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Abstract. This article explores the novel approach to addressing the intra/inter-layer synchro-
nization challenges in stochastic multi-layer networks (SMLNs). First, considering the influence of
time delay in control, an event-triggered delayed impulsive control (ETDIC) strategy is developed,
where the impulsive instant is determined by the predesigned event-triggered mechanism.
Moreover, by introducing piecewise auxiliary functions, it effectively excludes Zeno behavior
within the ETDIC framework. The study then derives sufficient conditions for ensuring intra- and
inter-layer synchronization, leveraging the Lyapunov method and rigorous mathematical analysis.
Finally, theoretical results are validated through numerical simulations.

Keywords: stochastic multi-layer networks, intra-layer synchronization, inter-layer synchroniza-
tion, event-triggered delayed impulsive control.

1 Introduction

In recent years, multi-layer networks (MLNs) have attracted extensive scholarly attention
due to their broad applications in power systems, biology, and related fields [13, 16, 30].
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Synchronization, a critical property of MLNs, plays a vital role in parameter identifica-
tion, image processing, and secure communication. Significant research has addressed
synchronization in MLNs [1, 26], which can be categorized into three types: complete
synchronization [4, 29], intra-layer synchronization [10, 23], and inter-layer synchroniza-
tion [14, 15]. Intra-layer synchronization coordinates nodes with heterogeneous states
within individual layers, while inter-layer synchronization governs cross-layer informa-
tion transmission and communication, critically influencing network-wide learning and
parameter updating processes.

Previous synchronization studies often presume noise-free MLNs models, an assump-
tion inconsistent with real-world conditions. Stochastic disturbances ubiquitous in net-
work environments due to unpredictable events significantly impair information trans-
mission in multi-layer networks. Examples include social network turbulence, random
epidemics in biological systems, and stochastic resonances in chemical processes [7, 12,
22]. While functionally characterizing such interference remains challenging, substantial
research now addresses stochastic effects in MLNs [17, 26]. For instance, Zhang et al.
used graph theory to analyze the topology identification of SMLNs [26], while Ren et al.
investigated exponential synchronization of complex-valued SMLNs through discontinu-
ous control [17]. This underscores the importance and intrigue of analyzing SMLNs in
depth.

Networks typically lack spontaneous synchronization, necessitating efficient control
mechanisms to steer states toward desired trajectories. Advanced strategies proposed to
address this include event-triggered control [27], pinning control [19], intermittent control
[11], sampled-data control [28], impulsive control [3], and adaptive control [6]. Among
these, impulsive control distinguishes itself by its interference robustness, implementation
simplicity, and cost-effectiveness, attracting growing research interest. As a discrete-time
strategy, the impulsive controller activates only at specific instants to induce instantaneous
state jumps. Significant advances in impulsive control have been documented [2, 9, 18],
including Shi et al.’s work on quasi-synchronization in multi-layer neural networks [18]
and Ling et al.’s analysis of exponential synchronization in delayed neural networks
[9].

However, existing studies overlook the time delays inherent in pulse generation during
impulsive control. Constraints in information transmission speed and process complexity
cause such delays to severely degrade system response and performance. For instance, in
residential smart lighting systems, activating a fixture via voice command or mobile app
initiates a pulse signal. Inherent communication or processing delays then cause latency
between pulse triggering and action execution. Consequently, incorporating time-delay
effects, precisely delayed impulsive control is essential when designing impulsive control
strategies.

While numerous articles have explored delayed impulsive control [8,31], the majority
of this work has focused on time-triggered impulsive control. This approach operates
within predefined time intervals, restricting events or actions to specific temporal bound-
aries. Missing an event necessitates waiting for the next scheduled instance, highlighting
the inherent conservatism of time-triggered mechanisms. To overcome these constraints,
ETDIC was proposed [21, 24]. Specifically, Wang et al. investigated synchronization

Nonlinear Anal. Model. Control, 30(6):1186–1210, 2025

https://doi.org/10.15388/namc.2025.30.43839


1188 H. Liu et al.

problems for complex networks under ETDIC, demonstrating its ability to trigger control
actions solely based on system state deviations or the fulfillment of specific conditions
[21]. In contrast to time-triggered impulsive control, ETDIC optimizes the utilization
of computational and communication resources, enhancing system real-time capabilities
and overall performance. Yang et al. further analyzed the synchronization challenges of
stochastic complex networks under ETDIC, demonstrating enhanced resilience against
external disturbances and noise [24].

Based on the above analysis and observation, we study intra/inter-layer synchro-
nization problem of SMLNs under ETDIC. The main contributions of this paper are as
follows:

(i) From the perspective of model, we introduce a novel complex network model that
incorporates both intra- and inter-layer couplings, driven by Brownian motion.

(ii) From the perspective of control methods, two new delayed impulsive control
schemes based on Lyapunov functions are proposed, where impulsive instants
are jointly determined by a preset event-triggered mechanism and a predefined
impulsive interval.

(iii) From the perspective of content, by leveraging auxiliary functions to eliminate
the influence of random disturbances we cleverly eliminate Zeno behavior. Some
new intra/inter-layer synchronization criteria are obtained using stochastic anal-
ysis technique and Lyapunov method.

The subsequent sections of this paper are structured as follows: Section 2 provides
an overview of SMLNs and introduces the necessary foundational concepts. In Sec-
tion 3, sufficient conditions are presented for SMLNs to prevent Zeno behavior, along
with discussions on intra-layer synchronization and inter-layer synchronization. Section
4 demonstrates the analytical process through numerical simulations. Finally, Section 5
elaborates on the conclusions drawn from the study.

Notations. R and R+ are the sets of real numbers and positive real numbers, respectively.
Rn denotes the n-dimensional Euclidean space. Rn×n is the sets of n × n-dimensional
matrices. ‖·‖ stands for the Euclidean norm of a vector or matrix. Let In represent the
n-dimensional identity matrix. MT is the transpose of matrix M . trace(·) denotes the
trace operator of the matrix. λmax(·) represents the largest eigenvalue of the matrix. ⊗
is the Kronecker product. ∗ denotes the symmetric term in a symmetric matrix. Denote
(Ω,F , {Ft}t>0,P) as a complete probability space, where the filtration {Ft}t>0 satisfies
the usual conditions. Define L as the differential operator acting on Lyapunov function
V (t).

