(u, v)=(1.158, 2.49)

0 05 1 15 2 “o 1 2 3 4
u u

(@) f =0.82 (b) f =09

3

28

26

>24

22

© f =094

Figure 1. Variation in the number of coexistence equilibrium points for model (2) as the values of f change.
The remaining model parameters are specified in Table 1.

Figure 1 illustrates the number of coexistence equilibrium points for model (2) by
adjusting significant model parameters using nullcline diagrams.
The Jacobian matrix for model (2) can be written as

_(Ju Ji2
I(u,v) = <J21 Jzz)7

where
(1 cu)® + f(1 4 2cu)v) ga(l —m)v
Ju = (14 cu+ fv)? T 7o~ 2w - (1+bv)(1+a(l —m)u)?’
Joo = rf(14 cu)u ga(l —m)u
12 = — -

(I+cu+ fv)2  (1+b)2(1+a(l —m)u)’
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sBqa(1 — m)v?

1= el —myu 1 (1 - gaaQa)?

_ 2Pv
T = 5(1 Cga(l—mu+(1- Q)OéAQA)'

At Ey(0,0), the Jacobian eigenvalues are Ay = r — rg and Ay = s (> 0), implying
asaddle for r < 7 and an unstable node for r > 1. At E1((r—rg)r1, 0), the eigenvalues
are

A =719 —T1, )\228(>0),

so Fq is a saddle if 79 < rq and an unstable node if ¢ > .
The eigenvalues associated with the Jacobian matrix evaluated at the equilibrium point

E5(0, (1 —q)aaQa/B) are

rB ~qa(l—m)(1—q)oaQa

M=o F0—qQaaQa ° B+b(1—qaaQa

)\2 = —S.

Thus,

ga(l-m)(1—q)aaQa

<Tro+ ?1+b(1)_(1q)a‘§QAQ )
qa(l1-m)(1—q)aaQa

Z Tt TR (-g0aQa

rB3
1+f(1-q)aaQa

rB
1+ f(1-q)aaQa

. |astable node if
Es i L
a saddle point if

The characteristic equation associated with the Jacobian matrix obtained at the interior
equilibrium point E* (u*, v*) is
A2 — (Jfy + Ja) X+ (Ji1 55 — o d31) = 0. )
By the Routh—Hurwitz criterion, all roots of (9) have negative real parts if and only if

(Ji1 +J33) <0 and  (JyyJ3 — Jipd51) > 0.

3.3 Bifurcation analysis

In this segment, we demonstrate that the model delineated by Eq. (2) experiences tran-
scritical, saddle-node, Hopf, and Bogdanov—Takens (BT) bifurcations as the parameters
are varied in a suitable manner. The specifics of these bifurcations are elaborated upon in
the following discussion.

3.3.1 Transcritical bifurcation

A transcritical bifurcation (TB) transpires when two equilibrium states undergo a recip-
rocal exchange of stability as a parameter transitions through a critical threshold. In this
framework, we delineate the subsequent theorem.

Theorem 1. Model (2) undergoes a TB around the equilibrium E5 at the critical value

(1B —710)(B+b(1 — q)aaQa) — qa(l —m)(1 — Q)aaQa
(1= q)aaQa{ro(B+b(1 — @)aaQa + qa(l —m)(1 — q)aaQa)}

f=f"=

Nonlinear Anal. Model. Control, 30(6):1121-1144, 2025
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if
Tﬁ(ﬁ + b(l - q)aAQA) > ’I“()(B + b(l — q)aAQA) + qa(l — m)(l — q)aAQA.

Proof. For the manifestation of TB, it is a requisite that one of the eigenvalues of the
variational matrix J(E»; f = f*B) be equal to zero. The variational matrix J(Es; f =
fTB) and its transpose exhibit the respective eigenvectors G = (1, ga(1 —m)/B)T and
H = (1, O)T, which are associated with the zero eigenvalue. In this context, we will
elucidate that model (2) attains the state of TB by employing Sotomayor’s theorem. We
derive the following:

HY [Fy(Es | = [°)] =

) o m o rB(1l — q)aaQa
HDE (B f = )0 = =5 o — gangar 7
2refTBA(1 — qQ)aaQa

HT[D*F(Bz; f = f'°)(G,G)] =

D2
oy 2000(1 = m)*(1 = g)aaQa
—2r; — D,
N *a?B(1-m)*  rqfTPaB(l—m)
D? D
£0.

