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Abstract. In this paper, we consider a new class of conformable impulsive reaction–diffusion
neural networks. The stable behavior of h-manifolds with respect to the model is investigated, and
sufficient conditions are proposed by constructing suitable Lyapunov-like functions. Our results are
new and contribute to the development of the theory of impulsive conformable models. Examples
are also presented to illustrate the proposed criteria.
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1 Introduction

The dynamical behaviors, such as stability, boundedness, periodicity, almost periodicity,
oscillation, and asymptotical behaviors, of different classes of neural networks have at-
tracted the attention of many researchers in science, engineering, and medicine. This is
due to the fact that neural network models is one of the artificial intelligence approaches,
which is intensively applied in various areas of secure communication, machine learning,
optimization, pattern recognition, associative memory, classification, parallel computa-
tion, etc. The appropriate applications of such models are highly dependent on their
qualitative properties.

Reaction–diffusion neural networks form a very important class of neural networks
that are used to model the diffuse displacement trajectory of neurons in a nonuniform
electromagnetic field. In fact, diffusion effects exist in many biological and artificial
neural networks, and they can affect the high performance of the model. Hence, neural
network models with reaction–diffusion terms have been thoroughly studied. See, for
example, [14, 35].
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In addition, impulsive generalizations of reaction–diffusion neural networks are also well
studied, and the effects of some impulsive perturbations on their qualitative properties are
investigated [34,37]. The study of impulsive extensions of such neural network models is
motivated by the fact that short-term perturbations are very common during the evolution
of the processes modeled, as their dynamic is often subject to momentarily changes of
biological or artificial nature. For impulsively extended reaction–diffusion neural network
models, the theory of impulsive differential systems [11] is used as a modeling apparatus.
In addition, the consideration of appropriate impulsive functions in the impulsive neural
network models can be used in the implementation of efficient impulsive control strategies
to the nonimpulsive models. Due to its advantages, such a control approach is preferred
among the many applied control techniques [38].

Another approach that allows researchers to construct more adequate neural network
models is the use of fractional calculus. Fractional-order derivatives generalize the integer-
order ones, and their use leads to the development of more flexible models [3, 9, 30].
Hence, the fractional-order approach has been successfully applied in the introduction
and analysis of reaction–diffusion neural network models [13, 29]. The presence of some
very recent publications on such models evidenced the importance of their study [33].
Very recently, the hybrid fractional-order impulsive approach has also been applied to the
development of reaction–diffusion models and the study of their applications [5, 32].

Applying most of the classical fractional derivatives in the development of fractional
models leads to some strict limitations that are related to the lack of an easy-to-implement
chain rule for the derivatives of compositions of functions. Some of the main difficulties
in using classical fractional derivatives are due to their singular properties. In addition, for
fractional derivatives, we do not have a corresponding Rolle’s theorem or a corresponding
Mean Value Theorem. The type of conformable derivatives introduced in [1, 8] attracted
research interest since they overcome the above-mentioned difficulties. The definition
of a conformable derivative is limit-based, which makes it a very convenient tool for
applied problems. The advantages offered by the new concept have drawn the attention
of numerous investigators [17]. The conformable calculus is also applied to the modeling
of neural networks and the study of real-world phenomena [4, 7], including conformable
space–time models [2, 16].

The notion of a conformable fractional derivative is also extended to the impulsive
case. Important properties of impulsive conformable differential equations have been
investigated, and interesting results have been published recently [22, 31].

Using the generalized impulsive conformable modeling approach, several impulsive
conformable neural network models have been created, and their qualitative dynamics
have been investigated. In [15], the fractional exponential stability of a nonlinear con-
formable fractional-order delayed system and the fractional exponential synchroniza-
tion of conformable fractional-order delayed inertial neural networks, both with delayed
impulses, have been studied. The authors in [23] designed an impulsive conformable
Hopfield-type neural network and applied an extended stability strategy to the states of in-
terest. An impulsive conformable Cohen–Grossberg-type neural network model has been
introduced in [27], and the practical stability with respect to a manifold has been investi-
gated. In [36], sufficient conditions for the exponential stability of a class of conformable

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


On the h-manifolds for impulsive conformable neural networks 1213

fractional-order nonlinear differential systems with time-varying delay and impulses have
been established. The authors also applied the condition for exponential stability to con-
formable fractional-order neural networks.

In all above impulsive conformable neural network models, reaction–diffusion effects
are not taken into account. Since neurons are distributed in space and typically inter-
act with the physical environment, it is more reasonable to study a reaction–diffusion
version of existing models. A class of impulsive conformable neural network models
with reaction–diffusion terms has been studied only in a pioneering paper [24], where
the authors established criteria for the almost periodic behavior of the states. Hence,
the qualitative theory of conformable impulsive neural network models with reaction–
diffusion terms is not developed, and many important stability criteria have not yet been
derived. This is the main aim of the proposed research.

Not surprisingly, most of the existing results on neural networks are about the stability
of their states [5,14,23,27,32,34–36]. In fact, stability is directly related to stabilization,
synchronization, and control problems [13, 29, 33, 37]. Due to the fast convergent rate
guaranteed, the most investigated stability behavior is the exponential stability for models
of integer order [14, 35]. However, no exponential stability criteria have been published
yet for impulsive conformable reaction–diffusion neural network models.

Also, in more of the existing stability results, the authors are interested only in the
behavior of single states. In this research, we will study not just the stability dynamics
of the separate states but also the stability of specific manifolds defined by a function h.
This stability is known as h-manifold stability [21]. It is closely related to the general
stability of the sets/manifolds notions [28], considering specific manifolds. The notion
generalizes the notion of single-state stability. It is of a significant importance in numerous
applications, essentially for applied problems in which several states are of interest and
their dynamics revolve around a manifold determined by a h-function, as well as in the
study of multi-stable systems. That is why it is applied to phenomena studied in engi-
neering design, biology and medicine [28]. The notion is also studied for conformable
impulsive neural networks [23, 27] without considering reaction–diffusion terms.