2 Preliminaries and problem description

2.1 Algebraic graph theory

Consider a multi-layer undirected graph Gr = (V, Er,Ar), where V = {υ1, . . . , υN}
denotes the vertex set, and Er ⊆ V × V indicates the undirected edge set of rth layer.
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Ar = (arij)N×N ∈ RN×N represents the adjacency matrix of Gr, where arij = arji = 1,
if there is a link between nodes i and j in rth layer, otherwise, arij = arji = 0. The degree
matrix of rth layer is defined by Or = diag(or1, o

r
2, . . . , o

r
n), o

r
i =

∑N
j=1 a

r
ij . Similarly,

D = (drk)M×M ∈ RM×M , where drk = −1, if there is a one-to-one connection between
the nodes in the rth layer and the k th layer, otherwise, drk = 0. Furthermore, let drr =
−
∑M
k=1, k 6=r drk.

2.2 Problem description

The model of SMLNs is composed of N nodes of M layer, which is depicted by

dxri (t) =

[
−Cxri (t) +Bf

(
xri (t)

)
− α

N∑
j=1

lrijHx
r
j(t)− β

M∑
k=1

drkΓx
k
i (t) + uri (t)

]
dt

+ g
(
t, xri (t)

)
dw(t), (1)

where i = 1, 2, . . . , N , r = 1, 2, . . . ,M , xri = (xri1, x
r
i2, . . . , x

r
in)

T ∈ Rn indicates the
state vector of the ith node in the kth layer. C = diag(c1, c2, . . . , cn) is a positive-definite
diagonal matrix. B ∈ Rn×n is the connection weight matrix. f(·) is the nonlinear func-
tion. Constants α and β are the intra-layer and inter-layer coupling strengths, respectively.
H ∈ Rn×n and Γ ∈ Rn×n are the candidates for inner coupling symmetric matrices that
describe the coupling between state components of nodes. The Laplacian matrix of rth
layer Lr = (lrij)N×N ∈ RN×N is defined as Lr = Or − Ar. uri (t) is the control input
of the ith node in the rth layer to be designed. g(·) denotes the noise intensity function.
w(t) is a standard Brownian motion defined on (Ω,F , {Ft}t>0,P).

Remark 1. Previous studies [6, 11, 19, 28] did not focus on the inter-layer coupling of
SMLNs itself, whereas the nonlinear inter-layer coupling of SMLNs was explored in [4].
Although [22] addresses inter-layer coupling in MLNs, it assumes the inter-layer internal
coupling matrix is identical to the intra-layer internal coupling matrix. Building upon
insights from [4, 22], the SMLNs model proposed in this paper incorporates a distinct
inter-layer coupling mechanism, increasing the model’s versatility.

Remark 2. Complex industrial systems, such as smart grids and biological neural net-
works, commonly exhibit stochastic disturbances, multi-layer coupling structures, and
control delays that severely constrain coordination efficiency. Resolving intra-layer syn-
chronization ensures behavioral consistency among homogeneous functional units (e.g.,
voltage synchronization in generator clusters within power grids), thereby preventing
localized instabilities from triggering cascading failures. Achieving inter-layer synchro-
nization guarantees cross-layer coordination efficiency (e.g., dynamic power matching
between transmission and distribution grids), enhancing overall system resilience. The
ETDIC framework has been validated in critical domains including smart city infrastruc-
ture and industrial internet, providing theoretical foundations and practical paradigms for
constructing interference-resistant, cost-effective coordinated control systems.
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Lemma 1. (See [5].) For any positive-definite matrix Π ∈ Rn×n and x, y ∈ Rn, the
following inequality holds:

2xTy 6 xTΠx+ yTΠ−1y.

Lemma 2 [Schur complement]. (See [32].) The linear matrix inequality[
S11 S12

ST
12 S22

]
< 0

is equivalent to any of the following conditions:

(i) S22 < 0 and S11 − S12S
−1
22 S

T
12 < 0,

(ii) S11 < 0 and S22 − ST
12S
−1
11 S12 < 0.

Here ST
11 = S11 and ST

22 = S22.

Assumption 1. . For any x, y ∈ Rn, there exists a positive constant q such that nonlinear
function f(·) satisfies ∥∥f(x)− f(y)∥∥ 6 q‖x− y‖.

Assumption 2. For any x, y ∈ Rn, there exists a positive constant µ such that

trace
((
g(t, x)− g(t, y)

)T(
g(t, x)− g(t, y)

))
6 µ(x− y)T(x− y).

3 Main results

3.1 Intra-layer synchronization

In this section, intra-layer synchronization is researched. Consider the tracking target
sr(t) of all nodes in the rth layer of network (1) as follows:

dsr(t) =

[
−Csr(t) +Bf

(
sr(t)

)
− β

M∑
k=1

drkΓs
k(t)

]
dt+ g

(
t, sr(t)

)
dw(t). (2)

Define synchronization error eri (t) = xri (t) − sr(t). From networks (1) and (2) the
synchronization error system is

deri (t) =

[
−Ceri (t) +Bf

(
eri (t)

)
− α

N∑
j=1

lrijHe
r
j(t)− β

M∑
k=1

drkΓe
k
i (t) + uri (t)

]
dt

+ g
(
t, eri (t)

)
dw(t), (3)

where f(eri (·)) = f(xri (·))− f(sr(·)), g(eri (·)) = g(xri (·))− g(sr(·)).
For achieving intra-layer synchronization of networks (1), the ETDIC scheme is char-

acterized as

uri (t) =

∞∑
κ=1

(
Keri (t− τκ)− eri (t)

)
δ
(
t− trκ

)
, κ ∈ Z+, (4)
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Figure 1. Triggered principle of event-triggered mechanism (5).

where matrix K ∈ Rn×n is impulsive control gain, and δ(·) is the Dirac delta function.
τκ is the time delay in impulsive control satisfying τκ ∈ [0, τ ].

trκ = min
{
t∗rκ , t

r
κ−1 +∆

}
, (5)

t∗rκ = inf
{
t > trκ−1: EV r(t) > exp(aκ)EV r

(
trκ−1

)}
, (6)

where EV r(t) = E
∑N
i=1(e

r
i (t))

Teri (t) = E(er(t))Ter(t), trκ denotes the κth impulsive
instant of all node in the rth layer, positive parameter ∆ represents the predefined impul-
sive interval, supposing that ∆ > τ , aκ satisfying

∑κ
i=1 ai →∞ as κ→∞.

