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Abstract. This paper proposes a novel approach to improve the visualization capabilities of self-
organizing maps and facilitate the identification of the resulting clusters. Unlike other clustering
algorithms, self-organizing maps lack the feature to select a predefined number of clusters, and
the boundaries of the clusters are not explicitly represented on the self-organizing maps. The main
advantage of our proposed approach is that the option for selecting the desired number of clusters
has been implemented. The experimental investigation was performed using four datasets with
different characteristics. The improved visualization leverages various similarity distances to assess
their impact on performance. The effectiveness of the novel approach to clustering results has been
compared with those of the well-known k-means and hierarchical clustering methods, which allow
for the selection of the desired number of clusters. Additionally, the visualization results, obtained
by the proposed approach, were compared with those produced using the Orange Data Mining tool,
where the u-matrix is applied to visualize a self-organizing map. The advantage of our approach
compared to the u-matrix visualization has been highlighted in this paper. The performance of
clustering algorithms has been measured by calculating the ratio of data items correctly assigned to
clusters in the case when the clusters are predefined in the analyzed dataset. The results obtained
showed that the most effective similarity distances are the cosine and correlation distances, which
help to detect the correctly predefined clusters in the visualization of self-organizing maps.

Keywords: self-organizing maps, u-matrix, similarity distances, visualization, data clustering,
number of clusters.

1 Introduction

Over the past decades, the amount of structured and unstructured data in different forms,
such as numbers, text, sounds, and images, has increased. The main reason is that new
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technologies enable the use of these data for various tasks, especially in the field of artifi-
cial intelligence, where the key is the utilization of historical data. Depending on the type
of data analyzed, data analysis can be performed using different data mining techniques.
Today’s numerous intelligent systems utilize machine learning models, primarily based
on classification algorithms. In the context of supervised learning, the data used to train
machine learning models must be labeled. Machine learning models can be applied to
a wide range of tasks, including the detection of phishing email, grain yield analysis in
agriculture, the development of recommendation systems, and sentiment analysis. The la-
beled data are not always available. Often, raw data are first collected from various sources
and then labeled by experts. With unlabeled data, unsupervised learning algorithms can be
applied to a wide range of problems. Data clustering is a typical data mining task that does
not require supervised learning. The clustering algorithms can be used in various areas to
group unlabeled data by identifying similarities between the analyzed data. When data
are clustered, visualization techniques become essential for representing these clusters
and intuitively comprehending the underlying data structures and patterns. Numerous
data visualization techniques are widely used, as they facilitate the rapid interpretation
of analyzed data, considering that visual representations are generally much quicker to
understand than numerical estimations.

Data clustering is a complex task because, when using unsupervised learning algo-
rithms, the data are usually unlabeled, making it more challenging to evaluate clustering
results compared to classification tasks. The performance of classification models can
be easily estimated using typical measures such as accuracy, precision, recall, and F1
score. To calculate these measures, it is essential to compare the predicted class with
the actual class labels provided in the data. However, these measures cannot be applied
to evaluate the clustering results because the data are usually unlabeled. One of the
measures used to estimate the results of data clustering is the silhouette score. Many
researchers have proposed various heuristic measures to assess the quality of cluster-
ing, which can be applied to different clustering algorithms. There are several well-
known clustering algorithms, but many of them cannot visualize the obtained clustering
results. Additionally, the desired number of clusters is often determined automatically,
and the researcher cannot manually select it. This choice is crucial, as it can signif-
icantly impact the details of the clustering results, which in turn affect the interpre-
tation and application of the findings to the study’s objectives. One of the most well-
known k-means algorithms offers the possibility to choose a desired number of clusters
in data clustering; however, this algorithm does not provide a visualization of the ob-
tained clustering results. Furthermore, scientific studies show [3] that the outcomes of
clustering algorithms are significantly influenced by the initial centers of the clusters,
which are often chosen at random during the algorithm’s execution. A Self-Organizing
Map (SOM) [15] serves not only as an algorithm for clustering but also as a technique
for multidimensional data visualization (see Section 3 for more details). The advantage
of a SOM lies in its ability to provide a visual representation of clustering results.
However, it does not allow the choice of the desired number of clusters in advance.
Additionally, the visualization of the SOM fails to clearly define the boundaries of each
cluster.
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The main contributions of the paper are as follows:
• A novel approach is proposed to enhance the visualization of SOMs. The approach

includes an option to select a desired number of clusters and similarity distance-
based determination of data cluster boundaries, addressing a significant limitation
of conventional SOMs.

• The effectiveness of the proposed visualization approach has been evaluated on four
different datasets (Iris, Glass, Mushrooms, and Elections), each with unique char-
acteristics. This comprehensive evaluation demonstrates the versatility and validity
of the approach in various data mining scenarios.

• The paper compares the proposed approach with well-known clustering algorithms,
such as k-means and hierarchical clustering, and with the visualization capabilities
of the SOM implemented in the Orange Data Mining tool [4]. This comparison
highlights the superiority of the proposed approach in terms of clarity of cluster
visualization and the ability to select a specific number of clusters, thus making
a significant contribution to the field of data clustering and visualization.

2 Related work

The data mining area includes numerous methods and algorithms, from data retrieval to
data analysis and knowledge extraction. The amount of structured and unstructured data
grows every day, therefore, data mining can be applied in different areas, for example, to
discover something unknown or to find various patterns in the data. In the research by [12],
a comprehensive survey of data mining techniques and applications was performed. The
analysis has shown that the data classification, clustering, outliers’ detection, regression
analysis, and association analysis tasks are usually performed. To solve these tasks, the
right data mining method needs to be chosen. [12] highlights that statistical methods
are still widely used in data mining. Nowadays, data classification is closely related to
machine learning model training, as various classification algorithms are applied to these
models. Many types of research can be found related to machine learning, for example,
the application in manufacturing, the different diseases and illness analysis, or educational
data analysis. In data classification tasks, only the labeled data are used. When the data
are unlabeled, the clustering algorithms can be employed. The main aim of clustering
algorithms is to group the data analyzed by their similarity. There are many clustering
algorithms that can be applied to data analysis. Clustering algorithms belong to the type
of unsupervised learning because unlabeled data are analyze.