In addition, the practical stability concepts have been introduced in [10] as being more
applicable in numerous applied problems when the behavior of the solutions is not ideally
mathematically stable by Lyapunov but is acceptable from the practical point of view. This
extended stability strategy has recently been very intensively applied in investigations of
practical problems of diverse interest [6, 20], including fractional-order models [25, 26]
and conformable models without reaction–diffusion terms [18, 23, 27].

In this paper, stimulated by the above analysis, we consider an impulsive conformable
reaction–diffusion neural network. The hybrid practical stability with respect to the con-
cept of h-manifolds is proposed in its exponential stability version. The Lyapunov con-
formable method is applied to study the behavior of the states considering the effects of
reaction–diffusion terms and impulsive control functions. The main contributions of our
paper can be listed as follows:

(i) Different from the neural network models proposed by the conformable calcu-
lus approach [23, 27], reaction–diffusion terms are considered in the model
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proposed here, which makes it more general and more appropriate for a real
system.

(ii) Differently from the almost periodic analysis performed in [24] for impulsive
reaction–diffusion conformable neural network models, we introduce the extended
notion of practical stability with respect to h-manifolds, and the corresponding
stability analysis is done.

(iii) The Lyapunov function conformable strategy and inequality techniques are ap-
plied, and several new sufficient criteria for practical stability with respect to the
h-manifolds are provided.

(iv) Robust stability analysis is proposed based on the impulsive control mechanism,
which allows by means of appropriate control signals, applied only at some fixed
time instants, to control the corresponding stability dynamics of the states.

(v) Numerical examples are presented to demonstrate the strength of the established
criteria.

The construction plan for the paper is as follows. Section 2 is devoted to the introduc-
tion of the impulsive conformable reaction–diffusion model. To this end, the necessary
background from the conformable calculus is presented, and some preliminary results are
reported. The hybrid extended notion of practical stability with respect to h-manifolds is
defined for the proposed model. Some definitions and lemmas related to the Lyapunov’s
conformable method are also presented. In Section 3, the Lyapunov technique is used
to establish the main practical exponential h-manifold stability results. In Section 4,
a robust practical stability analysis with respect to h-manifolds is performed considering
the uncertain case. In fact, since different neural network models exist within structural
uncertainty, it is essential to consider the effect of uncertain parameters on their qualitative
behavior [12,19]. Uncertainty can be due to, for example, measurement inaccuracy, mod-
eling errors, etc. Appropriate examples are discussed in Section 5. The paper concludes
in Section 6.

2 The impulsive conformable reaction–diffusion model. Preliminary
notes

We consider the Euclidean n-dimensional space with a norm ‖y‖ =
√
y21 + y22 + · · ·+ y2n

of y = (y1, y2, . . . , yn)T ∈ Rn, and R+ = [0,∞). We will begin with some notations
and properties related to conformable derivatives. Let t0 ∈ R+ and t̃ > t0.

Definition 1. (See [1, 8].) The conformable derivative Dα
t̃
x(t) of order α, 0 < α 6 1,

with the lower limit t̃ for a function x(t) : [t̃,∞)→ R is given as

Dαt̃ x(t) = lim
ε→0

x(t+ ε(t− t̃)1−α)− x(t)

ε
, t > t̃.

Next, following [22, 23, 27, 31], we consider the discrete times γk, k = 1, 2, . . . ,
defined as

0 = γ0 < γ1 < γ2 < · · · , lim
k→∞

γk =∞,
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and for t̃ = γk, k = 1, 2, . . . , we have the generalized conformable derivative

Dαγkx(γk) = lim
t→γ+

k

Dαγkx(t).

The set of all functions x(t) that have α-conformable derivatives for any t ∈ (t̃,∞) is
denoted by Cα[(t̃,∞),R] [23, 27]. Any function from this class is called α-conformable
differentiable at any t ∈ (t̃,∞).

Definition 2. (See [24, 27, 31].) The conformable integral of order 0 < α 6 1 with
a lower limit t̃, t̄ > t0, of the function x is given by

Iαt̃ x(t) =

t∫
t̃

(τ − t̃)α−1x(τ) dτ.

We will also need the following main properties of the conformable derivatives.

Lemma 1. (See [24, 27, 31].) Let the function x : (t̃,∞) → R be α-conformable differ-
entiable on (t̃,∞) for 0 < α 6 1. Then the following statements hold:

(i) Iα
t̃

(Dα
t̃
x(t)) = x(t)− x(t̃), t > t̃.

(ii) If v(x(t)) : (t̃,∞) → R is differentiable with respect to x(t), then for any t ∈
[t̃,∞) and x(t) 6= 0, we have

Dαt̃ v
(
x(t)

)
= v′

(
x(t)

)
Dαt̃ x(t),

where v′ is the ordinary derivative of v(·).

For physical and geometrical interpretations of conformable derivatives, see [17, 39].
LetΘ be a bounded domain in Rn with a smooth boundary ∂Θ and a positive measure

mesΘ > 0 containing the origin. The time conformable derivative is defined as follows.

Definition 3. (See [24].) For a function z = z(t, y), z : (t̃,∞)×Θ → R, the limit

Dαt̃ z(t, y) =
∂αz(t, y)

∂tα

∣∣∣∣
t̃

= lim
ε→0

z(t+ ε(t− t̃)1−α, y)− z(t, y)

ε
, t > t̃, y ∈ Θ,

is the conformable derivative along t of order α, 0 < α 6 1, for t > t̃, y ∈ Θ.