Therefore, at the instant when the variable f reaches the pivotal threshold f TB the model
delineated by (2) undergoes a transcritical bifurcation that arises from the equilibrium
state Fs. O

3.3.2  Saddle-node bifurcation

In the context of dynamic models, a saddle-node bifurcation transpires when a pair of
equilibrium points collide and subsequently vanish. This occurrence manifests within
autonomous models governed by ordinary differential equations when the eigenvalues
associated with the Jacobian matrix of the model at the critical juncture tend toward zero.

Theorem 2. Model (2) displays a saddle-node (SN) bifurcation at the coexistence equi-
librium point E* as c reaches a threshold value ¢ = SN,

Proof. Model (2) can also be written as

% =F = [Fi(Pc) F2(Pvc)]T’
where P = [u U]T, and
_ru(l+ cu) 2 gol = mjuv
BB = s o T T T T e — my) (1 o)
Fy(P,c) = sv (1 ga(1 —m)u+ (1 — (J)aAQA)

https://www.journals.vu.lt/nonlinear-analysis
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Now, we derive the necessary transversality conditions that must be satisfied for
the realization of saddle-node bifurcation at the critical parameter value ¢ = cSN. The
pivotal parameter value of ¢ can be deduced from the stability criterion pertaining to
the equilibrium point E* as ¢ = ¢SN. At the threshold ¢ = ¢SV, it is evident that the
Jacobian matrix J(E*) possesses a zero eigenvalue. The eigenvectors corresponding to
the Jacobian matrices J(E*;c = ¢SN) and J(E*; c = ¢SN)T that are associated with the
zero eigenvalue are delineated as follows:

_ (N _ (M
() ()
Here Vi = —JiVo/Jty = —J5Va/Js. Wi = —J5Wa/Jiy = —J5,Wa/J5y as
V3 # 0 and W5 # 0. Next, the following will be computed using the above values:

T e %2 %
W ___rfuvr
WTFC E*;C: CSN — 1 (1+SNy+ for)2
( ) Wa 0

O%F 9% F
DQF(E* c= CSN)(V V) = 82“ : Vi 28“871’ Viva + 31121 Vé
TRV 255V, + SR VY

#0,

(E*' 7CSN)

£0.

(E*;c=cSN)

Thus,
WT[ (E* c= CSN)] #0, wT [DQF(E*; c= cSN)(V, V)] #0.

The analysis reveals that the model defined by Eq. (2) experiences a saddle-node bifurca-
tion at the critical parameter value ¢ = ¢SN. At this threshold, the equilibrium state E*
shifts as c crosses its critical value. O

3.3.3 Hopf bifurcation

It has been demonstrated that the stability of E* is contingent upon the sign of Tr(J(E*)).
In this context, let us define f as a bifurcation parameter. The equilibrium point E*
experiences a loss of stability when the sign of Tr(.JJ(E*)) transitions from negative to
positive due to variations in f. By resolving the equation Tr(J(E*)) = 0, we derive

(211(1 + cu*) 4 reu*) + \/4Z(1 + cur)reu* + c2r2y*2
2 Av*

)

where
= qac(l —m)2u*v* . spv*
T (A +a(l —m)ur)2(1 +bo*) . qa(l1 —m)u* + (1 — Q)aaQa’
This constitutes an implicit formulation for f as the variables (u*, v*) are contingent
upon f. We represent the solution of this implicit formulation as fH. The coexisting
equilibrium E* of the model defined by (2) experiences a Hopf bifurcation when f = fH,
provided that the subsequent nonhyperbolicity and transversality conditions are met:

d(Tr(Jg*)) ~re(l+ cut — fot)uor
df - (14 cur + fHy*)3

Det(Jg*; f = ) >0 0.
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3.3.4 Bogdanov-Takens bifurcation

Theorem 3. Model (2) undergoes codimension-2 BT bifurcation with respect to fear
parameter f and carry-over parameter c at f = BT and ¢ = BT around the interior
equilibrium E*(u*,v*).