The literature analysis shows that the most used clustering algorithms are hierar-
chical clustering, density-based (DBSCAN), and k-means algorithms [8]. A lot of re-
search demonstrates the application of these algorithms. These algorithms, developed
over 60 years ago, continue to be useful in practice and are extensively employed in
many modern applications. Over time, many modifications have emerged to improve
these algorithms, either by combining them with other algorithms or by applying them to
specific domains. However, the core principles of these algorithms have largely remained
unchanged. In the research by [10], the k-DBSCAN algorithm was proposed to help in
analyzing big data. The authors compared the results obtained by the classical DBSCAN,
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HCA-DBCAN, density-grid algorithms, and the proposed K-DBSCAN. The main aim
was to reduce the time required for clustering. In another research by [17], DBSCAN has
been enhanced by incorporating triangle inequality, neighbor similarity, and a fast neigh-
bor search algorithm. These improvements reduce the number of distance calculations
needed during clustering, thereby increasing the efficiency of the DBSCAN algorithm.
Compared to k-means and DBSCAN, the hierarchical clustering algorithm has its own
advantage that provides not only the clusters, but also dendrograms, where clusters can
be observed visually. [11] provided a deep review of k-means and hierarchical clustering
in the context of air pollution data analysis. The most popular algorithm, k-means, has
also undergone many improvements to handle big data analysis. The advantage of this
algorithm is that it allows one to choose the desired number of clusters.

In cluster analysis, selecting the optimal number of clusters is crucial. Various clus-
tering algorithms use different approaches to detect the optimal number of clusters. For
example, the elbow method is used in the k-means algorithm. The main aim of the elbow
method is to point out the curve of cluster variance with the number of clusters, where
the smaller variance indicates the optimal number of clusters. In the case of hierarchical
clustering, it often uses dendrograms to visualize and cut at a level that maximizes intra-
cluster similarity while maintaining distinct inter-cluster separations. The optimal point in
hierarchical clustering is generally more subjective. The self-organizing maps algorithm
does not allow to choose of the desired number of clusters at all, the clusters are formed
in the map and are evaluated by the researcher manually.

Related works showed that less popular, but also frequently used clustering algorithms
are Gaussian mixtures, partition clustering, SOMs, and fuzzy clustering. No matter which
clustering algorithms are used in data analysis, each of them has its strengths and weak-
nesses. Therefore, a distinct advantage of hierarchical clustering and SOMs over other
algorithms lies in their capabilities to provide a visual representation of the clustering
results. In the case of hierarchical clustering, the dendrogram can be formed in two ways:
agglomerative and divisive. In the agglomeration method, each data item is first consid-
ered as a separate cluster, which is then merged with other data items by forming larger
clusters based on the calculated similarity distances. Conversely, the divisive method
starts with all data encompassed in a single cluster, which is then iteratively divided into
smaller clusters [21].

As we can see in Fig. 1(a), the dendrogram represents all the similarities between the
analyzed data. Obviously, identifying all clusters within the dendrogram poses a signifi-
cant challenge and often requires manual intervention by researchers. Some suggestions
on how to determine clusters according to the distance boundaries in the dendrogram
can be found in the scientific literature [30]. Furthermore, according to many studies,
hierarchical clustering is more suitable for small datasets, given that dendrograms tend
to become overly complex and less interpretable with the increase in dataset size. When
visualizing SOMs, the data are essentially presented in a simple table, where the most
similar data are located in the same cell of the map, and the least similar data are posi-
tioned distantly. Orange Data Mining, a user-friendly tool, provides a set of approaches
to data analysis and visualization, including the representation of SOMs. The tool was
developed in the Python programming language.
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(a) (b)

Figure 1. Example of visualization of data clusters using the iris dataset [7]: (a) the dendrogram, obtained by
hierarchical clustering; (b) the visualization of a SOM

(a) (b) (c)

Figure 2. The example of visualization in the SOM using iris dataset: (a) without u-matrix visualization;
(b) with u-matrix visualization; (c) with u-matrix visualization and labeled data colors

Figure 2 presents the iris data clustered and visualized by the SOM using the Orange
Data Mining tool. The tool displays circles for each cell of the map (Fig. 2(a)), where the
size of the circle represents the quantity of data items that have fallen into the same SOM
cell. If the labeled data is analyzed, the pie chart can be displayed instead of a circle which
helps to see the distribution of data items from different classes that fall in the same SOM
cell (Fig. 2(c)). Like hierarchical clustering, analyzing unlabeled data makes it difficult
to interpret the results obtained and to define the cluster boundaries in the SOM precisely
(Fig. 2(a)). To address this problem, the visualization of the u-matrix [28] in SOM can be
utilized (Figs. 2(b), 2(c)). As illustrated in Fig. 2(a), the size of the SOM is 5×5. However,
in the u-matrix visualization, additional cells are inserted to signify the distances between
neighboring SOM cells, as depicted in Figs. 2(b) and 2(c). In this way, the cells are
colored by the values of the u-matrix elements. The light areas can be considered as
clusters (denoting smaller distances between data items), whereas the dark areas act
as cluster separators (signifying larger distances between data items). While greyscale
visualization remains the most popular, there are also modifications employing diverse
color schemes. In the example shown in Fig. 2, data from three classes of irises were
analyzed. However, in Fig. 2(b), if the data classes are not colored in the visualization, it
is difficult to ascertain the exact number of clusters within the original data. It is obvious
that a researcher, lacking prior information about the data, can conclude that there are
only two classes in Fig. 2(b) – one class located in the top-left corner and the other in
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the bottom-right corner, as demarcated by the dark color of the cells. Conversely, if data
labels were visually distinguished by colors (Fig. 2(c)), it would be possible to identify
three distinct clusters: a blue cluster in the top-left corner, a predominantly red cluster in
the center, and a green cluster on the right side of the SOM. While the u-matrix helps to
identify potential clusters in the SOM, it does not permit the selection of a desired number
of clusters, even with the knowledge that the analyzed data belong to three classes.