Remark 3. The design of ETM (6) is mainly based on the Lyapunov function of the
system (usually used to describe the energy state of the system). The event will only be
triggered when the energy V r(t) of the system exceeds the set energy threshold exp(aκ)×
V r(trκ−1). This on-demand triggering method not only accelerates the convergence speed
of the system but also reduces resource waste and improves resource utilization efficiency.

Remark 4. In event-triggered control research, it is customary to demand a positive time
interval between adjacent triggering events to prevent the Zeno phenomenon. To better
comprehend ETDIC (4) with (5), we present an illustration in Fig. 1. As depicted, if
event (6) is triggered at t∗rκ within the time interval [trκ−1, t

r
κ−1+∆), the impulse occurs

at t∗rκ . If event (6) is not triggered within the interval [trκ−1, t
r
κ−1+∆), the impulse arises

at trκ−1+∆.

Remark 5. The ETDIC (4) with (5) introduces a crucial enhancement over traditional
event-triggered impulsive controllers by incorporating considerations for time delays dur-
ing pulse generation. To demonstrate its practicality, envision a scenario with a smart
lighting and outlet system for residential applications. When a user activates a light or
socket via voice command or mobile app, the system generates a pulse signal. However,
inherent network latency or device response times introduce delays between the trigger-
ing pulse and the actual execution of the action. When a user initiates a light switch
through a mobile app, it may take several milliseconds or more for the system to re-
ceive and process the command due to network latency or communication issues. Despite
the widespread adoption of event-triggered control strategies, such delays significantly
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impact system response speed and performance. Our controller addresses this challenge
by accounting for these delays, ensuring optimized system performance and enhanced
user experience in practical applications.

Remark 6. The fundamental distinction between ETIC and ETIC with predefined impul-
sive intervals (ETIC-PII) lies in their triggering mechanisms and resulting pulse character-
istics. ETPC operates purely event-driven: it continuously monitors a triggering condition
and instantly applies a pulse at any arbitrary continuous time once the condition is met.
This results in completely unpredictable pulse timing and highly variable inter-pulse inter-
vals, dictated solely by system dynamics and the trigger threshold, with no occurrence of
“void pulses”. However, implementation typically requires complex continuous or high-
frequency monitoring. Conversely, ETIC-PII employs a hybrid mechanism: it checks the
triggering condition at fixed, predetermined time points, applying a pulse only at these
scheduled times if the condition is satisfied (otherwise, generating a “void pulse” or
“skip”). Consequently, pulses occur exclusively at predefined discrete instants with actual
inter-pulse intervals being integer multiples of the fixed sampling period ∆ (enabled
by skips), thereby maintaining a highly predictable temporal framework. This periodic
sampling mechanism generally entails lower implementation complexity. In summary,
ETPC seeks to maximize resource efficiency by minimizing total pulses at any time, while
EBPC-PPI focuses on reducing unnecessary pulse executions within a fixed, predictable
temporal structure.

Remark 7. While purely ETDIC theoretically offers the potential for maximal resource
efficiency, ETIC-PII proves more appealing for the particular yet important application
scenario of intra/inter-layer synchronization analysis. This advantage stems from the dis-
tinct benefits offered by its fixed-time framework: analytical tractability, enhanced co-
ordination, predictable timing, and efficient resource scheduling. ETIC-PII effectively
combines the resource-saving merits of event triggering with the temporal structure and
predictability of time-triggered approaches. Consequently, it provides a more powerful
and practical tool for the theoretical analysis and design of complex network synchroniza-
tion problems. Its core strength lies in transforming the highly complex and challenging
problem of asynchronous event-driven synchronization into a framework that can be
modeled and analyzed on a regular time grid.

Definition 1. Networks (1) and (2) are said to achieve intra-layer synchronization under
ETDIC (4) with (5) if limt→∞ ‖xri (t)− sr(t)‖ = 0, i = 1, 2, . . . , N , r = 1, 2, . . . ,M .

Thus, combined with controller (4) with (5), error system (3) can be written as

deri (t) =

[
−Ceri (t) +Bf

(
eri (t)

)
− α

N∑
j=1

lrijHe
r
j(t)− β

M∑
k=1

drkΓe
k
i (t)

]
dt

+ g
(
t, eri (t)

)
dw(t), t 6= trκ,

eri (t) = Keri (t
− − τκ), t = trκ, .

(7)

where e(t+) = e(t), i.e., the solutions of system (7) are right-continuous at each discrete
instant trκ.
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Theorem 1. Assume that there exist positive constants σ1 and aκ satisfying aκ >
(1 + σ1)τ for all κ ∈ Z+ and a locally Lipschitz function V : Rn → R+ satisfying

ELV r(t) 6 σ1EV r(t), t ∈
[
trκ−1, t

r
κ

)
. (8)

Then system (1) can avoid Zeno behavior under event-triggered mechanism (5). More-
over, the impulse time sequence {trκ} satisfies

trκ − trκ−1 > min

{
aκ

1 + σ1
, ∆

}
∀κ ∈ Z+.

Proof. Based on the definition of the event-triggered mechanism (5), it can be derived
that the impulses will occur infinitely, so one can assume that the impulsive instants are
tr1 < tr2 < · · · < trκ < · · · .

