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Abstract. We investigate a triple system of fractional Sturm–Liouville–Langevin equations with
cyclic antiperiodic boundary conditions. The fixed point theorem serves as a tool to establish the
existence and uniqueness criteria for solutions. By applying the Banach contraction principle, we
also obtain the Ulam–Hyers stability of the proposed system. Finally, examples are provided to
illustrate main results.
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1 Introduction

In this paper, we study a new triple system of nonlinear fractional equations
CDβ

[(
p(s)CDα + q(s)

)
xi(s) + r(s)Iθgi

(
s, xi(s)

)]
= fi

(
s, x1(s), x2(s), x3(s)

)
(1)

under cyclic antiperiodic boundary conditions

x1(a) + x2(b) = 0, CDαx1(a) + CDαx2(b) = 0,

x2(a) + x3(b) = 0, CDαx2(a) + CDαx3(b) = 0,

x3(a) + x1(b) = 0, CDαx3(a) + CDαx1(b) = 0,

(2)

where s ∈ [a, b], CDα and CDβ denote the Caputo fractional derivative of orders α
and β, 0 <α, β< 1, Iθ denotes the Riemann–Liouville fractional integral of order θ > 0,
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p ∈ C([a, b],R+\{0}), q, r ∈ C([a, b],R+), fi : [a, b]×R3 → R, and gi : [a, b]×R→ R,
i = 1, 2, 3, are given functions.

In recent years, due to the rapid iteration of computer technology and the contin-
uous in-depth research on fractional calculus theory, it has been discovered that frac-
tional calculus is effective in describing physical processes with memory and historical
significance. In addition, fractional calculus is widely applied in numerous fields, such
as anomalous diffusion [17], fluid mechanics [25], signal processing and control [26],
image processing, magnetic resonance imaging [22,23], soft matter research [10], seismic
analysis [16], and so on. The self-adjoint property of second-order linear Sturm–Liouville
equation (SLE) has been applied in many fields. In quantum mechanics, it ensures that the
energy of the Hamiltonian operator is a real number, which is very important to describe
the stability of the physical system. The Langevin equation (LE) is a differential equation
used to describe stochastic processes. Its inherent randomness has proven to have signif-
icant value in describing the dynamic behavior of complex systems. It is worth noting
that fractional Sturm–Liouville–Langevin equations (FSLLEs) not only incorporate the
self-adjoint properties of SLE and the randomness of LE, but also introduce the nonlocal
properties of fractional calculus. These characteristics enable FSLLEs to more accurately
describe dynamic behavior in complex systems, especially when dealing with systems
with non integer dimensions or nonlocal interactions. In [5], Baleanu et al. studied the
coupled FSLEEs with nonlocal boundary conditions and proved the existence result.
In [8], the author obtained the existence result of FSLLEs by applying Kuratowski non-
compactness measure method. For more detailed information on the existence, stability,
and multiplicity of solutions, and on numerical methods for obtaining them, the reader is
referred to [2, 6, 7, 9, 13, 20, 21].

On the other hand, cyclic boundary conditions are frequently employed in numerical
simulations and computations, particularly when dealing with problems exhibiting pe-
riodicity or cyclic characteristics. These conditions require that the values of physical
quantities at the boundaries of the simulation region be equal to their corresponding
values at the opposite boundaries or satisfy some specific relationship in order to simulate
infinite or periodic systems. Under cyclic boundary conditions, the author studied the
analytical solution of the mathematical model with relaxation and temperature damping
characteristics in [15]. The authors present existence results for solutions to three ordinary
differential equations with cyclic boundary conditions, as detailed in [1]. In [19], Matar
and Amra discussed fractional triple abstract systems and presented results on existence
and uniqueness within cyclic boundary conditions. In a recent work [27], Zhang et al.
considered the existence result and Ulam-type stability of triple systems of the fractional
Langevin equation with cyclic antiperiodic boundary conditions. For related work on
triple system models involving different types of differential equations and numerous
boundary conditions, please refer to articles [3, 4, 11, 12, 18, 24].

The novelty of the current work is outlined as follows:

(i) A triple system of FSLEEs with cyclic antiperiodic boundary conditions is pro-
posed. We discuss the existence and uniqueness results, also we analyze Ulam–
Hyers stability.
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(ii) Problem (1)–(2) is more general than those considered previously. Our work
extends the results in [5–9, 13, 21] to a tripled system of FSLLEs, while the
problem discussed in [27] appears as a special case.