The analysis of research performed on SOMs reveals that several researchers have
tried to improve either the visualization or the clustering performance of SOMs. Notably,
all these studies were published over a decade ago. The first improvement in SOMs was
proposed by [18] over 25 years ago, where the authors introduced alternative visualization
methods. The main idea was to visualize the relationship between cells in SOMs to facili-
tate the detection of cluster boundaries without modifying the training process in the algo-
rithm. This concept was further developed into Expanding SOM (ESOM) by [14]. During
the ESOM learning process, the neural network expands, and the neuron corresponding to
a distant data item gets a large expanding force. The authors stated that their experimen-
tal results demonstrated the superiority of the ESOM in producing better visualization
results compared to the classical SOM while maintaining a similar execution time. [6]
proposed an improvement of SOM clustering without changing the SOM algorithm. The
main problem that the authors faced was that classical visualization techniques were not
suitable for gene analysis. The proposed visualization was grounded in a graph network
paradigm, where the similarity of input data was computed and moved from one graph
to another. This methodology facilitated the formation of clusters comprising similar data
items. A more recent approach proposed by [20] was designed to automatically detect the
appropriate number of clusters in a SOM for the given data and to assign the data to the
clusters. The main aim of the proposed method was to visualize both the probability of the
different clusters and the number of data points contained within each neuron. Notably,
this approach applies to both labeled and unlabeled data. Recently, [13] proposed a SOM-
TimeS approach for time series clustering based on a SOM algorithm. The efficiency of
the proposed approach has been proven by performing experimental investigations using
the healthcare data of patient-clinician serious illness conversations. The results obtained
by the SOMTimeS were compared to the modified k-means algorithm. In the research
by [16], another modification of the SOMs was proposed that authors called the dynamic
time warping self-organizing map. This approach has also been applied in healthcare data
analysis and for time series clustering and pattern recognition.

In summarizing the analysis of related work, it becomes evident that no existing
approach definitely addresses the determination of clusters in SOMs. Several researchers
have tackled this issue by developing methods for the automatic identification of clusters.
Others tried to define the boundaries of the clusters in SOM. However, most of these
modifications and improvements are suitable when applied to labeled data as this facili-
tates a clearer observation of the clustering results. Our study introduces a novel approach
that focuses only on the SOM visualization using unlabeled data, without changing the
clustering algorithm. This approach enables not only the definition of cluster boundaries
but also the selection of the number of clusters or the automatic determination of the most
suitable cluster count.
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3 The background of the proposed approach

The main aim of the proposed approach is to detect data similarity in the self-organizing
map in order to determine the number of clusters and the cluster boundaries. As with
the u-matrix and other proposed approaches reviewed in related works, the similarity
distance between cells of the SOM needs to be computed. The main difference with
other methods is that our proposed approach does not use a labeled dataset, but the data
clustering is performed on the basis of the detected centers of the clusters, and the clusters
are expanded step by step depending on the similar cells. The SOM and the proposed
approach have been described in this Section.

3.1 Self-organizing maps

Many different clustering algorithms can be used, but our research aims to enhance the
SOM visualization by identifying the appropriate number of clusters and delineating their
boundaries. The SOM was introduced over 40 years ago by [15]. It is an unsupervised
neural network trained using competitive learning. The advantage of this algorithm over
other clustering algorithms lies in its dual capability. SOM is not just used to cluster
data, but also to show results in a visual form, thereby simplifying interpretation of the
results for researchers. The visual representation of SOMs may be presented in various
formats [5]. The main aim of SOM is to preserve the topology of multidimensional data
during their transformation into a lower-dimensional space, typically two-dimensional.
SOMs are versatile, being employed for clustering, classification, and visualization of
data from a wide range of domains and types [29]. For example, SOMs have been ef-
fectively utilized in text data analysis to cluster text documents [23]. In our previous
research, SOM was used to adjust the data classes of the multi-label text dataset [26],
which helps improve the quality of data labeling. In addition, the modified SOM has been
demonstrated to be effective in detecting outliers within the analyzed data set [25]. In
today’s popular image analysis field, the SOM can also be applied as an additional layer
within the architecture of object detection models or to help cluster image data [1]. In
Breskuvienė et al.’s study [2], the capability of the modified SOM, so-called FID-SOM,
has been used to tailor handling of imbalanced datasets common in fraud detection. The
method stands out by creating a refined dataset composed of the Best-Matching Units
from the trained SOM, which represent key attribute patterns. This approach ensures that
the selected features carry the most informative content. FID-SOM has shown competitive
performance compared to existing techniques and offers promising innovation in the field.
The SOM often serves as a task-specific component within more complex solutions. In
the research by [27], SOM was employed to identify similar users in a travel direction
recommendation model.

The SOM is a set of nodes (cells). The connections between the inputs and the nodes
are associated with specific weights. A set of weights corresponds to each node. The
set of weights forms a vector Mij , i = 1, . . . , ka, j = 1, . . . , kb, commonly referred
to as a neuron or codebook vector, where ka and kb denote the number of rows and
columns of the SOM, respectively. The learning process of the SOM algorithm starts with
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(a) Rectangular topology (b) Hexagonal topology

Figure 3. Two-dimensional SOM of different topology.

the initialization of the components of the vectors Mij , where they can be initialized
at random, linear, or by the principal components. At each learning step (iteration), an
input data item Xs, s ∈ {1, . . . , N}, is passed to the SOM. Here N is the number of
data items. The data item Xs is compared to all neurons Mij . Usually, the Euclidean
distance between this input data item Xs and each neuron Mij is computed. The vector
Mw with the minimal Euclidean distance to Xs is designated as a neuron winner. This
winning neuron is commonly referred to as the Best Matching Unit (BMU). All neuron
components are adapted according to the learning rule (Eq. 1):

Mij(t+ 1) = Mij(t) + hw
ij

(
Xp −Mij(t)

)
, (1)

where t is the number of the learning step, hw
ij is the neighboring function (hw

ij → 0 as
t → ∞), w is a pair of indices of the neuron winner corresponding to the data item Xs,
s ∈ {1, . . . , N}. The learning process is iteratively repeated until the predefined maxi-
mum number of iterations is reached. When the training is completed, the winning neu-
rons are determined for each data item from the set X1, X2, . . . , XN . Subsequently, every
data item is allocated to a specific SOM cell Cell i,j (i ∈ {1, . . . , ka}, j ∈ {1, . . . , kb}),
corresponding to its respective winning neuron.

Usually, in practice, two types of topologies of the SOMs are used: rectangular and
hexagonal (Fig. 3). The main difference in the SOM topology is that the neighboring
rank is determined differently. The neighboring rank concept plays a crucial role in the
SOM training process. All the cells adjusted to a neuron can be defined as its neighbors
of the first rank, then the cells adjacent to the first-rank neighbor, excluding those already
considered, as neighbors of the second order, etc. In Fig. 3, the number at the center
of the cell represents the neighboring rank compared to the grey cell Cell3,2, i.e., first
rank – 1, second rank – 2, etc. In the case of rectangular topology (Fig. 3(a)), the Cell3,2
will have 8 neighboring cells of the first rank, and in the case of hexagonal topology –
6 neighboring cells (Fig. 3(b)).