Proof. For brevity, the proof of the theorem is omitted. Interested readers can refer to [18]
for details. O

4 Analysis of diffusion driven model

In this segment, we conduct an examination of the stability characteristics of model (3)
under the initial condition (4) and the boundary condition (5). The objective of this section
is to explore the ramifications of diffusion on the equilibrium steady state. Furthermore,
we concentrate on the scenarios that may potentially lead to Turing instability.

4.1 Stability of steady state

IE the context of diffusion phenomena, let us define u = u* + U and v = v* + V, where
|U| and | V| are significantly less than one. To investigate the model delineated in (3), we
shall conduct an analysis of the linearized model, which can be expressed as

ou o*U ov o*V

>~ 0T v il = —CnU Vv - (10)
where the C;; = J;; at point (u*, v*). Let
Cin Cr2 o1 0
J. = , d= )
Co 022] [0 52}
Let the solution of model (10) be of the form
U = Xebrt sin(dgx), V= Yeg"'tsin<dD7rx). (11)
From (10) and (11) we get
O 0T +CuV — 0T, 0 = OnlT + OV — 7Y,

where k? = (dm/D)?. The Jacobian matrix corresponding to the aforementioned system
is expressed as follows:

N — {Tln nu] _ {Cu — 61k? Ci2
No1  Nao Co Cog — 62k?| "

The defining equation associated with the Jacobian matrix N* can be articulated in the
following manner:
& — Tr(N*)&, 4 Det(N*) = 0.
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Applying the Routh—Hurwitz criteria, we determine that the perturbation becomes
unstable if any of the conditions below holds:

Tr(N*) > 0, (12)
Det(N*) < 0. (13)

Since 41, 62 > 0 and Tr(J) < 0, condition (12) can never be met. However, condition
(13) may still hold, which is precisely the criterion for Turing instability. Therefore, by
simplifying Eq. (13), we derive the following theorem characterizing Turing instability.

Theorem 4. The prerequisites for the emergence of Turing instability, instigated by the
phenomenon of self-diffusion, for the mathematical model represented by Eq. (3) are:

(i) C11+ Ca <0
(i) C11C22 — C12C21 > 0;
(iii) 01C% + 62C11 > 0;
@iv) (51022 + 52011)2 > 4Det(Jc)6162.

5 Stability analysis of taxis-driven model

In this segment, we undertake a comprehensive stability analysis of the model delineated
in (6), taking into account the specified boundary condition articulated in (7).

We have examined the linearized representation of model (6) around the equilib-
rium point E*(u*,v*,0), incorporating minor perturbations U (x,y,t), V(x,y,t), and

W(x,y,t) as follows:

ou — — 0*U

rrie CnU 4+ CiaV + 51@’

ov — — 0w 0*V

E = CglU + CQQV U*% + 627{9‘T2 5 (14)
ow ou PwW

ot = Tar Tl

Let us postulate the Fourier series solutions corresponding to model (14) in the following
manner:

U(z,y,t) = Z U,e*t cos(nz),
n

V(z,y,t) = Z Vet cos(nz),
7

W(a,p.1) = 32 Wy sin(ne),
n

where n = dr/D.
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Incorporating these parameters into model (14) results in the transformation of the
equation into

ZU (Ci1 — Ay — 011° +ZVC12—0
Z U,Co1 + Z Vi (Cog — 5277 - Z Wy (v*n) =0, 15)
n

ZU" (=Tm) +Z —83m> — \,) = 0.
" n

The Jacobian matrix corresponding to the aforementioned model (15) is articulated as
follows:

Ci1 — 61m? Cia 0
M* = Ca Coo — dom*  —v*n
—Tn 0 —d3n?