(iii) FSLLEs are nonlocal equations, which complicates a priori estimation.
(iv) Problem (1)–(2) illustrates coupling relationships among the equations as well as

the duality relationships among the boundary conditions.

Section 2 provides background knowledge of fractional integrals and derivatives. In
Section 3, the existence and uniqueness results for problem (1)–(2) have been established.
Section 4 presents analytical techniques for studying the Ulam–Hyers stability. Finally,
numerical examples are presented to illustrate the obtained results.

2 Preliminaries

Definition 1. (See [27].) The Riemann–Liouville fractional integral of order α for a func-
tion f : [a, b]→ R is defined by

Iβf(s) =
1

Γ(α)

s∫
a

(s− µ)α−1f(µ) dµ, s > a,

provided the integral exists.

Definition 2. (See [27].) Let α > 0, n = [α] + 1. The Caputo fractional derivative of
order α for a function f(s) ∈ ACn[0,∞) is given by

CDαf(s) =
1

Γ(n− α)

s∫
a

(s− µ)
n−α−1

f (n)(µ) dµ s > a,

where [α] denotes the integer part of the real number α.

Lemma 1. (See [27].) Let α > 0, n = [α] + 1 and f ∈ ACn[a, b]. Then

IαCDαf(s) = f(s) +

n−1∑
i=0

cis
i, a < s < b,

where c0, c1, . . . , cn−1 ∈ R.

Lemma 2. (See [27].) Let α, β > 0 and f ∈ C(a, b). Then(
IαIβf

)
(s) = (Iα+βf)(s), Iαsβ−1 =

Γ(β)

Γ(α+ β)
sα+β−1,

CDαIαf(s) = f(s), CDαsβ−1 =
Γ(β)

Γ(β − α)
sβ−α−1.

Now, we propose an auxiliary lemma to analyze problem (1)–(2).

Lemma 3. Let hi ∈ C([a, b],R), i = 1, 2, 3, 1 < α+ β < 2. Then the solution of tripled
system

CDβ
[(
p(s)CDα + q(s)

)
xi(s) + r(s)Iθgi(s)

]
= hi(s), s ∈ [a, b], (3)
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subject to BVPs (2), is defined by

x1(s) =
1

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1h1(ν) dν

)
dµ

+
1

2Γ(β)

b∫
a

(b− µ)α−1[V1h2(µ)− V3h1(µ)− V2h3(s)
]
dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 q(µ)

p(µ)

[
x1(µ) + x2(µ)− x3(µ)

]
dµ

− r(s)

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1g1(v) dν

)
dµ

+
r(s)

2Γ(θ)

b∫
a

(b− µ)θ−1[V3g1(µ) + V2g3(µ)− V1g2(µ)
]
dµ

+
r(s)(s− a)α

p(s)Γ(α+ 1)Γ(θ)

b∫
a

(b− µ)θ−1[w1g1(µ) + w2g2(µ)− w3g3(µ)
]
dµ

+
(s− a)α

p(s)Γ(α+ 1)Γ(β)

b∫
a

(b− µ)β−1[w3h3(µ)− w1h1(µ)− w2h2(µ)
]
dµ

+
r(s)

2Γ(α)

b∫
a

(b−µ)α−1 1

p(µ)

(
1

Γ(θ)

b∫
a

(µ−ν)θ−1[g1(ν)+g2(ν)−g3(ν)
]
dν

)
dµ

+
1

2Γ(α)

b∫
a

(b−µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ−ν)β−1[h3(ν)−h1(ν)−h2(ν)
]
dν

)
dµ

− 1

Γ(α)

s∫
a

(s−µ)α−1 q(µ)

p(µ)
x1(µ) dµ, (4)

x2(s) =
1

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1h2(ν) dν

)
dµ

+
1

2Γ(β)

b∫
a

(b− µ)β−1[V1h3(µ)− V3h2(µ)− V2h1(µ)
]
dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 q(µ)

p(µ)

[
x2(µ) + x3(µ)− x1(µ)

]
dµ

− r(s)

Γ(α)

s∫
a

(s− µ)α−1 1

p(s)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1g2(ν) dν

)
dµ
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+
r(s)