3.2 Similarity distances

Various distance metrics can be found in the scientific literature, ranging from well-
known metrics to heuristic distances. These measures find application across diverse

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


An advanced visualization of self-organizing maps 9

tasks, but their fundamental purpose is to quantify the pairwise similarity between data
items. The literature review reveals that Euclidean and cosine distances are commonly
utilized. For instance, in some research, the performance of various similarity distances
has been investigated to determine the similarity between analyzed documents [19]. Fur-
thermore, these similarity distances are often used in various classification or clustering
algorithms, including but not limited to the k-nearest neighbor algorithm, hierarchical
clustering, and SOM. In this paper, several similarity distances have been investigated
to see how different distances influence the clusters resulting from the visualization of
SOMs. Therefore, the Euclidean, cosine, correlation, Jaccard, and Spearman distances
have been used in the proposed approach [33]. Euclidean distance is the distance between
two data points in Euclidean space. In the context of data analysis, it is often used to
find the dissimilarity or similarity between data items. Smaller values of the Euclidean
distance indicate bigger similarity. Suppose we have two data items R = (r1, r2, . . . , rq)
and P = (p1, p2, . . . , pq), where q is the dimensionality of the vector corresponding to
each data item. The Euclidean distance between these data items is computed using Eq. 2

dEuc(R,P ) =

√
q∑

k=1

(rk − pk)
2. (2)

Cosine similarity distance (Eq. 3) is useful in the analysis of high-dimensional data,
such as in the detection of pairwise similarities in texts or images. The value of the cosine
similarity indicates the cosine of the angle between two vectors in a multidimensional
space.

dCos(R,P ) = 1−
∑q

k=1 rkpk√∑q
k=1 r

2
k

√∑q
k=1 p

2
k

. (3)

In the context of similarity, correlation distance is often used to evaluate how well two
points follow a linear trend (Eq. 4). In this case, a value close to 1 shows a high similarity.

dCorr(R,P ) = 1−
∑q

k=1(rk − rk)(pk − pk)√∑q
k=1(rk − rk)2

∑q
k=1(pk − pk)

2
. (4)

Here rk = (1/q)
∑q

k=1 rk and pk = (1/q)
∑q

k=1 pk.
The Jaccard distance (Eq. 5) is considered a measure of dissimilarity between two

data points. This distance is often used for data clustering, document similarity detection,
etc.

dJacc(R,P ) = 1−
∑q

k=1 rkpk∑q
k=1 r

2
k +

∑q
k=1 p

2
k −

∑q
k=1 rkpk

. (5)

Spearman distance (Eq. 6) is based on Spearman’s rank correlation coefficient. This
similarity distance can be used in various applications such as clustering, classification,
and recommendation systems applications. The Spearman distance helps to calculate the
similarity or dissimilarity between two data points.

dSp(R,P ) = 1−
∑q

k=1(uk − uk)(yk − yk)√∑q
k=1(uk − uk)2

∑q
k=1(yk − yk)

2
. (6)
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Here uk and yk are the rank of rk and pk taken over r1, r2, . . . , rq and p1, p2, . . . , pq ,
respectively. uk = (q + 1)/2, yk = (q + 1)/2.

4 The proposed approach

As previously mentioned, the SOM learning algorithm remains unchanged in the pro-
posed approach, with enhancements being focused solely on the visualization aspect of
SOMs. It is important to note that the results of the SOM are also influenced by the
hyperparameters selected before training. However, this research does not delve into the
effects of hyperparameter selection. Instead, the hyperparameters were chosen according
to findings from our previous research [22, 24]. The basis of the proposed approach is
the detection of similarity between data items in SOM cells. The different similarity dis-
tances, detailed in Subsection 3.2, have been explored, and their performance is presented
in Section 5. Assume an unlabeled dataset X = X1, X2, . . . , XN are analyzed, where
N is the number of data items. The SOM of the size ka × kb has been trained using
the dataset X . Once the neural network has been trained, the data items are assigned to
the SOM cells according to the winning neurons. Additionally, we have selected a desired
number of clusters C. The pseudocode of the proposed approach for cluster determination
in the obtained SOM is outlined and described in Algorithm 1.

The proposed approach has been implemented in the MATLAB environment. To
demonstrate the outcome of the proposed approach, the well-known iris dataset [7] was
used to train the SOM. The dataset consists of 150 items, and each of the three classes
has the same number of data items. As usual, in this dataset, the data items of the first
class (Iris Setosa) differ from the second (Iris Versicolor) and third class (Iris Virginica)
data items. Also, the data items of the second and third classes slightly overlap. Sup-
pose that a SOM of size 6 × 6 is trained using the iris dataset. Figure 4(a) illustrates
the cluster determination process using Algorithm 1, with the number of the desired
clusters C = 3. Here, a correlation distance is used as a similarity measure. Each cell
of the SOM presents three values: the number of data items that fall into the cell, the
minimum and maximum values obtained in Step 4. The cell with the highest number
of data items is considered as the center of the first cluster, denoted as Center13,1. The
values adjacent to the arrows show the correlation distance between two cells of the
SOM. A black arrow indicates a distance within the range of the minimum and maximum
values, while a red arrow signifies a distance outside this range. The first cluster (blue)
is formed by expanding from the center Center13,1 and moving to the top left corner of
the SOM (Center13,1 → Cell2,1,Cell2,2,Cell2,1 → Cell1,1,Cell1,2). Not all distances
are depicted; for cells already assigned to a cluster, alternative expansion routes are omit-
ted. Once the first cluster is formed, the remaining two clusters are similarly identified,
expanding from their respective centers (Center22,4 → Cell1,4,Cell3,4;Center

3
3,6 →

Cell2,5,Cell2,6,Cell3,5,Cell4,5,Cell4,6 → Cell5,5,Cell5,6).
All cells of the SOM that were not previously assigned to a cluster from the centers

during the expansion phase are allocated to the most similar center in Step 9 of Algo-
rithm 1. The final result of this process is presented in Fig. 4(b). In this representation,
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Algorithm 1. Determination of cluster in SOM.