If t̃ = γk, k = 1, 2, . . . , then the α-generalized time conformable derivative is

Dαγkz(γk, y) = lim
t→γ+

k

Dαγkz(t, y).

Remark 1. The α-generalized conformable differentiable with respect to time functions
have the same properties as the properties of the α-conformable differentiable functions
listed in [24, Lemma 1].
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Definition 4. (See [1,8].) The conformable exponential function Eα(ν, τ) for 0 < α 6 1
is defined by

Eα(ν, τ) = exp

(
ν
τα

α

)
, ν ∈ R, τ ∈ R+.

Using the above notations, we introduce a conformable network model with reaction–
diffusion terms as follows:

Dαt̃ z̄q(t, y) =

n∑
r=1

∂

∂yr

(
Dqr

∂z̄q(t, y)

∂yr

)
− cq z̄q(t, y)

+

m∑
j=1

aqj(t)fj
(
z̄j(t, y)

)
+ Iq(t), (1)

where t > 0, 0 < α < 1, q = 1, 2, . . . ,m, m > 2 corresponds to the number of neurons
in the neural network, z̄ = (z̄1, z̄2, . . . , z̄m)T ∈ Rm, z̄q = z̄q(t, y) denotes the state of the
qth unit at time t > 0 and space y ∈ Θ, fj represents the activation functions of the jth
unit. The functions aqj(t) are the connection weights in t, and the constant cq represents
the rate with which the qth unit will reset its potential to the resting state in isolation when
disconnected from the network and external input, Iq denotes the external input for the qth
unit. The smooth functions Dqr = Dq,r(t, y) > 0 correspond to the diffusion operators
of transmission along the qth unit, q = 1, 2, . . . ,m, r = 1, 2, . . . , n.

Remark 2. Model (1) extends many existing integer- and fractional-order reaction–dif-
fusion neural network models to the conformable settings [13, 14, 29, 33, 35]. The con-
formable approach allows for the development of models more flexible than those offered
by applying the integer-order approach. At the same time, the computational difficulties
inherent in using the fractional-order approach are avoided. In fact, most of the classical
fractional-order operators are defined as integrals with different singular kernels, that
is, they have a nonlocal structure. Due to this fact, the use of such derivatives leads
to complexities in the analysis of fractional-order models. The conformable derivatives
introduced in [1,8] provide computational simplifications as they satisfy the concepts and
rules of ordinary derivatives. The simplicity in their applications makes the conformable
calculus an exclusive tool in the mathematical modeling [4, 7].

The impulsively controlled model will be defined as

Dαγkzq(t, y) =

n∑
r=1

∂

∂yr

(
Dqr

∂zq(t, y)

∂yr

)
− cqzq(t, y)

+

m∑
j=1

aqj(t)fj
(
zj(t, y)

)
+ Iq(t), t 6= γk,

zq(γ
+
k , y) = zq(γk, y) + Pqk

(
zq(γk, y)

)
, k = 1, 2, . . . ,

(2)

where 0 < α < 1, t > 0, q = 1, 2, . . . ,m, m > 2 represents again the number of neurons
in the neural network model, the parameters in the first equation of (2) are the same as

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


On the h-manifolds for impulsive conformable neural networks 1217

in (1), zq(t, y) is the state of the qth unit at time t > 0 and space y ∈ Θ in the controlled
model (2), the elements of the sequence {γk} ∈ R+ are the impulsive moments at which
abrupt changes of the node zq(t, y) from the positions zq(γ−k , y) = z̄q(γk, y) into the
positions zq(γ+k , y) are observed, Pqk are the impulsive (jump) functions, which measure
the magnitudes of the short-term changes in the nodes z̄q(t, y) in (1) at the instants γk,
k = 1, 2, . . . . The functions Pqk(zq(γk, y)) = ∆zq(γk, y) = zq(γ

+
k , y) − zq(γk, y)

can be considered as impulsive controllers, which are applied on the nodes zq(t, y), q =
1, 2, . . . ,m, at discrete times γk, k = 1, 2, . . . .

Remark 3. The designed impulsively controlled model (2) allows control signals to be
applied only at the fixed time instants γk, k = 1, 2, . . . . These signals with magnitudes
determined by the functions Pqk, q = 1, 2, . . . ,m, k = 1, 2, . . . , can be used to impul-
sively control the qualitative behavior of model (1).

Remark 4. The impulsive control approach has been applied to numerous integer-order
and fractional-order reaction–diffusion neural network models [32, 34, 37]. For con-
formable models, this approach has been applied to reaction–diffusion neural networks
just in [24] not analyzing stability strategies. Thus, our research complements numerous
important results in the existing literature. It also contributes to the development of the
theory and applications of conformable neural network models.

We will consider the impulsive control conformable model (2) under the following
boundary and initial conditions:

zq(t, y) = 0, t ∈ R, y ∈ ∂Θ (3)

zq(0
+, y) = z0q(y), y ∈ Θ, (4)

where z0 = (z01, z02, . . . , z0m)T, z0q(y) are real-valued bounded continuous on Θ func-
tions.

The solutions z(t, y) = z(t, y; z0), z(t, y) = (z1(t, y), z2(t, y), . . . , zm(t, y))T of the
initial boundary-value problem (IBVP) (2)–(4) are piecewise continuous functions with
points of discontinuity at the moments γk, k = 1, 2, . . . [24, 28, 32, 34, 37].