The characteristic equation of the above matrix is given by
Af, 4—1)1>\?7 +p2A, +p3 =0,
where
p1 =n?(61 + 2 + 03) — (C11 + Ca2),
p2 = 1" (6102 + 6203 + 0361)
— 1?(C1162 + Co261 4 C1163 + Coa63)
+ (C11Ca2 — C12Ca1),
p3 = 1°(610203n" — C110283n° — C12Ca103 — Crov*T).
Through the application of the Routh—Hurwitz criteria, it is determined that local asymp-
totic stability is attained at the positive equilibrium point E*(w*, 7", 0) if and only if

p1 >0 p3>0, and pips —p3>0.

6 Computational results

This section presents the numerical computation of the analytical findings. Comprehen-
sive numerical simulations were executed employing MATLAB R2024a, MAPLE 16,
and MATHEMATICA software to corroborate the theoretical findings. The parameters
selected for the validation of the analytical results are enumerated in Table 1.

6.1 Computational results for temporal model
6.1.1 Bifurcation structure with varying levels of predator-induced fear f

The parameter f (predator-induced fear) is the primary bifurcation parameter driving
system dynamics. For f < 0.852969, the model admits a stable coexistence equilibrium,
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Figure 2. One-parameter bifurcation analysis of the model described in Eq. (2), focusing on how variations in
the fear parameter f affect the system’s equilibrium states and dynamic transitions. In this figure, HMO denotes
a homoclinic orbit associated with abrupt changes in population levels, SN indicates a saddle-node bifurcation,
where equilibrium points merge or disappear, and H_ represents a supercritical Hopf bifurcation where a stable
steady state gives rise to stable oscillatory behavior. The magenta lines correspond to branches of unstable
equilibrium points, while the blue lines indicate stable equilibrium branches.

but at f = 0.852969 a Hopf bifurcation produces stable limit cycles around E*. Within
0.852969 < f < 0.876155, these cycles remain stable, while a transcritical bifurcation
at fTB = 0.876155 introduces bistability between the prey-free state and the limit cycle.
As f increases further, cycle amplitudes grow until a homoclinic bifurcation occurs at
f = 0.88, followed by extinction of coexistence equilibria through a saddle-node bifur-
cation at f = 0.919135. Beyond this point (f > 0.919135), only the prey-free state
persists. The period analysis (Fig. 2(b)) shows an increasing trend as f approaches 0.88.
Ecologically, this suggests that as predator-induced fear intensifies, it can significantly
alter prey behavior and reduce their ability to maintain stable populations. High levels of
fear can lead to long-term population oscillations or even extinction, emphasizing that fear
itself, without direct predation, can act as a powerful force shaping species interactions
and overall ecosystem stability.

6.1.2 Bifurcation structure with varying the rate of prey’s carry-over effects ¢ due to
predator-induced fear

The stability of equilibrium under varying prey carry-over effects c exhibits rich dynam-
ical behavior. For small ¢, the system stabilizes at the prey-free equilibrium, while at
c = 0.648253 a saddle-node bifurcation generates two coexistence equilibria, one stable
and one unstable. Within 0.648253 < ¢ < 0.651774, bistability occurs between the
coexistence and prey-free equilibria, followed by a Hopf bifurcation at ¢ = 0.651774 that
produces stable population cycles. These cycles coexist with the prey-free state until a ho-
moclinic bifurcation near ¢ = 0.67 triggers extinction. Between 0.67 < ¢ < 0.74, further
homoclinic transitions alter stability, and for ¢ > 0.8257, the cycles vanish via another
Hopf bifurcation, leaving bistability between steady states. Period analysis (Fig. 3(b))
confirms that cycle periods initially increase with ¢ before declining beyond ¢ = 0.74.
Ecologically, this shows that carry-over effects, such as delayed impacts on growth or
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Figure 3. One-parameter bifurcation analysis of the model described in Eq. (2), focusing on how changes
in the carry-over effect parameter c influence the system’s equilibria and dynamic behavior. In the diagram,
HMO indicates the presence of a homoclinic orbit, SN marks the location of a saddle-node bifurcation, and H_
denotes a supercritical Hopf bifurcation point where stable steady states give rise to stable oscillatory solutions.
The magenta lines represent branches of unstable equilibrium points, while the blue lines correspond to stable
equilibrium branches.

reproduction, can have lasting consequences on prey populations. As these effects become
stronger, they can disrupt population balance and lead to sudden shifts in dynamics,
highlighting the importance of long-term stress responses in ecosystem stability.