Input: X – dataset analyzded, trained SOM, ka – row number of the SOM, kb – column number of the
SOM, C – the desired number of the clusters (maximum clusters).
Step 1: Calculate pairwise similarities between data items in X that fall into the same SOM cell Celli,j ,
where i = 1, . . . , ka, j = 1, . . . , kb.
Step 2: Identify the minimum Mini,j and maximum Maxi,j of pairwise similarity values for each cell
Celli,j .
Step 3: Compute the overall average similarity Avgni,j between all data items in cell Celli,j and its
first-rank neighboring cells Cellni,j , where n = 1, . . . , l. In rectangular SOM topology, each cell has a
maximum of 8 neighboring cells (l = 8), and in hexagonal topology, l = 6.
Step 4: Determine the first cluster center Centerci,j , where c ∈ {1, . . . , C}, as the Celli,j with the
highest number of data items. If multiple cells have the same highest number of data items, select one
randomly.
Step 5: Assign first-rank neighboring cells Cellni,j to cluster c based on similarity to the center Centerci,j
(in the case of rectangular SOM topology):
FOR n = 1 TO l

IF ((Mini,j 6 Avgni,j ) AND (Avgni,j 6 Maxi,j))
Cellni,j → assigned to the c cluster.

ELSE
Cellni,j → marked as a free cell Freei,j .

END
ELSE
Step 6: Each cell Cellni,j , assigned to cluster c, expands the cluster by trying to find similar first-rank
neighboring cells. Repeat Step 5 for cluster expansion. The process stops when no more cells can be
assigned.
Step 7: Find the second cluster center Centerci,j with the highest number of data items and furthest from
the first cluster center. Select randomly if multiple cells meet the criteria.
Step 8: Repeat Steps 5–7 until all cells are assigned to a cluster or marked as free. In case, there are no free
cells left and the desired number of clusters has not been found, the algorithm stops with the possible
maximum number of clusters of the analyzed dataset.
Step 9: Compute the overall average similarity FreecAVG between all data items in cell Freei,j and each
center Centerci,j of the clusters data items, where c ∈ {1, . . . , C}.
Step 10: The cells Freei,j are assigned to the cluster c whose value of FreecAVG is the smallest (most
similar).

distinct colors correspond to different clusters, while the white color indicates cells with
no data items. The clustering results obtained by our proposed approach have been com-
pared to those obtained using the Orange Data Mining tool [4], where the SOM is im-
plemented as well. To keep the same structure of the SOM produced by the Orange Data
Mining tool, first, the SOM has been trained, and the weights of the SOM derived by the
tool have been saved and used in our proposed approach. In Fig. 5, the SOM trained
by using the Orange Data Mining tool is displayed. Figure 5(a) illustrates the SOM
visualization within the tool, while Fig. 5(b) shows the SOM visualization as obtained
by our proposed approach. To comprehend the clustering results from the Orange Data
Mining tool, pie charts have been colored (see Fig. 5(a)).

It is relevant to note, however, that the data labels in the SOM training process are not
used and do not influence the clustering results, no matter Orange Data Mining tool or our
proposed approach is used. The labels are only used for data visualization in the obtained
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(a) Steps 1–8 (b) Steps 9–10

Figure 4. The 6× 6 SOM: the cluster determination using the proposed approach.

(a) (b)

Figure 5. The 6 × 6 SOMs obtained using the iris dataset: (a) visualized by u-matrix (using label colors) in
Orange Data Mining tool; (b) visualized by the proposed approach with correlation distance and choosing three
clusters.

SOM. We can see in Fig. 5 a that the pie charts represent data items. The size of each pie
chart corresponds to the number of data items that fall in the same cell. Different colors
in these charts signify different clusters. Considering u-matrix, we can conclude that the
red and green cells indicate one cluster, while the blue cells denote a separate cluster.

In contrast, our proposed approach specifies that the data be assigned to three clusters
(see Fig. 5(b)), where the numbers in each SOM cell represent the number of data items
that fall into the cell. In this visualization of the SOM, we use linear color interpolation
to differentiate the cluster smoothly. The main reason for choosing this visualization
technique is to present a smooth transition from one cluster to another. As mentioned
before, the white color corresponds to the absence of data items in the cells. This indicates
the largest difference between clusters. A comparison of the SOMs presented in Fig. 5
reveals that by using our proposed approach, some data items at the bottom of the SOM
have been assigned to the same group, although this is not the case. At the bottom of
Fig. 5(a), there are some cells of the SOM where data items colored red and green fall
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(a) (b)

Figure 6. The 6 × 6 SOMs obtained using the iris dataset: (a) visualized by u-matrix (without label colors) in
Orange Data Mining tool; (b) visualized by the proposed approach with correlation distance and choosing two
clusters.

into the same cell. By using our proposed approach (Fig. 5(b)), these data items are
assigned to the same cluster. The main reason is that the proposed approach tries to form
the desired number of clusters.

Suppose we analyze the iris dataset without labels. In this case (Fig. 6(a)), we see only
one-color circles. Based on the u-matrix visualization, it could determine two clusters:
one in the top-left corner and the other comprising the remaining data, separated from
the former by dark cells. The results obtained by our proposed approach are shown in
Fig. 6(b), with a choice of two clusters. This visualization technique reveals a predefined
number of clusters, regardless of whether labeled or unlabeled data are analyzed.

5 Experimental investigation

To assess the performance of the proposed approach, labeled datasets with different char-
acteristics were chosen (see Subsection 5.1). To evaluate the clustering results, the ob-
tained clusters were compared with class labels of the original data. During the experi-
mental investigation, the different similarity distances, described in Subsection 3.2, were
used in the proposed approach to obtain the clusters. Furthermore, the results obtained
by the proposed approach were compared with those obtained by k-means and hierarchi-
cal clustering algorithms (see Subsection 5.2). In this investigation, the influence of the
k-means and the hierarchical clustering parameters has not been analyzed. In the k-means
algorithm, the random center initialization is used. In the case of hierarchical clustering,
the Euclidean distance and average linkage parameters are used.

5.1 Datasets analyzed

The experimental investigation was carried out using four labeled datasets. These datasets
were selected to cover a range of different characteristics, including different numbers
of classes, numbers of attributes, sizes of datasets, and types of attributes (such as real
numbers, integers, categorical, and text).