2Γ(θ)

b∫
a

(b− µ)θ−1[V2g1(µ) + V3g2(µ)− V1g3(µ)
]
dµ

+
r(s)(s− a)α

p(s)Γ(α+ 1)Γ(θ)

b∫
a

(b− µ)θ−1[w1g2(µ) + w2g3(µ)− w3g1(µ)
]
dµ

+
(s− a)α

p(s)Γ(α+ 1)Γ(β)

b∫
a

(b− µ)β−1[w3h1(µ)− w1h2(µ)− w2h3(µ)
]
dµ

+
r(s)

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1[g2(ν) + g3(ν)− g1(ν)
]
dν

)
dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1[h1(ν)− h2(ν)− h3(ν)
]
dν

)
dµ

− 1

Γ(α)

s∫
a

(s− µ)α−1 q(µ)

p(µ)
x2(µ) dµ, (5)

x3(s) =
1

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1h3(ν) dν

)
dµ

+
1

2Γ(β)

b∫
a

(b− µ)β−1[V1h1(µ)− V2h2(µ)− V3h3(µ)
]
dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 q(µ)

p(µ)

[
x1(µ) + x3(µ)− x2(µ)

]
dµ

− r(s)

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1g3(ν) dν

)
dµ

+
r(s)

2Γ(θ)

b∫
a

(b− µ)θ−1[V2g2(µ) + V3g3(µ)− V1g1(µ)
]
dµ

+
r(s)(s− a)α

p(s)Γ(α+ 1)Γ(θ)

b∫
a

(b− µ)θ−1[w1g3(µ) + w2g1(µ)− w3g2(µ)
]
dµ

+
(s− a)α

p(s)Γ(α+ 1)Γ(β)

b∫
a

(b− µ)β−1[w3h2(µ)− w1h3(µ)− w2h1(µ)
]
dµ

+
r(s)

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1[g1(ν) + g3(ν)− g2(ν)
]
dν

)
dµ
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+
1

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1[h2(ν)− h1(ν)− h3(ν)
]
dν

)
dµ

− 1

Γ(α)

s∫
a

(s− µ)α−1 q(µ)

p(µ)
x3(µ) dµ. (6)

Proof. By applying operator Iβ to both sides of (3), we get[
p(s)CDα + q(s)

]
xi(s) + r(s)Iθgi(s) = Iβhi(s) + ci0, ci0 ∈ R,

and
CDαxi(s) =

1

p(s)
Iβhi(s)−

q(s)

p(s)
xi(s)−

r(s)

p(s)
Iθgi(s) +

ci0
p(s)

. (7)

Using the operator Iα to (7), then

xi(s) = Iα
1

p(s)
Iβhi(s)− Iα

q(s)

p(s)
xi(s)− Iα

r(s)

p(s)
Iαgi(s)

+
(s− a)

α

p(s)Γ(α+ 1)
ci0 + ci1, ci0, c

i
1 ∈ R, i = 1, 2, 3. (8)

From (7) and (8) we get

CDαxi(a) =
ci0
p(a)

− q(a)

p(a)
xi(a), (9)

CDαxi(b) =
1

p(b)
Iβhi(s)

∣∣
s=b
− q(b)

p(b)
xi(b) +

ci0
p(b)

− r(s)

p(b)
Iθgi(s)

∣∣
s=b

, (10)

xi(a) = ci1, (11)

xi(b) = Iα
(

1

p(s)
Iβhi(s)

)∣∣∣∣
s=b

− Iα
(
q(s)

p(s)
xi(s)

)∣∣∣∣
s=b

(12)

+
(b− a)α

p(b)Γ(α+ 1)ci0
− Iα

(
r(s)

p(s)
Iθgi(s)

)∣∣∣∣
s=b

+ ci1. (13)

Substituting (9)–(13) into BVPs (2), we obtain

1

p(a)
c10 +

1

p(b)
c20 = A, c11 +

(b− a)
β

p(b)Γ(α+ 1)
c20 + c21 = D,

1

p(a)
c20 +

1

p(b)
c30 = B, c21 +

(b− a)
β

p(b)Γ(α+ 1)
c30 + c31 = E,

1

p(a)
c30 +

1

p(b)
c10 = C, c31 +

(b− a)
β

p(b)Γ(α+ 1)
c10 + c11 = F,
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where
A = − 1

p(b)
Iβh2(s)

∣∣
s=b

+
r(s)

p(b)
Iθg2(s)