In the following, we will show that trκ → ∞ as κ → ∞ to exclude Zeno behavior.
There are two possibilities for every actual impulsive instant. Firstly, if trκ = trκ−1 +∆,
one has

trκ − trκ−1 = ∆,

which naturally excludes the Zeno behavior.
Secondly, if trκ = t∗rκ , we construct an auxiliary function Ur(t) = exp(t)EV r(t),

t ∈ [trκ−1, t
r
κ). Calculate the upper-right Dini derivative of Ur(t). In view of condition

(8), it yields that

D+Ur(t) = exp(t) EV r(t) + exp(t) ELV r(t)
6 (1 + σ1) exp(t) EV r(t) = (1 + σ1)U

r(t). (9)

That is, trκ = t∗rκ , then it can be derived from (6) and (9) that

exp(aκ) EV r
(
trκ−1

)
6 EV r

(
tr−κ
)
= EV r

(
t∗r−κ

)
6 exp

(
(1 + σ1)

(
trκ − trκ−1

))
EV r

(
trκ−1

)
. (10)

From (10) we have that
trκ − trκ−1 >

aκ
1 + σ1

.

Thus, the following inequality always holds:

trκ − trκ−1 > min

{
aκ

1 + σ1
, ∆

}
.

Further, in view of
∑κ
i=1 ai →∞ as κ→∞, one can obtain

trκ > min

{
κ∑
i=1

ai
1 + σ1

, κ∆

}
+ tr0 →∞ as κ→∞. (11)

Thus, Zeno behavior of system (1) under event-triggered mechanism (5) is excluded.
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Remark 8. Zeno behavior occurs when an infinite number of operations take place
within a finite time frame. The presence of Zeno behavior can lead to system instability.
Therefore, it is important to demonstrate the absence of Zeno behavior for ensuring
the effectiveness of the ETM before assessing system stability. The paper introduces
Theorem 1, defining the ETM separately for nodes in each layer using Lyapunov function,
and establishes conditions for system (1) to prevent Zeno behavior. Unlike the literature
[20, 24, 25], the exclusion of Zeno behaviour in this paper is divided into two cases.
The first is the case where there is no trigger event (6) within the predefined impulsive
interval∆, whose a minimum positive lower bound is the predefined impulsive interval∆.
The other case is the case where the trigger event (6) is triggered and a minimum positive
lower bound is found to be aκ/(1+σ1). The predefined impulsive interval∆ in the control
strategy ensures that the system is forced to be controlled, which has the advantage of
reduced resource waste and faster convergence time.

Theorem 2. Based on Assumptions 1 and 2, networks (1) and (2) can reach intra-
layer synchronization under ETDIC (4) with (5) if there exist positive definite matrix
Q ∈ Rn×n, positive diagonal matrix Π1 ∈ Rn×n, and positive scalars d, τ , τκ η1,
∆, and aκ with aκ > (1 + σ1)τ such that

IN ⊗
[(
−2C − η1In +BΠ−11 BT +QTΠ1Q+ µIn

)]
− 2α

(
Lr ⊗H

)
6 0,

(12)

[
− exp (−d)In KT

∗ −In

]
6 0, (13)

∆ < inf
κ∈Z+

{
τκ +

d

1 + σ1

}
, (14)

where

σ1 = η1 + βλmax(Γ )Md∗, d∗ = max
16r,k6M

{drk}.

Proof. Consider the following Lyapunov function:

V (t) = eT(t)e(t) =

M∑
r=1

V r(t) =

M∑
r=1

N∑
i=1

(
eri (t)

)T
eri (t).

On the one hand, for all t ∈ [trκ, t
r
κ+1) and for all κ ∈ Z+, it always holds that

LV r(t)

= 2

N∑
i=1

(eri (t))
T

[
−Ceri (t) +Bf

(
eri (t)

)
− α

N∑
j=1

lrijHe
r
j(t)− β

M∑
k=1

drkΓe
k
i (t)

]

+

N∑
i=1

trace
(
gT
(
t, eri (t)

)
g
(
t, eri (t)

))
. (15)
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Based on Assumption 1 and Lemma 1, one can obtain

2

N∑
i=1

(
eri (t)

)T
Bf
(
eri (t)

)
6

N∑
i=1

[(
eri (t)

)T
BΠ−11 BTeri (t) + fT

(
eri (t)

)
Π1f

(
eri (t)

)]
6

N∑
i=1

(
eri (t)

)T[
BΠ−11 BT +QTΠ1Q

]
eri (t)

=
(
er(t)

)T[
BΠ−11 BT +QTΠ1Q

]
er(t). (16)

We can get the following equality about coupled term:

−2α
N∑
i=1

(
eri (t)

)T N∑
j=1

lrijHe
r
j(t) = −2α

(
er(t)

)T
(Lr ⊗H)er(t) (17)

and

−2β
N∑
i=1

(eri (t))
T

M∑
k=1

drkΓe
k
i (t)

6 βλmax(Γ )

N∑
i=1

M∑
k=1

drk
(∥∥eri (t)∥∥2 + ∥∥eki (t)∥∥2)

6 βλmax(Γ )Md∗
∥∥er(t)∥∥2. (18)

Based on Assumption 2, one has

N∑
i=1

trace
(
gT
(
t, eri (t)

)
g
(
t, eri (t)

))
6 µ

N∑
i=1

(
eri (t)

)T
eri (t) = µ

(
er(t)

)T
er(t). (19)

From (16)–(18) we have

LV r(t) =
(
er(t)

)T[
IN ⊗

(
−2C +BΠ−11 BT +QTΠ1Q+ µIn

)
− 2α(Lr ⊗H)

]
er(t) + βλmax(Γ )Md∗

∥∥er(t)∥∥2
6 η1

∥∥er(t)∥∥2 + βλmax(Γ )Md∗
∥∥er(t)∥∥2 = σ1V

r(t). (20)

According to (19), it yields

ELV (t) = E
M∑
r=1

LV r(t) 6 σ1E
M∑
r=1

V r(t) = σ1EV (t). (21)
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On the other hand, for t = trκ, it follows from (13) that

EV (trκ) = E
M∑
r=1

N∑
i=1

(
eri
(
trκ
))T

eri
(
trκ
)

= E
M∑
r=1

N∑
i=1

(
eri
(
trκ − τκ

))T
KTKeri

(
trκ − τκ

)
6 exp(−d)E

M∑
r=1

N∑
i=1

(
eri
(
trκ − τκ

))T
eri
(
trκ − τκ

)
= exp(−d)EV

(
trκ − τκ

)
. (22)

Based on Theorem 1, note that ∆ > τ , aκ > (1+ σ1)τ for all κ ∈ Z+. Then one can
obtain trκ − trκ−1 > min {τκ, τ} = τκ, which implies that

trκ − τκ > trκ−1 ∀κ ∈ Z+. (23)

From (14) there exists a sufficiently small constant ε > 0 such that

∆ 6 inf
κ∈Z+

{
(1 + σ1)τκ + d

(1 + ε)(1 + σ1)

}
< inf
κ∈Z+

{
τκ +

d

1 + σ1

}
,

by which we have

∆ 6
(1 + σ1)τκ + d

(1 + ε)(1 + σ1)
∀κ ∈ Z+.