It is important to remember that data labels are not used in clustering algorithms. Our
experimental investigation assumes that the data items assigned to the same class have
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Table 1. Characteristics of the datasets analyzed

Number of data: Description
Items; attributes; classes

Dataset: Iris [7]

150; 4; 3 The iris dataset, as the most popular dataset from the UC Irvine Machine Learning
Repository, is widely used to illustrate various approaches. The dataset size is small,
the attributes are real numbers, and the dataset is class-balanced. Many studies have
shown that one class of the dataset is always separated from the others. Using this
dataset in a classification task yields an accuracy of approximately 98–100%.

Dataset: Glass [9]
219; 9; 6 The glass dataset is unbalanced with real attributes. Using the dataset in a classification

task, the accuracy is around 72–80%, depending on the classification model. This
variability in accuracy indicates that the dataset has a significant overlap between the
different classes, suggesting that the clustering results obtained may also be ambiguous.

Dataset: Mushrooms [32]
8416; 22; 2 The mushroom dataset, the largest selected for our research, is distinct due to it having

categorical attributes. These attributes were first converted into numerical values using
a label encoding method. The dataset differs from the iris and glass datasets in that the
attributes usually acquire just a few values that are not significantly different from each
other. When using this dataset to solve a classification task, the classification accuracy
is approximately 93–100%.

Dataset: Elections [31]
6444; 382; 2 The election dataset consists of short text data collected from Twitter during the 2016

US presidential election. This textual dataset was converted into document vectors
using the multilanguage BERT transformers model, resulting in 384 variables per
document. Compared to the other datasets analyzed, this dataset is larger in terms
of both the number of data items and the number of attributes. When using this dataset
for classification tasks, an accuracy of around 80–90% is typically achieved.

to form a cluster. In this case, the data labels are only used to calculate how many data
items are correctly assigned to the right clusters. As mentioned before, the classification
tasks are not suitable when the unlabeled datasets are analyzed, therefore, in this case, the
data clustering is performed. Table 1 provides the characteristics and descriptions of the
selected datasets.

5.2 Validation of experimental results

Each analyzed dataset was clustered using three algorithms into as many clusters as the
number of classes in the original dataset. In an experimental investigation, the results of
the proposed approach were compared to those of the k-means and hierarchical clustering
algorithms, as these algorithms allow the selection of the desired number of clusters. To
evaluate the performance of each algorithm, the ratio was calculated for each class by
dividing the number of data items allocated to the respective cluster by the total number
of data items in that class. The main aim of the evaluation was to find whether the obtained
clusters using the algorithms correspond to the true classes of the data analyzed. To
explain the validation of the experimental results, a simple example is presented. Suppose
we have a subset of the iris dataset, where five data items of each different classes, Iris
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(a) (b)

Figure 7. The 6× 6 SOMs obtained using a subset of the iris dataset: (a) visualized (using label colors) in the
Orange Data Mining tool; (b) visualized by the proposed approach with correlation distance and choosing three
clusters.

Table 2. Evaluation of the results of clustering the subset of the iris dataset
obtained using the proposed approach.

Similarity distance Ratio for Ratio for Ratio for Overall ratio
Class 1 Class 2 Class 3

Correlation distance 5/5 (1) 4/5 (0.8) 5/5 (1) 14/15 (0.93)
Cosine distance 5/5 (1) 5/5 (1) 5/5 (1) 15/15 (1)
Euclidean distance 5/5 (1) 4/5 (0.8) 5/5 (1) 14/15 (0.93)
Jaccard distance 5/5 (1) 2/5 (0.4) 3/5 (0.6) 10/15 (0.67)
Spearman distance 5/5 (1) 5/5 (1) 1/5 (0.2) 11/15 (0.73)

Setosa (Class 1), Iris Versicolar (Class 2), and Iris Virginica (Class 3), are randomly
selected. First, the SOM has been trained and visualized using the Orange Data Mining
tool (see Fig. 7(a)). The obtained weights of the SOM have been saved and used in
our proposed approach to determine cluster boundaries. To evaluate the quality of the
proposed approach, the desired number of clusters C has to be chosen as 3 since data
from three classes are analyzed. To assess the quality of the proposed method, the desired
number of clusters has to be chosen as 3, since data from three classes are analyzed.
The SOM visualized by the proposed approach using the correlation distance when the
clusters are formed is presented in Fig. 7(b).

We can see that there is only one data item mismatch in the obtained cluster compared
to the original dataset class. Fig. 7(a) shows a red circle in the top right corner of the SOM,
while Fig. 7(b) shows a yellow cell in the same place, indicating a different cluster from
the one in Fig. 7(a). The strength of the proposed approach lies in its flexibility to employ
different similarity distances in cluster formation, thereby enabling the selection of the
most appropriate one for the problem to be solved. The clustering results using various
similarity distances are presented in Fig. 8. We can see that, using the cosine similarity
distance, the clusters obtained by the proposed approach correspond to all the true classes
of the dataset, as presented in Fig. 7(a). Additionally, the ratio for each class is calculated
and presented in Table 2. The results show that the usage of the cosine distance provides
a perfect match of clusters to classes.

The evaluation of clustering results using the whole iris dataset is summarized in
Table 3. As we can see, almost every clustering algorithm accurately detects the cluster
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(a) Cosine distance (b) Euclidean distance

(c) Jaccard distance (d) Spearman distance

Figure 8. The 6 × 6 SOMs obtained using the subset of the iris dataset, visualized by the proposed approach
with different similarity distances and choosing three clusters.

Table 3. Evaluation of the results of clustering the iris dataset.