∣∣
s=b

,

B = − 1

p(b)
Iβh3(s)

∣∣
s=b

+
r(s)

p(b)
Iθg3(s)

∣∣
s=b

,

C = − 1

p(b)
Iβh1(s)

∣∣
s=b

+
r(s)

p(b)
Iθg1(s)

∣∣
s=b

,

D = Iα
(
q(s)

p(s)
x2(s)

)∣∣∣∣
s=b

+ Iα
(
r(s)

p(s)
Iθg2(s)

)∣∣∣∣
s=b

− Iα
(

1

p(s)
Iβh2(s)

)∣∣∣∣
s=b

,

E = Iα
(
q(s)

p(s)
x3(s)

)∣∣∣∣
s=b

+ Iα
(
r(s)

p(s)
Iθg3(s)

)∣∣∣∣
s=b

− Iα
(

1

p(s)
Iβh3(s)

)∣∣∣∣
s=b

,

F = Iα
(
q(s)

p(s)
x1(s)

)∣∣∣∣
s=b

+ Iα
(
r(s)

p(s)
Iθg1(s)

)∣∣∣∣
s=b

− Iα
(

1

p(s)
Iβh1(s)

)∣∣∣∣
s=b

.

To obtain the values of ci0 and ci1, we solve the following equation:

1
p(a)

1
p(b) 0 0 0 0

0 1
p(a)

1
p(b) 0 0 0

1
p(b) 0 1

p(a) 0 0 0

0 (b−a)α

p(b)Γ(α+1) 0 1 1 0

0 0 (b−a)α

p(b)Γ(α+1) 0 1 1
(b−a)α

p(b)Γ(α+1) 0 0 1 0 1




c10
c20
c30
c11
c21
c31

 =


A
B
C
D
E
F

 .

The determinant of the coefficient matrix is nonzero, so we have

c10 =
1

Γ(β)

b∫
a

(b− µ)β−1(w3h3(µ)− w1h1(µ)− w2h2(µ)
)

dµ

+
r(s)

Γ(θ)

b∫
a

(b− µ)θ−1[w1g1(µ) + w2g2(µ)− w3g3(µ)
]
dµ,

c20 =
1

Γ(β)

b∫
a

(b− µ)β−1(w3h1(µ)− w1h2(µ)− w2h3(µ)
)

dµ

+
r(s)

Γ(θ)

b∫
a

(b− µ)θ−1[w1g2(µ) + w2g3(µ)− w3g1(µ)
]
dµ,

c30 =
1

Γ(β)

b∫
a

(b− µ)β−1(w3h2(µ)− w1h3(µ)− w2h1(µ)
)

dµ

+
r(s)

Γ(θ)

b∫
a

(b− µ)θ−1[w1g3(µ) + w2g1(µ)− w3g2(µ)
]
dµ,
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c11 =
1

2Γ(α)

b∫
a

(b− µ)α−1 q(µ)

p(µ)

(
x1(µ) + x2(µ)− x3(µ)

)
dµ

+
1

2Γ(β)

b∫
a

(b− µ)β−1[V1h2(µ)− V2h3(µ)− V3h1(µ)
]
dµ

+
r(s)

2Γ(θ)

b∫
a

(b− µ)θ−1[V3g1(µ) + V2g3(µ)− V1g2(µ)
]
dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1[h3(ν)− h1(ν)− h2(ν)
]
dν

)
dµ

+
r(s)

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1[g1(ν) + g2(ν)− g3(ν)
]
dν

)
dµ

c21 =
1

2Γ(β)

b∫
a

(b− µ)β−1[V1h3(µ)− V3h2(µ)− V2h1(µ)
]
dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 q(µ)

p(µ)

(
x2(µ) + x3(µ)− x1(µ)

)
dµ

+
r(s)

2Γ(θ)

b∫
a

(b− µ)θ−1[V2g1(µ) + V3g2(µ)− V1g3(µ)
]
dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1[h1(ν)− h2(ν)− h3(ν)
]
dν

)
dµ

+
r(s)

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1[g2(ν) + g3(ν)− g1(ν)
]
dν

)
dµ,

c31 =
1

2Γ(β)

b∫
a

(b− µ)β−1[V1h1(µ)− V2h2(µ)− V3h3(µ)
]
dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 q(µ)

p(µ)

(
x1(µ) + x3(µ)− x2(µ)