Then from the definition of event-triggered mechanism (5) we know whether the impul-
sive instant trκ = t∗rκ or trκ = trκ−1 +∆. The following inequality always holds:

trκ − tr0 6 κ∆ 6
(1 + σ1)

∑κ
i=1 τi + κd

(1 + σ1)(1 + ε)
∀κ ∈ Z+. (24)

Thus, at the first impulsive instant tr1, one has

tr1 − tr0 6 ∆ 6
(1 + σ1)τ1 + d

(1 + σ1)(1 + ε)
. (25)

Further, it yields from (20)–(23) that

EV
(
tr1
)
6 exp(−d)EV

(
tr1 − τ1

)
6 exp

(
−d+ (1 + σ1)

(
tr1 − τ1 − tr0

))
EV
(
tr0
)
, (26)

which, together with (25), leads to

EV
(
tr1
)
6 exp

(
−ε(1 + σ1)

(
tr1 − tr0

))
EV
(
tr0
)
.
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Similarly, at the second impulsive instant tr2, by (24), one has

tr2 − tr0 6 2∆ 6
(1 + σ1)(τ1 + τ2) + 2d

(1 + σ1)(1 + ε)
.

Combining with (26), one has

EV
(
tr2
)
6 exp(−d)EV

(
tr2 − τ2

)
6 exp

(
−d+ (1 + σ1)

(
tr2 − τ2 − tr1

))
EV
(
tr1
)

6 exp
(
−2d+ (1 + σ1)

(
tr2 − τ1 − τ2 − tr0

))
EV
(
tr0
)

6 exp
(
−ε(1 + σ1)

(
tr2 − tr0

))
EV
(
tr0
)
.

By mathematical introduction, for any impulsive instant trκ, it can be finally deduced
from (24) that

EV
(
trκ
)
6 exp(−d)EV

(
trκ − τκ

)
6 exp

(
−d+ (1 + σ1)

(
trκ − τκ − trκ−1

))
EV
(
trκ−1

)
6 · · · 6 exp

(
−κd+ (1 + σ1)

(
trκ −

κ∑
i=1

τi − tr0

))
EV
(
tr0
)

6 exp
(
−ε(1 + σ1)

(
trκ − tr0

))
EV
(
tr0
)
∀κ ∈ Z+. (27)

In view of (11), when κ→∞, one has

trκ − tr0 > min

{
κ∑
i=1

ai
(1 + σ1)

, κ∆

}
→∞. (28)

From (11) and (27), for any t ∈ [trκ−1, t
r
κ),

EV (t) 6 exp
(
(1 + σ1)

(
t− trκ−1

))
EV
(
trκ−1

)
6 exp

(
∆(1 + σ1)− ε(1 + σ1)

(
trκ−1 − tr0

))
EV
(
tr0
)

6 exp

(
∆(1 + σ1)− ε(1 + σ1)min

{
κ−1∑
i=1

ai
(1 + σ1)

, (κ− 1)∆

})
EV
(
tr0
)
.

It can be derived from (28) that EV (t) → 0 as κ → ∞, which implies that networks (1)
and (2) realize the intra-layer synchronization under proposed ETDIC (4) with (5).

Remark 9. In contrast to prior works [5, 25], our article introduces a stochastic per-
turbation term and applies Itô’s formula to the Lyapunov function, which lacks normal
differentiation. We address Zeno behavior by introducing an auxiliary function, inspired
by [32], effectively resolving issues arising from the perturbation term. This method
ensures consistent positive lower bounds for inter-event times, leading to the following
conclusions.
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When the triggering parameter aκ does not vary with the impulsive instants, i.e.,
aκ = a, Theorem 1 can degenerate into the following corollary.

Corollary 1. Based on Assumptions 1 and 2, networks (1) and (2) can reach intra-layer
synchronization under ETDIC (4) with (5), while avoiding the Zeno phenomenon, if there
exist positive definite matrix Q ∈ Rn×n, positive diagonal matrix Π1 ∈ Rn×n, and
positive scalars d, τ , τκ η1, ∆, and a with a > (1 + σ1)τ such that

IN ⊗
[(
−2C − η1In +BΠ−11 BT +QTΠ1Q+ µIn

)]
− 2α

(
Lr ⊗H

)
6 0,[

− exp (−d)In KT

∗ −In

]
6 0, ∆ < inf

κ∈Z+

{
τκ +

d

1 + σ1

}
,

where

σ1 = η1 + βλmax(Γ )Md∗, d∗ = max
16r,k6M

{drk}.

Moreover, the impulse time sequence {trκ} satisfies

trκ − trκ−1 > min

{
a

1 + σ1
, ∆

}
∀κ ∈ Z+.

Remark 10. Note that for the conditions trκ−trκ−1 > min{aκ/(1+σ1), ∆} in Theorem 1
and∆ < infκ∈Z+

{τκ+d/(1+σ1)} in Theorem 2, if the trigger condition (6) is triggered,
a relationship between the trigger parameter, impulsive interval, impulsive parameter, and
time delay can be deduced: aκ 6 (1 + σ1)∆ 6 (1 + σ1)τκ + d. The results demonstrate
that the time delay impacts not only the intra-layer synchronization of the system but also
the gain of the impulse in the controller (4).