Algorithm/Distance Ratio for Class 1 Ratio for Class 2 Ratio for Class 3 Overall ratio
k-means clustering 0/50 (1) 48/50 (0.96) 36/50 (0.72) 134/150 (0.89)
Hierarchical clustering 0/50 (1) 0/50 (1) 2/50 (0.04) 102/150 (0.68)
Approach proposed (Euclidean) 34/50 (0.68) 0/50 (0) 50/50 (1) 84/150 (0.56)
Approach proposed (Cosine) 0/50 (1) 29/50 (0.58) 49/50 (0.98) 128/150 (0.85)
Approach proposed (Correlation) 0/50 (1) 48/50 (0.96) 48/50 (0.96) 146/150 (0.97)
Approach proposed (Jaccard) 0/50 (1) 9/50 (0.18) 6/50 (0.12) 65/150 (0.43)
Approach proposed (Spearman) Three clusters have not been detected (c = 2)

corresponding to the first class, while other clusters are detected differently. In the case of
the proposed approach, the best results are obtained using the correlation distance as the
similarity measure between SOM cells with an overall ratio of 0.97, and only four cluster
and class mismatches were obtained. The worst results are obtained when employing
the Euclidean distance. The results of the overall ratio obtained using the cosine distance
are also encouraging and equal to 0.85. When using Spearman distance, the proposed
approach found only two clusters, so ratios were not calculated. Clustering using the k-
means algorithm also resulted in a high ratio of 0.89. The hierarchical clustering has an
overall ratio of 0.68, and the main reason why the third class was not correctly detected
is that it was similar to the second class. The SOM visualization using the correlation
distance as a similarity distance is depicted in Fig. 5. As we can see, the clusters obtained
by our proposed approach correspond to the data classes (see Fig. 5(b)) marked in dif-
ferent colors in the SOM visualized by the Orange Data Mining tool (see Fig. 5(a)). It is
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(a) (b)

Figure 9. The 7× 7 SOMs obtained using the glass dataset: (a) Orange Data Mining tool, SOM visualized by
u-matrix; (b) visualized by the proposed approach with cosine distance and choosing six clusters.

Table 4. Evaluation of the results of clustering the glass dataset.

Algorithm/Distance Ratio for Ratio for Ratio for Ratio for Ratio for Ratio for Overall ratio
Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

k-means clustering 48/70 59/76 3/17 7/13 0/9 27/29 144/219
(0.69) (0.78) (0.18) (0.53) (0) (0.93) (0.67)

Hierarchical clustering 70/70 1/76 0/17 2/13 1/9 2/29 76/219
(1) (0.01) (0) (0.15) (0.11) (0.06) (0.35)

Approach proposed (Euclidean) Six clusters have not been detected (c = 4)
Approach proposed (Cosine) 43/70 16/76 3/17 8/13 0/9 22/29 92/219

(0.61) (0.21) (0.18) (0.62) (0) (0.76) (0.43)
Approach proposed (Correlation) 43/70 16/76 3/17 8/13 0/9 22/29 92/219

(0.61) (0.21) (0.18) (0.62) (0) (0.76) (0.43)
Approach proposed (Jaccard) Six clusters have not been detected (c = 5)
Approach proposed (Spearman) 32/70 7/76 3/17 8/13 0/9 22/29 72/219

(0.46) (0.09) (0.18) (0.62) (0) (0.76) (0.34)

necessary to mention here again that our algorithm does not require labeled data, while
the SOM visualization using the Orange Data Mining tool needs to provide labeled data.

When analyzing the glass dataset, the highest clustering performance was achieved
using the k-means algorithm, with an overall ratio of 0.67 (see Table 4). As mentioned,
this dataset is unbalanced, and even for classification tasks the accuracy is usually not
very high. Using the SOM with Jaccard and Euclidean distances did not detect the desired
number of clusters. Specifically, the Jaccard distance resulted in the dataset being divided
into five clusters, whereas the utilization of the Euclidean distance led to its division into
four clusters. The lowest rates were obtained using hierarchical clustering and the pro-
posed approach with Spearman distance, each yielding 0.35 and 0.34, respectively. Both
cosine distance and correlation distance produced identical cluster detection ratios of 0.43.

The SOM visualization obtained by applying the proposed approach to the glass
dataset is illustrated in Fig. 9. As we can see in the visualization obtained with the Orange
Data Mining tool (see Fig. 9(a)), the data items of different classes overlap and are mostly
spread over the whole SOM. It is difficult to unambiguously detect clusters and their
boundaries. The majority of data items of the same class are placed in the bottom left
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Table 5. Evaluation of the results of clustering the mushroom dataset.

Algorithm/Distance Ratio for Class Ratio for Class 2 Overall ratio
k-means clustering 4264/4488 (0.95) 1757/3928 (0.45) 6021/8416 (0.71)
Hierarchical clustering 4488/4488 (1) 29/3928 (0) 4517/8416 (0.53)
Approach proposed (Euclidean) 4216/4488 (0.94) 2006/3928 (0.51) 6222/8416 (0.73)
Approach proposed (Cosine) 2279/4488 (0.51) 3242/3928 (0.82) 5521/8416 (0.65)
Approach proposed (Correlation) 2231/4488 (0.49) 3274/3928 (0.83) 5505/8416 (0.65)
Approach proposed (Jaccard) 3896/4488 (0.86) 2602/3928 (0.66) 6498/8416 (0.77)
Approach proposed (Spearman) 2983/4488 (0.66) 2960/3928 (0.75) 5943/8416 (0.70)

corner of the SOM. Also, there are many data items whose classes are represented by the
purple color and are placed in the bottom right corner. Six clusters are obtained using the
proposed approach (Fig. 9(b)), where the biggest cluster starts (dark blue color) from the
middle right side (cell with the number 11) of the SOM and is arranged from the bottom
right corner to the top right corner of the SOM. One of the big clusters (blue color) is
placed in the bottom left corner of the SOM, and another, in the top left side (orange
color). The cluster with a smaller number of data items is placed in the top middle side of
the SOM (light blue color). The last cluster is split into two parts, and the majority side
of the cluster is arranged in the middle of the SOM.

In the analysis of the mushroom dataset (see Table 5), the highest clustering perfor-
mance with a ratio of 0.77 was obtained by applying the Jaccard distance in the proposed
approach. Slightly lower ratios of 0.73 were obtained using the Euclidean distance and of
0.70 using the Spearman distance. The clustering outcomes from the k-means algorithm
were also comparable, achieving a ratio of 0.71. The lowest ratios of 0.65 were obtained
using the cosine distance and the correlation distance, but they were not too different
from the highest ratio obtained. In the cases of SOM using Euclidean distance and k-
means clustering, we can see that almost all data items in the first cluster correspond to
the original class, while in the second cluster just around half of the data items of the
second class. This means that many data items from the second class were assigned to
the first cluster. Not only the ratio, but also the distribution of the class ratio needs to be
observed, the lowest ratio was obtained with hierarchical clustering (0.53). The majority
of data items formed one cluster, and only 29 items formed a second cluster.