)
dµ

+
r(s)

2Γ(θ)

b∫
a

(b− µ)θ−1[V2g2(µ) + V3g3(µ)− V1g1(µ)
]
dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1[h2(ν)− h1(ν)− h3(ν)
]
dν

)
dµ

+
r(s)

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1[g1(ν) + g3(ν)− g2(ν)
]
dν

)
dµ.
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Finally, we substitute the values of ci0 and ci1 (i = 1, 2, 3) into (8), thus obtaining solu-
tions (4)–(6). Conversely, one easily verifies that (x1, x2, x3) given by (4)–(6) satisfies
system (3) and BVPs (2). The proof is completed.

3 Existence and uniqueness results

LetX = C[(a, b),R] be Banach space endowed with the norm ‖x‖∞ = maxs∈[a,b] |x(s)|.
Then X = X3 is a Banach space with the norm∥∥(x1, x2, x3)‖X = ‖x1‖∞ + ‖x2‖∞ + ‖x3‖∞, (x1, x2, x3) ∈ X.

In view of Lemma 3, we define the operator T : X→ X by

T (x1, x2, x3)(s) =
(
T1(x1, x2, x3)(s), T2(x1, x2, x3)(s), T3(x1, x2, x3)(s)

)
. (14)

Letting

gi(µ) = gi
(
x, xi(µ)

)
, fi(µ) = fi

(
µ, x1(µ), x2(µ), x3(µ)

)
, i = 1, 2, 3,

we can express Ti(x1, x2, x3)(s), i = 1, 2, 3, as

T1(x1, x2, x2)(s)

=
1

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1f1(ν) dν

)
dµ

+
1

2Γ(β)

b∫
a

(b− µ)α−1[V1f2(µ)− V3f1(µ)− V2f3(s)
]
dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 q(µ)

p(µ)

[
x1(µ) + x2(µ)− x3(µ)

]
dµ

− r(s)

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1g1(v) dν

)
dµ

+
r(s)

2Γ(θ)

b∫
a

(b− µ)θ−1[V3g1(µ) + V2g3(µ)− V1g2(µ)
]
dµ

+
r(s)(s− a)α

p(s)Γ(α+ 1)Γ(θ)

b∫
a

(b− µ)θ−1[w1g1(µ) + w2g2(µ)− w3g3(µ)
]
dµ

+
(s− a)α

p(s)Γ(α+ 1)Γ(β)

b∫
a

(b− µ)β−1[w3f3(µ)− w1f1(µ)− w2f2(µ)
]
dµ

+
r(s)

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(θ)

b∫
a

(µ− ν)θ−1[g1(ν) + g2(ν)− g3(ν)
]
dν

)
dµ
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+
1

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1[f1(ν)− f2(ν)− f3(ν)
]
dν

)
dµ

− 1

Γ(α)

s∫
a

(s− µ)α−1 q(µ)

p(µ)
x1(µ) dµ

T2(x1, x2, x2)(s)

=
1

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1f2(ν) dν

)
dµ

+
1

2Γ(β)

b∫
a

(b− µ)β−1[V1f3(µ)− V3f2(µ)− V2f1(µ)
]
dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 q(µ)

p(µ)

[
x2(µ) + x3(µ)− x1(µ)

]
dµ

− r(s)

Γ(α)

s∫
a

(s− µ)α−1 1

p(s)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1g2(ν) dν

)
dµ

+
r(s)

2Γ(θ)

b∫
a

(b− µ)θ−1[V2g1(µ) + V3g2(µ)− V1g3(µ)
]
dµ

+
r(s)(s− a)α

p(s)Γ(α+ 1)Γ(θ)

b∫
a

(b− µ)θ−1[w1g2(µ) + w2g3(µ)− w3g1(µ)
]
dµ

+
(s− a)α

p(s)Γ(α+ 1)Γ(β)

b∫
a

(b− µ)β−1[w3f1(µ)− w1f2(µ)− w2f3(µ)
]
dµ

+
r(s)

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1[g2(ν) + g3(ν)− g1(ν)
]
dν

)
dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1[f1(ν)− f2(ν)− f3(ν)
]
dν

)
dµ

− 1

Γ(α)

s∫
a

(s− µ)α−1 q(µ)

p(µ)
x2(µ) dµ,

T3(x1, x2, x2)(s)