6.1.3 The dynamic interaction between the prey’s carry-over effects of predator-induced
fear and the level of predator-induced fear

In this section, we elucidate the global and local bifurcation outcomes pertinent to mod-
el (2), which were derived utilizing the Matlab software package. Figure 4(a) presents
a bifurcation diagram within the two-dimensional cf-plane to facilitate enhanced visu-
alization. The local bifurcation trajectories encompass the SN bifurcation curve, the TB
curve, and the Hopf bifurcation curve, whereas the global bifurcation trajectory comprises
the homoclinic curve (HMO). These trajectories segment the cf-plane into seven distinct
regions designated as R; through 7. In accordance with Theorem 1, the trivial equilib-
rium Ej is characterized as unstable, while the axial equilibrium point F is consistently
a saddle across all delineated regions. Conversely, the alternative axial equilibrium point,
Fs, is identified as a saddle within regions R5; and Rg, yet exhibits stability in the
remaining regions. We now scrutinize the dynamics of the interior equilibrium points
of model (2) across each region, as well as the alterations in dynamical behavior as they
pertain to the bifurcation curves. The dynamic behaviors observed in each region are
comprehensively summarized in Table 3, and schematic phase portraits illustrating the
coexisting equilibria in each region are represented in Figs. 5, 6 for enhanced clarity. Fur-
thermore, we note that the saddle-node curve intersects with the Hopf curve at a BT point
(BT = 0.672323 and fBT = 0.908442), which signifies a codimension-2 bifurcation.
At the coordinates ¢ = 1.12007 and f = 1.05241, the model demonstrates a generalized
Hopf (GH) bifurcation, wherein the first Lyapunov coefficient attains a value of zero, and
two limit cycles are observed surrounding the equilibrium point E*(2.457392, 3.043006)
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Figure 4. Bifurcation diagrams for model (2) in the two-dimensional cf-plane with all other parameters fixed
as given in Table 1. The diagram divides the plane into seven regions (RR1—R7) delineated by local bifurcation
curves — SN, TB, and Hopf bifurcation curves — as well as the global HMO curve. A summary of the stability
properties and bifurcation-induced regime shifts in each region is provided in Table 3.

Table 3. Nature of equilibrium points of model (2) in different regions of
Fig. 4; SP (stable-node), UN (unstable-node), SN (saddle-node), and SF
(stable-focus).

Region  Equilibrium point(s) Nature of equilibria Phase portrait
Ry Eo, E1, Eo UN, SN, SP Fig. 5(a)
Ry Eo, E1, Eo, EY, E5  UN, SN, SP,SN, SN Fig. 5(b)
R3 Eo, By, B2, EY, E5 UN, SN, SP, SN, SP  Fig. 6(a)
Ry Eo, E1, Eo, EY, E5  UN, SN, SP,SN, SF  Fig. 6(b)
Rs Eo, Ev, B2, E* UN, SN, SN, SF Fig. 6(c)
Rg Ey, Ey, Eq, E* UN, SN, SN, SP Fig. 6(d)
Ry Ey, Ev, B2, EY, E5  UN, SN, SP,SN, SP  Fig. 6(¢)
6 ———opo e —— e - 6 ——opooe e
Ry 0=07,10.9
5 = 5 <
4 < < 4 <
& pa
3 e 3 T
> >
2 2
1- 1 —_—
o 3> >
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Figure 5. Phase portraits of model 2 for regions R1—Ry (Fig. 4) using parameters from Table 1. Trajectories
(blue) and separatrices (cyan) depict solution paths; the prey and predator nullclines are represented by red and
black curves, respectively. Stable (green) and unstable (magenta) equilibria govern the dynamics.