3.2 Inter-layer synchronization

In this section, inter-layer synchronization is considered. The tracking target si of the ith
node in each layer of system (1) is designed as follows:

dsi(t) =

[
−Csi(t) +Bf

(
si(t)

)
− α

N∑
j=1

lrijHsj(t)

]
dt+ g

(
t, si(t)

)
dw(t). (29)

Define synchronization error eri (t) = xri (t) − si(t). For achieving inter-layer synchro-
nization of networks (1), the ETDIC scheme is characterized as

uri (t) =

∞∑
κ=1

(
Keri (t− τκ)− eri (t)

)
δ
(
t− tiκ

)
, κ ∈ Z+. (30)

According to networks (1) and (29), the error system is

deri (t) =

[
−Ceri (t) +Bf

(
eri (t)

)
− α

N∑
j=1

lrijHe
r
j(t)− β

N∑
j=1

lrijHe
r
i (t)

]
dt

+ g
(
t, eri (t)

)
dw(t), t 6= tiκ,

eri (t) = Keri (t
− − τκ), t = tiκ,

(31)
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where tiκ is the impulsive instant at the ith node of each layer, which is determined by

tiκ = min
{
t̃iκ, t

i
κ−1 +∆

}
, (32)

t̃iκ = inf
{
t > tiκ−1: EVi(t) > exp(aκ)EVi

(
tiκ−1

)}
.

Here EVi(t) = E
∑M
r=1(e

r
i (t))

Teri (t) = E(ei(t))Tei(t), and t̃iκ is the event-triggered
impulsive instant at the ith node of each layer.

Definition 2. Networks (1) and (29) are said to achieve inter-layer synchronization under
ETDIC (30) with (32) if limt→∞ ‖xri (t)− si(t)‖ = 0, i = 1, 2, . . . , N , r = 1, 2, . . . ,M .

Theorem 3. Based on Assumptions 1 and 2, networks (1) and (29) can reach inter-layer
synchronization under ETDIC (30) with (32), while avoiding the Zeno phenomenon, if
there exist positive definite matrix Q ∈ Rn×n, positive diagonal matrix Π1 ∈ Rn×n, and
positive scalars d, τ , τκ, η2, ∆, and aκ with aκ > (1 + σ2)τ such that

IM ⊗
[(
−2C − η2In +BΠ−11 BT +QTΠ1Q+ µIn

)]
− 2β(D ⊗ Γ ) 6 0,[

− exp (−d)In KT

∗ −In

]
6 0, ∆ < inf

κ∈Z+

{
τκ +

d

1 + σ2

}
,

where

σ2 = η2 + αλmax(H)Nl∗, l∗ = max
i,j,r

{
lrij
}
.

Moreover, the impulse time sequence {tiκ} satisfies

tiκ − tiκ−1 > min

{
aκ

1 + σ2
, ∆

}
∀κ ∈ Z+.

Proof. Consider the following Lyapunov function:

V (t) = eT(t)e(t) =

N∑
i=1

Vi(t) =

M∑
r=1

N∑
i=1

(
eri (t)

)T
eri (t).

On the one hand, for all t ∈ [tiκ, t
i
κ+1) and all κ ∈ Z+, it always holds that

LVi(t)

= 2

M∑
r=1

(
eri (t)

)T[−Ceri (t) +Bf
(
eri (t)

)
− α

N∑
j=1

lrijHe
r
j(t)− β

M∑
k=1

drkΓe
k
i (t)

]

+

M∑
r=1

trace
(
gT
(
t, eri (t)

)
g(t, eri (t))

)
. (33)
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Based on Assumption 1 and Lemma 1, one can obtain

2

M∑
r=1

(
eri (t)

)T
Bf
(
eri (t)

)
6

M∑
r=1

[(
eri (t)

)T
BΠ−11 BTeri (t) + fT

(
eri (t)

)
Π1f

(
eri (t)

)]
6

M∑
r=1

(
eri (t)

)T[
BΠ−11 BT +QTΠ1Q

]
eri (t)

=
(
ei(t)

)T[
IM ⊗

(
BΠ−11 BT +QTΠ1Q

)]
ei(t) (34)

and

−2α
M∑
r=1

(
eri (t)

)T N∑
j=1

lrijHe
r
j(t)

6 αλmax(H)

M∑
r=1

N∑
j=1

lrij
(∥∥eri (t)‖2 + ‖erj(t)∥∥2)

6 αλmax(H)Nl∗
∥∥ei(t)∥∥2. (35)

Moreover,

− 2β

M∑
r=1

(
eri (t)

)T M∑
k=1

drkΓe
k
i (t) = −2β

(
ei(t)

)T
(D ⊗ Γ )ei(t). (36)

Based on Assumption 2, one has

M∑
r=1

trace
(
gT(t, eri (t))g(t, e

r
i (t))

)
6 µ

M∑
r=1

(eri (t))
Teri (t) = µ(ei(t))

Tei(t). (37)

From (33)–(36) we have

LVi(t) =
(
ei(t)

)T[
IM ⊗

(
−2C +BΠ−11 BT +QTΠ1Q+ µIn

)
− 2β(D ⊗ Γ )

]
ei(t) + αλmax(H)Nl∗

∥∥eki (t)∥∥2
6 η2‖ei(t)‖2 + αλmax(H)Nl∗

∥∥ei(t)∥∥2
= σ2Vi(t). (38)

It follows from (37) that

ELV (t) = E
N∑
i=1

LVi(t) 6 σ2E
N∑
i=1

Vi(t) = σ2EV (t).
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The rest of the proof is similar to that of Theorem 2, then networks (1) and (29)
can reach inter-layer synchronization under ETDIC (30) with (32). We can see that (37)
satisfies condition (8) of Theorem 1. Moreover, when the condition aκ > (1 + σ2)τ is
met, the error system (31) can avoid Zeno behavior. So, the impulse time sequence {tiκ}
satisfies tiκ − tiκ−1 > min{aκ/(1 + σ2), ∆} for all κ ∈ Z+.