=
1

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1f3(ν) dν

)
dµ

+
1

2Γ(β)

b∫
a

(b− µ)β−1[V1f1(µ)− V2f2(µ)− V3f3(µ)
]
dµ
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+
1

2Γ(α)

b∫
a

(b− µ)α−1 q(µ)

p(µ)

[
x1(µ) + x3(µ)− x2(µ)

]
dµ

− r(s)

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1g3(ν) dν

)
dµ

+
r(s)

2Γ(θ)

b∫
a

(b− µ)θ−1[V2g2(µ) + V3g3(µ)− V1g1(µ)
]
dµ

+
r(s)(s− a)α

p(s)Γ(α+ 1)Γ(θ)

b∫
a

(b− µ)θ−1[w1g3(µ) + w2g1(µ)− w3g2(µ)
]
dµ

+
(s− a)α

p(s)Γ(α+ 1)Γ(β)

b∫
a

(b− µ)β−1[w3f2(µ)− w1f3(µ)− w2f1(µ)
]
dµ

+
r(s)

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1[g1(ν) + g3(ν)− g2(ν)
]
dν

)
dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1[f2(ν)− h1(ν)− f3(ν)
]
dν

)
dµ

− 1

Γ(α)

s∫
a

(s− µ)α−1 q(µ)

p(µ)
x3(µ) dµ.

The following constants are introduced to simplify calculations:

p̄ = min
s∈[a,b]

∣∣p(s)∣∣, q̄ = max
s∈[a,b]

∣∣q(s)∣∣, r̄ = max
s∈[a,b]

∣∣r(s)∣∣,
a =

3(b− a)
β

2Γ(α+ 1)Γ(β + 1)p̄
+

(b− a)
α+β

w1

Γ(α+ 1)Γ(β + 1)p̄
+

(b− a)
β
V3

2Γ(β + 1)
,

b =
(b− a)

β

2Γ(α+ 1)Γ(β + 1)p̄
+

(b− a)
α+β

w2

Γ(α+ 1)Γ(β + 1)p̄
+

(b− a)
β
V1

2Γ(β + 1)
,

c =
(b− a)

β

2Γ(α+ 1)Γ(β + 1)p̄
+

(b− a)
α+β

w3

Γ(α+ 1)Γ(β + 1)p̄
+

(b− a)
β
V2

2Γ(β + 1)
,

d =
3r̄(b− a)

α+θ

2Γ(α+ 1)Γ(θ + 1)p̄
+

r̄(b− a)
α+θ

w1

Γ(α+ 1)Γ(θ + 1)p̄
+
r̄(b− a)

θ
V3

2Γ(θ + 1)
,

e =
r̄(b− a)

α+θ

2Γ(α+ 1)Γ(θ + 1)p̄
+

r̄(b− a)
α+θ

w2

Γ(α+ 1)Γ(θ + 1)p̄
+
r̄(b− a)

θ
V1

2Γ(θ + 1)
,

f =
r̄(b− a)

α+θ

2Γ(α+ 1)Γ(θ + 1)p̄
+

r̄(b− a)
α+θ

w3

Γ(α+ 1)Γ(θ + 1)p̄
+
r̄(b− a)

θ
V2

2Γ(θ + 1)
.

The following existence result is based on Krasnoselskii’s fixed point theorem [14].
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Theorem 1. Assume that:

(A1) The functions fi : [a, b]× R3 → R, gi : [a, b]× R→ R are continuous.
(A2) There exist nonnegative functions ki(s), ui(s), vi(s), $i(s) ∈ C[a, b] such that,

for all (s,m, n,Θ) ∈ [a, b]× R3,∣∣fi(s,m, n,Θ)
∣∣ 6 ki(s) + ui(s)|m|+ vi(s)|n|+$i(s)|Θ|, i = 1, 2, 3.

(A3) There exist positive constants λi such that, for all (s, x) ∈ [a, b] × R, the
following inequality holds:∣∣gi(s, xi(s))∣∣ 6 λi|xi|, i = 1, 2, 3.

Then problem (1)–(2) has at least one solution on [a, b], provided that

2Γ(α+ 1)p̄− 5(b− a)
α
q̄ − 2Γ(α+ 1)p̄∇ > 0, (15)

where

∇ = (a + b + c)(l1 + l2 + l3) + (d + e + f)(λ1 + λ2 + λ3),

li = ui + vi +$i, i = 1, 2, 3,

ki = max
s∈[a,b]

∣∣ki(s)∣∣, ui = max
s∈[a,b]

∣∣ui(s)∣∣,
vi = max

s∈[a,b]

∣∣vi(s)∣∣, $i = max
s∈[a,b]

∣∣$i(s)
∣∣.