(as illustrated in Fig. 4(b)). A subcritical Hopf bifurcation is noted to occur to the right
of the GH point, while a supercritical Hopf bifurcation is observed to the left of the GH
point.
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Figure 6. Phase portraits of model 2 for regions R3—R7 (Fig. 4) using parameters from Table 1. Trajectories
(blue) and separatrices (cyan) depict solution paths; the prey and predator nullclines are represented by red and
black curves, respectively. Stable (green) and unstable (magenta) equilibria govern the dynamics.

6.2 Computational results for reaction—diffusion and reaction—diffusion-advection
equation: Turing pattern formation

To obtain the Turing pattern for models (3) and (6), numerical simulations were per-

formed using MATLAB R2024a. The models was initially discretized by mapping w to

(ug,u1,...,uy)and v to (vg, vy, ...,vnN), where N =80. Here we have taken mesh size

h=0.3 and time ¢ =70000. The simulation parameters were then established as follows.
For the diffusion-driven pattern formation,

r=16, c¢c=07, f=09 ro=05 7 =01, m=08631, (16;)
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q=063, a=01 b=002 s=005 A=0.1,

16
a=045 as=03, Qa=18, 6 =003, 0 =12 (162)

for the taxis-driven pattern formation,

r=16, ¢=0.7, f=09, ro=05 r =01 m=0.8631,
q=063, a=01, b=0.02, s=0.05 p=01, «o=045, 17
as =03, Qa=18 T=03, 6, =003 06 =12 0d3=1.

The computational analysis of models (3) and (6) involves using the finite difference
method to identify spatiotemporal patterns within a two-dimensional spatial region. The
reaction and velocity component is handled using the forward Euler method, diffusion
is approximated using the standard central-difference scheme with zero-flux boundary
conditions.

The emergence of Turing patterns for various values of ¢, §o, and T is illustrated in
Figs. 7, 8, and 9, respectively. Regions of low prey population density are represented by
blue spots, while areas of high population density are shown as red spots.

6.3 Diffusion driven Turing patterns

Given the existence of a one-to-one correspondence between the spatial distributions of
both prey and predator species, we have exclusively presented the distributions pertaining
to the prey species. The predator patterns follow a similar structure due to their strong
coupling in the reaction—diffusion model.

Figure 7 illustrates the development of Turing patterns as the time ¢ is varied. As ¢
increases, the regular stripe-shaped patterns emerge and progressively occupy the entire
bounded domain. These patterns grow faster over time, reflecting the model’s dynamic
evolution.

In Fig. 8, we illustrate the development of Turing patterns as the predator self-diffusion
coefficient, do, is varied. At lower values of s, irregularly shaped hot spots dominate areas
where prey density is lower. As Jo increases, these hot spots gradually transform into
irregular stripes, leading to a reduction in the overall prey population. When §, reaches
sufficiently high levels, the irregular stripes stabilize into regular, well-defined stripes.

6.4 Taxis driven Turing patterns

The examination of the model through simulation within a heterogeneous environment
demonstrates that both prey-taxis and the random movement of predators profoundly
affect the spatial distribution of various species. Prey-taxis, where predators move toward
higher prey density, leads to a more organized and directed predator—prey interaction,
while the random movement of predators introduces variability in their positioning. To-
gether, these dynamics shape the formation of spatial patterns and influence the overall
stability and coexistence of species within the ecosystem.

In Fig. 9, Turing patterns are displayed for the predator species and predator velocity
as the prey-taxis parameter 7" is varied. It is evident from the patterns of the predators
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that increasing 7' causes the irregularly shaped unstable stripes to evolve into cold spots
surrounded by highly dense stripes. These cold spots gradually become more stable wave-
type patterns with the further increase. We can also notice from the patterns of predator
velocity that as prey-taxis 7' intensifies, predators are more strongly attracted to areas of
high prey density, causing an increase in their velocity. This means predators will move
more rapidly toward regions where prey populations are abundant.