Next, the notion of h-manifold practical stability will be introduced to the neural
network model (2). To this end, we consider a continuous function h = h(t, z), h :
R × Rm → Rp, p 6 m, h(t, z) = (h1, (t, z), h2(t, z), . . . , hp(t, z))

T, and define the
following sets related to h:

Mt(m− p) =
{
z ∈ Rm: h1(t, z) = h2(t, z) = · · · = hp(t, z) = 0, t ∈ [0,∞)

}
,

Mt(m− p)(λ) =
{
z ∈ Rm:

∥∥h(t, z)
∥∥ < λ, t ∈ [0,∞)

}
, λ > 0.

We will also suppose that the set Mt(m− p)(λ) is an m− p-dimensional manifold in
Rm and each solution z(t, y) of the IBVP (2)–(4) satisfying∥∥h(t, z(t, y)

)∥∥ 6 H <∞

is defined on R+ ×Θ.

Nonlinear Anal. Model. Control, 30(6):1211–1231, 2025
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Definition 5. Let 0 < α < 1. The impulsive control conformable reaction–diffusion
neural network model (2) is:

(i) (λ,A)-practically stable with respect to the function h if, for given (λ,A) with
0 < λ < A, the condition z0 ∈M0+(m− p)(λ) implies

z(t, y) ∈Mt(m− p)(A), t > 0;

(ii) (λ,A)-practically globally exponentially stable with respect to the function h if,
for given (λ,A) with 0 < λ < A, the condition z0 ∈ M0+(m − p)(λ) implies
the existence of constants κ, µ > 0 such that

z(t, y) ∈Mt(m− p)
(
A+ κ

∥∥h(0+, z0)
∥∥Eα(−µ, t)

)
, t > 0.

Remark 5. Note that the practical stability of model (2) with respect to the function h
is equivalent to the practical stability of an entire manifold of states Mt(m − p) defined
by this function. Thus, the h-manifold practical stability notion is more general than the
single state stability, and as such it is preferred in the study of many important applied
problems [28]. For particular values of the function h, Definition 5 can be reduced to
the practical stability definitions of specific states or manifolds of states. For example,
if h(t, z) = z, then Definition 5 reduces to the definitions of practical stability of the
zero state of model (2). Also, for α = 1, Definition 5 reduces to the definition of the
h-manifold practical stability for neural network models with ordinary derivative, which
are investigated in [28].

Remark 6. It is also seen from Definition 5 that the practical stability notion does not
completely match with the Lyapunov stability. However, in some cases, the practical
global exponential stability may imply global exponential stability in the sense of Lya-
punov for A = 0 [10, 27, 28].

Remark 7. The practical stability with respect to a function h (see Definition 6) can also
be used in the study of practical synchronization issues between the master system (1) and
the impulsive control system (2). To this end, the researchers have to consider the error
system defined by

Dαγkeq(t, y) =

n∑
r=1

∂

∂yr

(
Dqr

∂eq(t, y)

∂yr

)
− cqeq(t, y)

+

m∑
j=1

aqj(t)gj
(
ej(t, y)

)
, t 6= γk,

eq(γ
+
k , y) = eq(γk, y) + Uqk

(
eq(γk, y)

)
, k = 1, 2, . . . ,

where 0 < α < 1, t > 0, y ∈ Θ, eq(t, z) = zq(t, z) − z̄q(t, z), q = 1, 2, . . . ,m,
gj(ej) = fj(ej + z̄j) − fj(z̄j), j = 1, 2, . . . ,m, Uqk(eq) = Pqk(zq), q = 1, 2, . . . ,m,
k = 1, 2, . . . . Thus, the impulses can be used to practically synchronize the behaviors of
models (1) and (2).
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Also, for a bounded continuous function g defined on J ⊆ R, we set

g = sup
t∈J

∣∣g(t)
∣∣, g = inf

t∈J

∣∣g(t)
∣∣.

The existence and uniqueness of the solutions of model (2) [24, 28] and the further
analysis require the following assumptions:

(A1) There exist constants Lq > 0 such that∣∣fq(χ1)− fq(χ2)
∣∣ 6 Lq|χ1 − χ2|,

and fq(0) = 0 for all χ1, χ2 ∈ R, χ1 6= χ2, q = 1, 2, . . . ,m.
(A2) The functions aqj and Iq are continuous on R+, q, j = 1, 2, . . . ,m.
(A3) For the diffusion coefficients, there exist constants dqr > 0 such that

Dqr(t, y) > dqr

for q = 1, 2, . . . ,m, r = 1, 2, . . . , n, t > 0, and y ∈ Θ.
(A4) The impulsive functions Pqk are continuous on R and Pqk(0) = 0 for all q =

1, 2, . . . ,m and k = 1, 2, . . . .

We will also need the next result.

Lemma 2. (See [14, 28].) Let Θ be a cube |yr| < lr, r = 1, 2, . . . , n, and let v(y) be
a real-valued function belonging to C1(Θ), which vanishes on the boundary ∂Θ of Θ,
i.e., v(y)|∂Θ = 0. Then ∫

Θ

v2(y) dy 6 l2r

∫
Θ

∣∣∣∣∂v(z)

∂zr

∣∣∣∣2 dy.

In the last part of Section 2, we will present some notations, definitions, and a compar-
ison lemma from the conformable Lyapunov function method using piecewise continuous
Lyapunov-type functions.