Proof. Let ε > 0 be such that

ε >
2Γ(α+ 1)p̄(a + b + c)

∑3
i=1 ki

2Γ(α+ 1)p̄− 5(b− a)
α
q̄ − 2Γ(α+ 1)∇p̄

,

and consider the subsets

Bε =
{
x = (x1, x2, x3) ∈ X3: ‖x‖X 6 ε

}
.

Define two operators F and G on set Bε by

(Fy)(s) =
(
F1(x1, x2, x3), F2(x1, x2, x3), F3(x1, x2, x3)

)
(s),

(Gy)(s) =
(
G1(x1, x2, x3), G2(x1, x2, x3), G3(x1, x2, x3)

)
(s),

where

F1(x1, x2, x3) = − 1

Γ(α)

s∫
a

(s− µ)α−1 q(µ)

p(µ)
x1(µ) dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 q(µ)

p(µ)

(
x1(µ) + x2(µ)− x3(µ)

)
dµ,
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F2(x1, x2, x3) = − 1

Γ(α)

s∫
a

(s− µ)α−1 q(µ)

p(µ)
x2(µ) dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 q(µ)

p(µ)

(
x2(µ) + x3(µ)− x1(µ)

)
dµ,

F3(x1, x2, x3) = − 1

Γ(α)

s∫
a

(s− µ)α−1 q(µ)

p(µ)
x3(µ) dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 q(µ)

p(µ)

(
x1(µ) + x3(µ)− x2(µ)

)
dµ,

G1(x1, x2, x3)

=
1

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)α−1f1(ν) dν

)
dµ

+
1

2Γ(β)

b∫
a

(b− µ)β−1(V1f2(µ)− V3f1(µ)− V2f3(µ)
)

dµ

+
(s− a)α

p(s)Γ(α+ 1)Γ(β)

b∫
a

(b− µ)β−1(w3f3(µ)− w1f1(µ)− w2f2(µ)
)

dµ

− r(s)

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1g1(ν) dν

)
dµ

+
r(s)

2Γ(θ)

b∫
a

(b− µ)θ−1(V3g1(µ) + V2g3(µ)− V1g2(µ)
)

dµ

+
r(s)(s− a)α

p(s)Γ(α+ 1)Γ(θ)

b∫
a

(b− µ)θ−1(w1g1(µ) + w2g2(µ)− w3g3(µ)
)

dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1(f3(ν)− f1(ν)− f2(ν)
)

dν

)
dµ

+
r(s)

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1(g1(ν) + g2(ν)− g3(ν)
)

dν

)
dµ

G2(x1, x2, x3)

=
1

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1f2(ν) dν

)
dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1(T1f3(µ)− T3f2(µ)− T2f1(µ)
)

dµ
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+
(s− a)α

p(s)Γ(α+ 1)Γ(β)

b∫
a

(b− µ)β−1(w3f1(µ)− w1f2(µ)− w2f3(µ)
)

dµ

− r(s)

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1g2(ν) dν

)
dµ

+
r(s)

2p(b)Γ(θ)

b∫
a

(b− µ)θ−1(T2g1(µ) + T3g2(µ)− T1g3(µ)
)

dµ

+
r(s)(s− a)α

p(s)Γ(α+ 1)Γ(θ)

b∫
a

(b− µ)θ−1(w1g2(µ) + w2g3(µ)− w3g1(µ)
)

dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1(f1(ν)− f2(ν)− f3(ν)
)

dν

)
dµ

+
r(s)

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1(g2(ν) + g3(ν)− g1(ν)
)

dν

)
dµ

G3(x1, x2, x3)

=
1

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1f3(ν) dν

)
dµ

+
1

2Γ(β)

b∫
a

(b− µ)β−1(T1f1(µ)− T2f2(µ)− T3f3(µ)
)

dµ

+
(s− a)α

p(s)Γ(α+ 1)Γ(β)

b∫
a

(b− µ)β−1(w3f2(µ)− w1f3(µ)− w2f1(µ)
)

dµ

− r(s)

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1g3(ν) dν

)
dµ

+
r(s)

2Γ(θ)

b∫
a

(b− µ)θ−1(T2g2(µ) + T3g3(µ)− T1g1(µ)
)

dµ

+
r(s)(s− a)α

p(s)Γ(α+ 1)Γ(θ)

b∫
a

(b− µ)θ−1(w1g3(µ) + w2g1(µ)− w3g2(µ)
)

dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1(f2(ν)− f1(ν)− f3(ν)
)

dν

)
dµ

+
r(s)

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(θ)

µ∫
a

(µ− ν)θ−1(g1(ν) + g3(ν)− g2(ν)
)

dν

)
dµ.