Corollary 2. Based on Assumptions 1 and 2, networks (1) and (29) can reach inter-layer
synchronization under ETDIC (30) with (32), while avoiding the Zeno phenomenon, if
there exist positive definite matrix Q ∈ Rn×n, positive diagonal matrix Π1 ∈ Rn×n, and
positive scalars d, τ , τκ, η2, ∆ and a with a > (1 + σ2)τ such that

IM ⊗
[(
−2C − η2In +BΠ−11 BT +QTΠ1Q+ µIn

)]
− 2β(D ⊗ Γ ) 6 0,[

− exp (−d)In KT

∗ −In

]
6 0, ∆ < inf

κ∈Z+

{
τκ +

d

1 + σ2

}
,

where

σ2 = η2 + αλmax(H)Nl∗, l∗ = max
i,j,r

{
lrij
}
.

Moreover, the impulse time sequence {tiκ} satisfies

tiκ − tiκ−1 > min

{
aκ

1 + σ2
, ∆

}
∀κ ∈ Z+.

Remark 11. In this paper, matrices H and Γ are assumed to be symmetric. However, if
the constructed Lyapunov function does not consider localization, matrices H and Γ can
be arbitrary square matrices.

Remark 12. The study of inter-layer synchronization considers the relationship between
the states of the layers and does not consider the states within the layers. Unlike intra-
layer synchronization, we construct Lyapunov function that relates the states between
corresponding nodes in each layer. Corollary 2 is a special case of Theorem 3.

Remark 13. This study addresses key challenges including the limited predictability of
ETDIC, the neglect of time delays in traditional impulsive control, and the conservative
synchronization criteria for stochastic multi-layer networks through a hybrid triggering
mechanism, decoupled multi-layer coupling modeling, and innovative theoretical tools.
The proposed control strategy and synchronization conditions remain fully applicable
when the multi-layer network degenerates to a single-layer structure. Moreover, the con-
trol mechanism innovation (predefined impulse intervals) effectively resolves the Zeno
problem in ETDIC for single-layer systems.

Remark 14. Multi-layer network modelling is the core framework for solving collabo-
ration bottlenecks in modern systems engineering, while intra/inter-layer synchronization
control is the theoretical cornerstone for ensuring its robust operation. Compatibility of
ETDIC strategies in multi-layer and single-layer scenarios provides a smooth path for
technology migration.
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4 Numerical simulations

4.1 Example about ETIC-PII

Consider the SMLNs depicted by

dxri (t) =

[
−Cxri (t) +Bf

(
xri (t)

)
− α

6∑
j=1

lrijHx
r
j(t)− β

3∑
k=1

drkΓx
k
i (t) + uri (t)

]
dt

+ g
(
t, xri (t)

)
dw(t), (39)

where xri (t) = (xri1(t), x
r
i2(t), x

r
i3(t))

T, C = diag(3, 3, 3), α = 0.02, β = 0.9, f(xri ) =
(tanh(xri1), tanh(x

r
i2), tanh(x

r
i3))

T, i = 1, 2, . . . , 6, r = 1, 2, 3,

B =

 1.31 −0.46 −1.24
−1.26 0.46 −1.06
−0.43 0.54 1.06

 ,
H =

 1 2 −1
2 0 0
−1 0 3

 , Γ =

 0 −1 −2
−1 1 0
−2 0 1

 .
The topology of network (39) is shown in Fig. 2. Meanwhile, the corresponding

Laplacian matrices L1, L2, and L3 of each layer representing the intra-layer topology
are given as

L1 =


3 −1 −1 0 −1 0
−1 4 −1 −1 −1 0
−1 −1 4 0 −1 −1
0 −1 0 2 0 −1
−1 −1 −1 0 3 0
0 0 −1 −1 0 2

 , L2 =


2 −1 0 0 −1 0
−1 1 0 0 0 0
0 0 3 −1 −1 −1
0 0 −1 1 0 0
−1 0 −1 0 3 −1
0 0 −1 0 −1 2

 ,

and

L3 =


1 0 0 0 0 −1
0 2 0 −1 0 −1
0 0 2 −1 −1 0
0 −1 −1 3 0 −1
0 0 −1 0 2 −1
−1 −1 0 −1 −1 4

 .

The matrix D representing the inter-layer topology is described as

D =

 1 −1 0
−1 2 −1
0 −1 1

 .
https://www.journals.vu.lt/nonlinear-analysis
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Figure 2. Topology structure of system (39) with 6 nodes and 3 layers.

Moreover, we select the noise intensity function g(t, eri (t)) = 0.04eri (t) and µ = 0.08,
then Assumption 2 holds.

4.1.1 Intra-layer synchronization

The intra-layer synchronization target sr(t) depicted by

dsr(t) =

[
−Csr(t) +Bf

(
sr(t)

)
− β

3∑
k=1

drkΓs
k(t)

]
dt+ g

(
t, sr(t)

)
dw(t). (40)

The initial data of the synchronization state of target node in rth layer is set as s1(t) =
s2(t) = s3(t) = (−0.2,−0.5, 0.8). When there is no control input, it can be observed
from Fig. 3(a) that the intra-layer synchronization between network (38) and the target
system (39) cannot be achieved.

Now, to realize the intra-layer synchronization of system (39) and target system (40)
under ETDIC (4) with (5), we choose triggering parameter a = 0.06, impulsive interval
∆ = 0.3, and time delay in impulses τκ = 0.05. Then impulse gain matrix K = 0.6I3.

Figure 3(b)) illustrates the progression of intra-layer synchronization error controlled
by ETDIC (4) following event (5)–(6). Figure 4(a) displays the triggered instants when
events occur at each layer using the event-triggered mechanism (6). Moreover, Fig. 4(b)
shows the impulsive instants in each layer under ETDIC (4), where the symbol de-
notes event-triggered impulsive moment, while the symbol represents forced impulsive
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Figure 3. Time evolutions of intra-layer synchronization error ep(t), p = 1, 2, 3: (a) without control; (b) with
control (4).
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Figure 4. (a) Event-triggered instants for each layer; (b) impulsive instants for each layer.

instant. Figures 3–4 illustrate the effectiveness of the control strategy (4) and the event-
triggered impulsive mechanism (5)–(6) proposed in this paper.