Define the sets

Gk =
{

(t, z): t ∈ (γk−1, γk), z ∈ Rm
}
, k = 1, 2, . . . ,

G =

∞⋃
k=1

Gk

and the class Vαγk of nonnegative Lyapunov functions V [24, 28] for any γk ∈ R+,
k = 1, 2, . . . , such that V(t, 0) = 0 for t ∈ R+ × Θ, t > γk, V is continuous in G,
α-generalized conformable differentiable in t and locally Lipschitz continuous with re-
spect to z on each of the sets Gk, and for each k = 1, 2, . . . and z ∈ Rm, there exist the
finite limits

V(γ−k , z) = lim
t→γk, t<γk

V(t, z) = V(γk, z),

V(γ+k , z) = lim
t→γk, t>γk

V(t, z).

Nonlinear Anal. Model. Control, 30(6):1211–1231, 2025
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Now, for a given function V ∈ Lαγk , t ∈ R+, t 6= γk, k = 1, 2, . . . , we define the
following derivative with respect to system (2):

+DαγkV
(
t, z(t, ·)

)
= lim
ε→0+

sup
V(t+ ε(t− γk)1−α, z(t+ ε(t− γk)1−α, ·))− V(t, z(t, ·))

ε
.

The following lemma from [24, 28] will also be useful.

Lemma 3. If for the function V ∈ Vαγk and for t ∈ R+, z ∈ Rm, we have

(i) V(γ+k , z(γk, ·) + ∆z(γk, ·)) 6 V(γk, z(γk, ·)), k = 1, 2, . . . , and

(ii) +DαγkV(t, z(t, ·)) 6 −ζV(t, z(t, ·)) + o(t), t 6= γk, k = 0, 1, . . . , for ζ =
const > 0, o ∈ Cα[R+,R+],

then

V(t, z(t, ·)) 6 V(0+, z0)Eα(−ζ, t) +

t∫
γk

Wα(t− γk, σ − γk)o(σ)

(σ − γk)1−α
dσ

+

k∑
j=1

k∏
l=k−j+1

Eα(−ζ, γl − γl−1)

×
γk−j+1∫
γk−j

Wα(t− γk, σ − γk−j)o(σ)

(σ − γk−j)1−α
dσ, t > 0,

where

Wα(t− γk, σ − γk) = Eα(−ζ, t− γk)Eα(ζ, σ − γk).

3 Main practical stability results

In this section, we will apply the conformable Lyapunov function approach to establish
practical stability criteria for the impulsive control conformable reaction–diffusion neural
network (2).

Firstly, we will prove a (λ,A)-practical stability result.

Theorem 1. Assume that 0 < λ < A, assumptions (A1)–(A4) hold, and:

1. Θ = {y: y = (y1, y2, . . . , yn)T, |yr| < lr}, lr, r = 1, 2, . . . , n, are positive
constants.

2. The model’s parameters and the impulsive control functions of the neural net-
work (2) satisfy:

(i) min16q6m((cq+D̄q)−
∑m
j=1(Ljaqj+Lqajq)) > 0 with D̄q =

∑n
r=1 dqr/l

2
r ,

r = 1, 2, . . . , n;
(ii) Iq(t) = 0, q = 1, 2, . . . ,m, t > 0;

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


On the h-manifolds for impulsive conformable neural networks 1221

(iii) Pqk(zq(γk, y)) = −ηqkzq(γk, y), 0 < ηqk < 2, q = 1, 2, . . . ,m, k =
1, 2, . . . , y ∈ Θ.

3. The function h = h(t, z), h : R× Rm → Rp is such that

∥∥h(t, z)
∥∥ < ∫

Θ

m∑
q=1

z2q (t, y) dy 6 Λ(H)
∥∥h(t, z)

∥∥, t ∈ [0,∞),

where Λ(H) > 1 exists for any 0 < H 6∞ and Λ(H)λ < A.

Then the impulsively controlled model (2) is (λ,A)-practically stable with respect to the
function h, i.e., the h-manifold Mt(m− p) is (λ,A)-practically stable.

Proof. For 0 < λ < A, let z0 ∈M0+(m− p)(λ), and let z(t, y) = z(t, y; z0),

z(t, y) =
(
z1(t, y), z2(t, y), . . . , zm(t, y)

)T
be the solution of the IBVP (2)–(4).

We consider a Lyapunov function defined as

V
(
t, z(t, ·)

)
=

∫
Θ

m∑
q=1

z2q (t, y) dy. (5)

From (A4) and condition 2(iii) of Theorem 1, at the impulsive control instants t = γk,
k = 1, 2, . . . , we have

V
(
γ+k , z(γk, ·) + ∆z(γk, ·)

)
=

∫
Θ

m∑
q=1

(
zq(t, y) + Pqk(zq(γk, y))

)2

dy =

∫
Θ

m∑
q=1

(1− ηqk)2z2q (t, y) dy

<

∫
Θ

m∑
q=1

z2q (t, y) dy = V(γk, z(γk, ·)), k = 1, 2, . . . , (6)

i.e., condition (i) of Lemma 3 is satisfied for the Lyapunov-type function V ∈ Vαγk .
Next, for function (5), using the definition and properties of the conformable deriva-

tive +Dαγk V(t, z(t, ·)), we obtain for t 6= γk, k = 0, 1, 2, . . . ,

+DαγkV
(
t, z(t, ·)

)
= 2

m∑
q=1

∫
Θ

zq(t, y)
∂αzq(t, y)

∂γk
dy

= 2

m∑
q=1

∫
Θ

zq(t, y)

(
n∑
r=1

∂

∂yr

(
Dqr

∂zq(t, y)

∂yr

)

− cqzq(t, y) +

m∑
j=1

aqj(t)fj
(
zj(t, y)

))
dy. (7)

Nonlinear Anal. Model. Control, 30(6):1211–1231, 2025

https://doi.org/10.15388/namc.2025.30.43844


1222 A. Martynyuk et al.

Applying the Green formula and using the boundary condition (3), we get
n∑
r=1

∫
Θ

zq(t, y)
∂

∂yr

(
Dqr

∂zq(t, y)

∂yr

)
dy = −

n∑
r=1

∫
Θ

Dqr

(
∂zq(t, y)

∂yr

)2

dy.