The visualization results in Fig. 10(a) show that the data items from one class (repre-
sented in blue) are more distributed on the right side of the SOM, while the items from
the second class (shown in red) are scattered from the top to the bottom of the SOM.
Notably, a subset of data items from the first class can be found in the top left corner of
the SOM. A comparison of the visualization results derived from the Orange Data Mining
tool (Fig. 10(a)) and those produced by the proposed approach shows (Fig. 10(b)) that the
obtained clusters correspond to the data classes. The data items in red in the top middle
side of the SOM in Fig. 10(a), have been assigned to a different cluster than their original
class using the proposed approach. The same applies to some of the blue-colored data
items in the middle of the SOM that have fallen in opposite cluster.

The analysis of the election dataset shows (see Table 6) that almost all similarity
measures used in the proposed approach give identical results. The ratios for the first and
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(a) (b)

Figure 10. The 10 × 10 SOMs obtained using the mushrooms dataset: (a) Orange Data Mining tool, SOM
visualized by u-matrix; (b) visualized by the proposed approach with Jaccard distance and choosing two clusters.

(a) (b)

Figure 11. The 10×10 SOMs obtained using the election dataset: (a) Orange Data Mining tool, SOM visualized
by u-matrix; (b) visualized by the proposed approach with cosine distance and choosing two clusters.

second classes are the same, and the overall ratio is 0.64, except for the use of the Jaccard
similarity distance (0.55). The main reason for this may be that the transformation of
the text data into vectors using the multilanguage BERT transformer model results in
similar values for the acquired attributes. Therefore, the calculated similarity distances
become almost the same and do not have a significant influence on the proposed approach.
The k-means clustering yielded a lower value of the overall ratio compared to the SOM
approaches and is equal to 0.44. The slightly higher value of the overall ratio compared
to the k-means results was obtained using hierarchical clustering at 0.50, but in this case,
the majority of the data was grouped into one large cluster, with only one item forming
a separate cluster. So, the ratio indicates that the results of clustering are worst. The visual
results of the SOM are presented in Fig. 11. The majority of the first-class (blue) data
items are placed in the middle of the SOM. The second-class data items are distributed
at the top and bottom of the SOM. Even if the dataset labels are presented in the SOM
(Fig. 11(a)) it is hard to say exactly where the boundaries of each cluster are. Our proposed
approach split data into two parts (Fig. 11(b)) by taking the top data in the SOM into
one cluster (yellow) and going from the middle to bottom another cluster was formed
(blue).
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Table 6. Evaluation of the results of clustering the election dataset.

Algorithm/Distance Ratio for Class Ratio for Class 2 Overall ratio
k-means clustering 1828/3226 (0.57) 1039/3218 (0.32) 2867/6444 (0.44)
Hierarchical clustering 3226/3226 (1) 1/3218 (0) 3227/6444 (0.50)
Approach proposed (Euclidean) 2631/3226 (0.82) 1524/3218 (0.47) 3227/6444 (0.64)
Approach proposed (Cosine) 2631/3226 (0.82) 1524/3218 (0.47) 3227/6444 (0.64)
Approach proposed (Correlation) 2631/3226 (0.82) 1524/3218 (0.47) 3227/6444 (0.64)
Approach proposed (Jaccard) 1545/3226 (0.48) 2019/3218 (0.63) 3573/6444 (0.55)
Approach proposed (Spearman) 2631/3226 (0.82) 1524/3218 (0.47) 227/6444 (0.64)

6 Discussion

The comparative experimental investigation has been performed using four datasets, and
the usability of the proposed approach to determine clusters in the visualization of the
SOM has been experimentally proved. We must admit that the results can vary using the
different datasets, learning parameters of k-means, hierarchical clustering, and SOM. It
is not possible to take into account all possible options. The datasets have been chosen
with different characteristics, but in the future, more datasets could be investigated. Also,
more attention could be paid to the influence of learning parameters on clustering results.
Our obtained results cannot be compared to other approaches reviewed in related works,
because implementations of all the proposed approaches are not publicly available. In ad-
dition, many of them use the labeled data, and clusters are formed according to the known
labels. The main problem with evaluating the clustering results is that there are not many
well-known measures to evaluate the quality of the clusters, and usually, the clustering
results are evaluated manually by the researcher. In this way, SOMs have the advantage
compared to other clustering algorithms. During the experimental investigation, it was
observed that the similarity measures used in the proposed approach have an influence on
the clustering results.

7 Conclusion

Clustering unlabeled data is a complex task because it is difficult to detect groups unam-
biguously without knowing the context and output of the analyzed data. There exist many
clustering algorithms, so it is also a dilemma of which algorithm needs to be selected and
whether the results obtained are trustworthy. Unlike classification tasks, data clustering
presents more challenges in many aspects. Nevertheless, clustering algorithms are highly
used in the scientific area, and continuous improvements in data clustering have been
developed. The main aim of our proposed approach is to help determine the desired
number of clusters in the visualization of SOMs, which has not been implemented in
related work. In addition, the boundaries of the clusters are determined and presented in
the SOM.

The performance of the proposed approach to determine the clusters in the visual-
ization of SOMs has been experimentally investigated. The proposed approach is based
on the calculation of the similarity distance between the data in cells of the SOM, so
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various combinations of distances and the SOM have been investigated. The effectiveness
of the approach is hard to estimate because there are no measures that unequivocally
could determine whether the clusters are formed well or not. Therefore, the number of
correctly assigned labeled data to the different clusters has been calculated manually. The
results have been validated using four datasets with different characteristics. Comparative
analysis has shown that using the cosine distance and correlation distance the performance
is the highest because, in all cases of analyzed datasets, the desired number of clusters
has been found. In some cases, the value of the ratio was lower compared to the results
of other similarity measures, but at the same time, the ratio of each class was distributed,
and there was no dominant cluster. Visualizing the SOM using these distances showed
that the visualization results of the Orange Data Mining tool using the u-matrix have been
improved, and the boundaries of the clusters are formed more clearly with the desired
number of clusters. Comparing results of hierarchical and k-means clustering has shown
that in many cases, only k-means clustering forms the clusters in the high ratio, but this
algorithm does not have visualization to observe the obtained clusters visually.

In the future, deeper research is needed using more datasets to prove the performance
of the proposed approach compared to other clustering algorithms. In this paper, we
used well-known datasets to show the possibilities of the proposed approach, but the
experiments could be carried out with more significant data in today’s data analysis. Also,
the influence of the training parameters on the results of the proposed approach could be
analyzed, for example, focusing on the size of the SOM and different topologies of the
SOM. Additionally, training parameters could also improve the results.
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