7 Conclusion

In this article, we examined a generalist predator—prey model that integrates the concept
of predator-induced fear alongside its consequential carry-over effects. The functional
response within the prey equation is conceptualized as a Crowley—Martin type, whereas
the growth dynamics of the predator population are regulated through an adapted Leslie—
Gower framework. We investigate the temporal and spatiotemporal dynamics across
a range of parameter configurations. The analysis uncovers intricate dynamics charac-
terized by bistability and both local as well as global bifurcations, while also assessing
how these dynamics fluctuate in relation to varying parameter values within the temporal
model.

Our research demonstrates that the fear induced by predators and its subsequent ef-
fects exert contrasting influences on the dynamics of the model. From Fig. 3 it is evi-
dent that at minimal levels of the carry-over effect, the model maintains stability at an
equilibrium devoid of prey, wherein the predator species fails to endure. In scenarios
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Figure 7. Spatiotemporal evolution of prey density governed by the reaction—diffusion equation (3) at increasing
time values with parameters fixed as in Eq. (16).
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Figure 8. Spatiotemporal patterns of prey density governed by reaction—diffusion equation (3) under varying
predator self-diffusion coefficients with other parameters fixed as in Eq. (16).

characterized by intermediate levels, the model manifests periodic oscillations, culminat-
ing in a phenomenon of stability-switching facilitated by a Hopf bifurcation. Notably,
at elevated levels of the carry-over effect, these oscillations are mitigated, culminating
in model stability. A subsequent Hopf bifurcation transpires as the model evolves from
a limit cycle to a stable node, thereby illustrating that the carry-over effect ultimately
functions as a stabilizing agent. Conversely, as illustrated in Fig. 2, we observe that
when the predator-induced fear is markedly low, both populations not only persist but
also stabilize within the ecosystem, rendering the prey-free equilibrium point unstable.
Nevertheless, an escalation in the fear parameter destabilizes the model, prompting a Hopf
bifurcation. This finding implies that predator-induced fear and carry-over effects exhibit
diametrically opposed behaviors, thereby influencing the model dynamics in divergent
manners. Furthermore, we have investigated codimension-2 bifurcations, such as the BT
bifurcation, as depicted in Fig. 4.

Turing instability in reaction—diffusion and reaction—diffusion—advection models ex-
plains the spontaneous emergence of spatial patterns, driven by diffusion and taxis pro-
cesses. Analyzing stability near the interior equilibrium F(u*,v*), we observed diverse
spatial formations, such as stripes, spots, and holes (Figs. 7-9), reflecting predator—prey
interactions under varying self-diffusion and prey-taxis intensities. Figure 9 shows that
increasing prey-taxis enhances pattern stability, highlighting its role as a biological control
mechanism. Few reaction—diffusion models account for active animal movement, such as
foraging optimization, yet both directed and random motions are crucial for population
regulation. These findings are comparable to the results given by Gupta et al. [7] where
they have investigated complex dynamics of Leslie-Gower prey—predator model with
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Figure 9. Spatiotemporal patterns of predator density and velocity field governed by the advection—reaction—
diffusion system (6) under varying prey-taxis sensitivity with other parameters fixed as in (17).

fear, refuge, and additional food. They analyzed their model in the absence of carry-
over effects and predator velocity. In our analysis, we investigated how predator velocity
influences pattern formation, aiming to enhance the realism of our study. Rai et al. [16]
also investigated the complex dynamics of a one-dimensional spatial nonlinear reaction—
diffusion—advection system with a Holling type IV functional response.

A promising avenue for future inquiry may encompass the exploration of the dynamics
of our proposed model through the incorporation of a carry-over delay. Additionally, the
model could be further enhanced by integrating predator-taxis and prey movement ve-
locity. Investigating these extensions may yield profound insights into the spatiotemporal
interactions and pattern formation inherent in prey—predator models. Such advancements
could also facilitate a more holistic understanding of ecological responses to environmen-
tal and behavioral determinants.
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