From the above equality, (A3), condition 2(i) of Theorem 1, and Lemma 2 we obtain
n∑
r=1

∫
Θ

zq(t, y)
∂

∂yr

(
Dqr

∂zq(t, y)

∂yr

)
dy

6 −
n∑
r=1

∫
Θ

dqr

(
∂zq(t, y)

∂yr

)2

dy 6 −
n∑
r=1

∫
Θ

dqr
l2r
z2q (t, y) dy

= −D̄q

∫
Θ

z2q (t, y) dy. (8)

Also, using (A1) and (A2), we have
m∑
j=1

aqj(t)

∫
Θ

zq(t, y)fj
(
zj(t, y)

)
dy

6
m∑
j=1

Lj
∣∣aqj(t)∣∣ ∫

Θ

∣∣zq(t, y)
∣∣∣∣zj(t, y)

∣∣dy
6

m∑
j=1

Ljaqj

∫
Θ

(
z2q (t, y) + z2j (t, y)

)
dy. (9)

From (7)–(9) and condition 2(i) of Theorem 1 we obtain for t 6= γk, k = 0, 1, 2 . . . ,
+DαγkV

(
t, z(t, ·)

)
6 2

m∑
q=1

[(
(cq + D̄q)−

m∑
j=1

(LjaqjLqajq)

)∫
Θ

z2q (t, y) dy

]

6 − min
16q6m

(
(cq + D̄q)−

m∑
j=1

(Ljaqj + Lqajq)

)
2

m∑
q=1

∫
Θ

z2q (t, y) dy < 0. (10)

Then, using (6), (10), and Lemma 3, we get

V
(
t, z(t, ·)

)
< V

(
0+, z0

)
, t > 0.

Hence, from condition 3 of Theorem 1 we have∥∥h(t, z)
∥∥ < V(t, z(t, ·)) < V(0+, z0) 6 Λ(H)

∥∥h(0+, z0)
∥∥

< Λ(H)λ < A, t ∈ [0,∞).

From the last estimate it follows that the impulsively controlled model (2) is (λ,A)-
practically stable with respect to the function h, and the proof is complete.
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Next, we will propose criteria for the practical exponential stability of the impulsive
control conformable reaction–diffusion neural network model (2).

Theorem 2. Assume that 0 < λ < A, assumptions (A1)–(A4), conditions 1, 3, and 2(iii)
of Theorem 1 hold, and conditions 2(i) and 2(ii) in Theorem 1 are replaced by:

2(i∗) There exists µ > 0 such that

min
16q6m

(
(cq + D̄q)−

m∑
j=1

(
Ljaqj + Lqajq

))
> µ.

2(ii∗) For t > 0, we have

Ḡ(t) =

∞∫
γk

Wα(t− γk, σ − γk)

(σ − γk)1−α
2

m∑
q=1

∣∣Iq(σ)
∣∣dσ

+

k∑
j=1

k∏
l=k−j+1

Eα(−ζ, γl − γl−1)

γk−j+1∫
tk−j

Wα(t− γk, σ − γk−j)
(σ − γk−j)1−α

× 2

m∑
q=1

∣∣Iq(σ)
∣∣dσ

< A.

Then the impulsive control conformable reaction–diffusion neural network model (2) is
(λ,A)-practically globally exponentially stable with respect to the function h, i.e., the
h-manifold Mt(m− p) is (λ,A)-practically globally exponentially stable.

Proof. Let 0 < λ < A, z0 ∈M0+(m− p)(λ), and consider again the Lyapunov function
V(t, z(t, ·)) defined by (5).

From (7)–(9) and condition 2(i∗) of Theorem 2 we obtain

+DαγkV
(
t, z(t, ·)

)
6 −2µV

(
t, z(t, ·)

)
+ 2

m∑
q=1

∣∣Iq(t)∣∣, t 6= γk, k = 0, 1, 2 . . . . (11)

Then from (6) and (11), according to Lemma 3 for ζ = 2µ, o(t) = 2
∑m
q=1 |Iq(t)|,

t > 0, we get

V(t, z
(
t, ·)
)
6 V(0+, z0)Eα(−2µ, t) + Ḡ(t), t > 0.

Hence, from condition 3 of Theorem 1 and condition 2(ii∗) of Theorem 2 we obtain
for t > 0, ∥∥h(t, z(t, y; z0)

)∥∥ < V(t, z(t, ·)) 6 V(0+, z0)Eα(−2µ, t) + Ḡ(t)

6 Λ(H)
∥∥h(0+, z0)∥∥Eα(−2µ, t) +A, t > 0.

Therefore,

z(t, y; z0) ∈Mt(m− p)
(
A+ Λ(H)

∥∥h(0+, z0)∥∥Eα(−2µ, t)
)
, t > 0,

i.e., system (2) is (λ,A)-practically globally exponentially stable with respect to h.
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Remark 8. Due to its advantages, the notion of practical stability has been investigated
for various applied systems [6, 20]. The recent practical stability results for fractional-
order models are additional evidences of its importance [25, 26]. The concept has been
also applied to a very few conformable models [18, 23, 27], not considering reaction–
diffusion terms. In Theorems 1 and 2, we realized our idea to apply the concept to an
impulsive conformable reaction–diffusion neural network. In addition, instead of con-
sidering separate states of the model, the practical stability is extended to sets defined
by a function h. The practical stability concept of h-manifolds extends the stability and
practical stability of a single state and includes many particular cases [21,23,27,28]. Thus,
the hybrid practical stability of h-manifolds approach offers a high-powered mechanism,
which can be applied not only for single solutions, but also in the cases when manifolds
of solutions are attractors for the models, as well as in the cases when these manifolds are
not mathematically stable, but they oscillate around acceptable trajectories.