As depicted in Fig. 4(b), the first layer contains 6 forced impulsive moments. In the
second layer, there is 1 forced impulsive moment. The third layer comprises 7 moments
that do not meet the trigger condition (6) and are thus controlled by impulsive actions.

The following provides a detailed algorithm for the theorem to better understand the
contents of the article.

Algorithm 1. The algorithm steps for Theorem 2.

Step 1: Initialize system parameters B, C, H , Γ , α, β. Based on Assumptions 1 and 2, choose
appropriate q, µ.

Step 2: Use LMI toolbox in MATLAB and conditions (12) to solve feasible Π1, η1, σ1.
Step 3: Provide control gain K to find the impulsive parameter d that satisfies condition (13).
Step 4: After determine time delay τκ, provide impulsive interval ∆, then verify condition (14).
Step 5: According to Remark 4, the value of the trigger parameter aκ can be obtained.
Step 6: By judging the event-triggered mechanism (5), the intra-layer error ep is made to reach

a synchronized state.
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4.1.2 Inter-layer synchronization

The inter-layer synchronization target si(t) depicted by

dsi(t) =

[
−Csi(t) +Bf

(
si(t)

)
− α

6∑
j=1

lrijHsj(t)

]
dt+ g

(
t, si(t)

)
dw(t). (41)

The initial data of the synchronization state of ith node in each layer is set as si(t) =
(−0.2,−0.5, 0.8), i = 1, 2, . . . , 6. In the absence of any control input, as depicted in
Fig. 5(a), it is evident that the inter-layer synchronization between network (38) and the
target system (40) cannot be attained.

To achieve intra-layer synchronization between system (39) and target system (41)
using ETDIC (30) with (32), the following parameters are selected: a1 = a6 = 0.02,
a2 = a4 = 0.006, a3 = a5 = 0.06, and impulsive interval ∆ = 0.3. Consequently, it is
deduced that the impulse gain matrix K = 0.6I3.

Figures 5–6 depict the outcomes of the simulations. Specifically, in Fig. 5(b)), the time
evolution of the inter-layer synchronization error controlled by ETDIC (30) following
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Figure 5. Time evolutions of inter-layer synchronization error ep(t), p = 1, 2, . . . , 6: (a) without control; (b)
with control (30).
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Figure 6. (a) Event-triggered instants; (b) impulsive instants.
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event (32) is illustrated. Figure 6(a) displays the triggered instants of the ith node (i =
1, 2, . . . , 6) in each layer. Additionally, Fig. 6(b) shows the impulsive instants of the ith
node (i = 1, 2, . . . , 6) in each layer under ETDIC (30), where the symbol denotes
event-triggered impulsive moment, while the symbol represents forced impulsive in-
stant.

In Figs. 4(a) and 6(a), the event-triggered instants are generated solely by triggering
events. In contrast, the pulse instants in (b) correspond respectively to times generated
by triggering events and predetermined time instants triggered to occur when no event
happens within the predefined interval.

4.2 Example of a comparison between ETIC-PII and ETIC

Assuming that the other parameters of the network remain unchanged, consider the ETIC-
PII and the existing event-triggered time-lag pulse control methods. For a better com-
parison, we will use the same nodes as in Section 4.1. In intra-layer synchronisation,
two triggering mechanisms are considered, ETIC-PII (4) with (5) and ETDIC (4) with
(6); while in inter-layer synchronisation, the event triggering mechanisms considered are
similar to those of intra-layer synchronisation.

From Figs. 7(a) and 7(b) it can be found that the error intra-layer synchronisation
under ETIC-PII (4) with (5) does not fluctuate further after it tends to 0. On the contrary,
after the error intra-layer synchronisation under ETDIC (4) with (6) tends to 0, the event
does not reach the triggering condition, and the error disperses, which suggests that the
control effect of ETIC-PII (4) with (5) is stronger.

Figures 8(a) and 8(b) reveal that ETDIC-PII (4) with (30) exhibits fewer event-trig-
gered instants per layer than ETDIC (4) with (31). This indicates that ETDIC (4) with
(31) operates with higher control intensity, triggering events at elevated frequencies that
incur significant resource consumption.

From Figs. 9(a) and 9(b) it can be found that the inter-layer synchronisation of errors
under ETIC-PII (4) and (30) does not continue to fluctuate after converging to 0. On
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Figure 7. Time evolutions of intra-layer synchronization error ep(t), p = 1, 2, 3: (a) ETIC-PII (4) with (5);
(b) ETDIC (4) with (6).
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Figure 8. Event-triggered instants for each layer.
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Figure 9. Time evolutions of inter-layer synchronization error ep(t), p = 1, 2, . . . , 6: (a) ETIC-PII (4) with
(30); (b) ETDIC (4) with (31).

(a)

0 1 2 3 4 5 6

t/s

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

n
o

d
e

node 1

node 2

node 3

node 4

node 5

node 6

(b)

Figure 10. Event-triggered instants for each node in any layer.

the contrary, the inter-layer synchronisation of errors under ETDIC (4) and (31) does not
reach the triggering condition after converging to 0. There are small fluctuations in errors,
which suggests that the control effect of ETIC-PII (4) and (30) is more general.
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Figures 10(a) and 10(b) demonstrate that event-triggered instants for all nodes across
layers under ETDIC (4) with (31) exhibit high frequency, whereas those under ETIC-
PII (4) with (30) maintain moderate spacing. This hybrid triggering strategy significantly
reduces communication load and resource consumption.

5 Conclusions

This study separately addresses intra-layer and inter-layer synchronization in SMLNs via
the proposed ETDIC strategy. A novel auxiliary function is constructed to exclude Zeno
behavior without requiring expectation solutions for stochastic perturbation terms unlike
existing approaches. By integrating graph theory and stochastic analysis techniques, less
conservative synchronization criteria are derived under ETDIC, advancing the current
state of research. Numerical simulations validate the theoretical findings. Future work
will investigate event-triggered pinning control for synchronizing stochastic multi-layer
networks.
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