Remark 9. The results established in this section also offer an impulsive control strategy
for model (1) that can be reached in a set time and greatly improve functionality in real
application. In fact, Theorems 1 and 2 can be applied as impulsive control mechanisms to
guarantee the practical stability and practical global exponential stability of a manifold of
states of (1) determined by a function h. The proposed criteria are in the inequality forms
for the impulse control functions and are therefore convenient for applications.

Remark 10. In most impulsive control mechanisms, some upper bounds of the impulsive
intervals and restrictions on the distance between the impulsive moments are constrained
[15, 36, 37]. One advantage of the proposed stability criteria is that they do not include
restrictions on the distance between the impulsive control instances. Hence, the proposed
mechanism improves the impulsive control strategies proposed to similar models in [15,
36, 37].

4 Robust practical stability analysis

In this section, we will consider the impulsive conformable reaction–diffusion neural
network model (2) as a “nominal” model for the following conformable neural network
model with reaction–diffusion terms and uncertain parameters:

Dαγkzq(t, y) =

n∑
r=1

∂

∂yr

(
Dqr

∂zq(t, y)

∂yr

)
− (cq + c̃q)zq(t, y)

+

m∑
j=1

(
aqj(t) + ãqj(t)

)
fj
(
zj(t, y)

)
+ Iq(t) + Ĩq(t), t 6= γk,

zq(γ
+
k , y) = zq(γk, y) + Pqk

(
zq(γk, y)

)
+ P̃qk

(
zq(γk, y)

)
, k = 1, 2, . . . ,

(12)

where 0 < α < 1, t > 0, q = 1, 2, . . . ,m, m > 2, and c̃q are constant uncertain param-
eters, ãqj are uncertainties in the connection coefficients, Ĩq represents the uncertainty
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in the external input of the q-th unit, and P̃qk, q, j = 1, 2, . . . ,m, k = 1, 2, . . . , are
uncertainties in the impulsive control functions.

In fact, uncertain parameters often exist in the real-world neural network models, and
the study of their effect on the qualitative behavior of the models is crucial [12, 19].

We will use the following definition in our robust practical stability analysis with
respect to the function h = h(t, z), h : R× Rm → Rp, p 6 m.

Definition 6. The impulsive control conformable reaction–diffusion neural network mod-
el (2) is (λ,A)-practically globally robustly exponentially stable with respect to the func-
tion h if, for given (λ,A) with 0 < λ < A and z0 ∈M0+(m−p)(λ), the uncertain model
(12) is (λ,A)-practically globally exponentially stable with respect to the function h for
uncertain parameters c̃q , ãqj and P̃qk, q, j = 1, 2, . . . ,m, k = 1, 2, . . . , taking values in
some bounded sets.

In this section, we will present global robust stability criteria for the equilibrium z∗ of
model (2) with respect to the function h.

The following robust practical result is a direct corollary of Theorem 2.

Theorem 3. Assume that conditions of Theorem 2 hold, 2(i∗), 2(ii∗) of Theorem 2 and
2(iii) of Theorem 1 are respectively replaced by:

2(i∗∗) There exists µ > 0 such that

min
16q6m

(
(cq + c̄q + D̄r)−

m∑
j=1

(
Lj(aqj + ãqj) + Lq(ajq + ãjq)

))
> µ.

2(ii∗∗) For t > 0, we have

Ḡ∗(t) =

∞∫
γk

Wα(t− γk, σ − γk)

(σ − γk)1−α
2

m∑
q=1

(∣∣Iq(σ)
∣∣+
∣∣Ĩq(σ)

∣∣) dσ

+

k∑
j=1

k∏
l=k−j+1

Eα(−ζ, γl − γl−1)

γk−j+1∫
γk−j

Wα(t− γk, σ − γk−j)
(σ − γk−j)1−α

× 2

m∑
q=1

(∣∣Iq(σ)
∣∣+
∣∣Ĩq(σ)

∣∣) dσ

< A.

2(iii∗∗) The uncertainties in the impulsive controls P̃qk(zq(γk, y)) = −ν̃qkzq(γk, y)
and the unknown constants ν̃qk are such that 0 < ν̃qk < 2 − ηqk, q =
1, 2, . . . ,m, k = 1, 2, . . . .

Then the impulsive control conformable reaction–diffusion neural network model (2) is
(λ,A)-practically globally robustly exponentially stable with respect to the function h,
i.e., the h-manifoldMt(m−p) is (λ,A)-practically globally robustly exponentially stable.
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Remark 11. In many previous works, the robust stability have been investigated for
numerous systems. All these works considered the effects of some bounded uncertain
parameters on the stability performance of a system. Theorem 3 pioneers the robust
stability analysis for the impulsive conformable reaction–diffusion model (2).

5 Representative examples

Example 1. In this example, we consider the following conformable network model with
reaction–diffusion terms as a drive system:

Dαγk z̄q(t, y) =

n∑
r=1

∂

∂yr

(
Dqr

∂z̄q(t, y)

∂yr

)
− cq z̄q(t, y)

+

m∑
j=1

aqj(t)fj
(
z̄j(t, y)

)
+ Iq(t), (13)

where n = m = 2, t > 0, 0 < α < 1, c1 = 2, c2 = 3, fj(z̄j) = (|z̄j + 1| − |z̄j − 1|)/2,
j = 1, 2, Θ = {y: y = (y1, y2)T, |yr| < 1}, r = 1, 2, Iq(t) are continuous on R+,
q = 1, 2,

(aqj)2×2 =

(
a11 a12
a21 a22

)
=

(
0.4 sin t+ 1 0.2 cos t

0.9 cos t 1 + 0.2 sin t

)
,

(Dqr)2×2 =

(
D11 D12

D21 D22

)
=

(
5 + cos t 0

0 4 + sin t

)
.

The impulsively controlled conformable model is

Dαγkzq(t, y) =

n∑
r=1

∂

∂yr

(
Dqr

∂zq(t, y)

∂yr

)
− cqzq(t, y)

+

m∑
j=1

aqj(t)fj
(
zj(t, y)

)
+ Iq(t), t 6= γk,

zq(γ
+
k , y) = zq(γk, y) + Pqk

(
zq(γk, y)

)
, k = 1, 2, . . . ,

(14)

where 0 < γ1 < γ2 < · · · , γk → ∞ as k → ∞, the impulsive functions are
Pqk(zq(γk, y)) = −zq(γk, y)/5, q = 1, 2, k = 1, 2, . . . .

System (14) satisfies assumption (A1) for Lq = 1. Also, the constants dqr, q = 1, 2,
r = 1, 2, in (A3) are

(dqr)2×2 =

(
d11 d12
d21 d22

)
=

(
4 0
0 3

)
.

Consider a continuous function h : R3 → R2, which satisfies condition 3 of Theo-
rem 1, and the h-manifold

Mt(0) =
{
z ∈ R2: h1(t, z) = h2(t, z) = 0, t > 0

}
.
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We can also check that condition 2(i) of Theorem 1 is satisfied. Hence, for Iq(t) = 0,
q = 1, 2, t > 0, by Theorem 1 we can conclude that if 0 < λ < A are such that
z0 ∈ M0+(0)(λ), then the impulsively controlled model (14) is (λ,A)-practically stable
with respect to the function h.

Example 2. Consider model (13) as a drive system with I1(t) = cos t, I2(t) = 1.3, t > 0,
and the corresponding impulsive control model (14) with 0 < γ1 < γ2 < · · · , γk → ∞
as k → ∞, the impulsive functions are Pqk(zq(γk, y)) = −zq(γk, y)/5, q = 1, 2, k =
1, 2, . . . .

For the parameters of the impulsive conformable reaction–diffusion neural network
model (14), condition 2(i*) of Theorem 2 is satisfied for any 0 < µ 6 2.1 since

min
16q6m

(
(cq + D̄q)−

m∑
j=1

(Ljaqj + Lqajq)

)
= 2.1.

Hence, for 0 < λ < A, Theorem 2 guarantees that the impulsive control conformable
reaction–diffusion neural network model (14) is (λ,A)-practically globally exponentially
stable with respect to the function h for Ḡ(t) < A.

Example 3. Consider the conformable impulsive reaction–diffusion model (14) as a “nom-
inal” system and the corresponding uncertain model

Dαγkzq(t, y) =

n∑
r=1

∂

∂yr

(
Dqr

∂zq(t, y)

∂yr

)
− (cq + c̃q)zq(t, y)

+

m∑
j=1

(
aqj(t) + ãqj(t)

)
fj
(
zj(t, y)

)
+ Iq(t) + Ĩq(t), t 6= γk,

zq(γ
+
k , y) = zq(γk, y) + Pqk(zq(γk, y)) + P̃qk(zq(γk, y)), k = 1, 2, . . . ,

where t > 0, q = 1, 2, with uncertain parameters: c̃q , ãqj , Ĩq , and P̃qk, q, j = 1, 2,
k = 1, 2, . . . .

If the uncertain parameters satisfy the boundedness condition

min
16q6m

(
(cq + c̄q + D̄r)−

m∑
j=1

(
Lj(aqj + ãqj) + Lq(ajq + ãjq)

))
> µ

and the uncertainties in the impulsive controls P̃qk(zq(γk, y)) = −νqkzq(γk, y) are such
that 0 < ν̃qk < 9/5, q = 1, 2, k = 1, 2, . . . , then, according to Theorem 3, the impulsive
control conformable reaction–diffusion neural network model (14) is (λ,A)-practically
globally robustly exponentially stable with respect to the function h.

If one of the above conditions is not satisfied, for example, if ν̃qk > 9/5, q = 1, 2,
k = 1, 2, . . . , we cannot make a conclusion about the (λ,A)-practical global robust
exponential stable behavior of system (14) with respect to the function h.
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Remark 12. The presented examples demonstrate the efficiency of the proposed results.
In addition, we demonstrate how the impulses can affect the stability behavior of the
states. Hence, suitable impulsive control strategies can be applied. In addition, Example 2
shows that the external input has a significant impact on the h-manifold stability.

6 Conclusions

In this paper, a conformable approach is applied to extend the class of impulsive reac-
tion–diffusion neural networks. The extended model has all the advantages of impulsive
reaction–diffusion models applied as frameworks for modeling real-world processes in
science, engineering, biology, and medicine. In addition, it has the flexibility provided by
the use of conformable derivatives. The hybrid concept of practical stability with respect
to h-manifolds is introduced into the model, and new criteria that guarantee the practical
stability of h-manifold and the practical global exponential stability of h-manifold are
established. The conformable Lyapunov function method is applied to derive our results.
Robust stability analysis is also conducted considering the effect of uncertain parameters.
Three examples are presented to demonstrate the results derived. An area of future devel-
opment of the theory involves the consideration of delay effects on the stability behavior.
It is also interesting to extend the conformable approach and the proposed results to fuzzy
models.
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