The proof will now be presented in three steps.
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(i) In fact, for all x, y ∈ Bε such that ‖x‖X 6, ‖y‖X 6 ε, by condition (A2), then

∣∣G1(x)
∣∣ 6 (b− a)

β

2Γ(β + 1)

(
V3

(
k1 + l1‖x‖X

)
+ V1

(
k2 + l2‖x‖X

)
+ V2

(
k3 + l3‖x‖X

))
+

(b− a)
α+θ∑3

i=1 λi‖x‖X
2Γ(α+ 1)Γ(θ + 1)p̄

+
(b− a)

α+β
(k1 + l1‖x‖X)

Γ(α+ 1)Γ(β + 1)p̄

+
(b− a)

α+β∑3
i=1 wi(ki + li‖x‖X)

Γ(α+ 1)Γ(β + 1)p̄
+
r̄(b− a)

α+θ∑3
i=1 λiwi‖x‖X

Γ(α+ 1)Γ(θ + 1)p̄

+
r̄(b− a)

α+β∑3
i=1 (ki + li‖x‖X)

2Γ(α+ 1)Γ(β + 1)p̄
+
r̄(b− a)

α+θ
λ1‖x‖X

Γ(α+ 1)Γ(θ + 1)p̄

+
r̄(b− a)

θ
(V3λ1 + V1λ2 + V2λ3)‖x‖X

2Γ(θ + 1)

6 ak1 + bk2 + ck3 + (al1 + bl2 + cl3 + dλ1 + eλ2 + fλ3)ε,

|F1y| 6
1

Γ(α)

s∫
a

(s− µ)
α−1 |q(µ)|
|p(µ)|

∣∣y1(µ)
∣∣dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 |q(µ)|
|p(µ)|

(∣∣y1(µ)
∣∣+
∣∣y2(µ)

∣∣+
∣∣y3(µ)

∣∣) dµ

6
(b− a)

α
q̄

Γ(α+ 1)p̄
‖y1‖∞ +

(b− a)
α
q̄

2Γ(α+ 1)p̄

(
‖y1‖∞ + ‖y2‖∞ + ‖y3‖∞

)
6

(2‖y1‖∞ + ε)q̄

2Γ(α+ 1)p̄
(b− a)α.

Therefore, the following estimates are provided:

|G1x+ F1y| 6 ak1 + bk2 + ck3 + (al1 + bl2 + cl3 + dλ1 + eλ2 + fλ3)ε

+
(2‖y1‖∞ + ε)q̄

2Γ(α+ 1)p̄
(b− a)α.

Through analogous calculations, we also determine

|G2x+ F2y| 6 ck1 + ak2 + bk3 + (cl1 + al2 + bl3 + fλ1 + dλ2 + eλ3)ε

+
(2‖y2‖∞ + ε)q̄

2Γ(α+ 1)p̄
(b− a)α,

|G3x+ F3y| 6 bk1 + ck2 + ak3 + (bl1 + cl2 + al3 + eλ1 + fλ2 + dλ3)ε

+
(2‖y3‖∞ + ε)q̄

2Γ(α+ 1)p̄
(b− a)α.
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Consequently,

‖Gx+ Fy‖X =

3∑
i=1

‖Gix+ Fiy‖∞

6

[
(a+b+c)

3∑
i=1

li + (d+e+f)

3∑
i=1

λi

]
ε

+ (a+b+c)

3∑
i=1

ki +
5(b−a)αq̄ε

2Γ(α+ 1)p̄

6 ε.
Thus, Gx+ Fy ∈ Bε.

(ii) This step proves that F is contraction. For all x, y ∈ Bε, we have

|F1x− F1y| 6
(b− a)

α
q̄

2Γ(α+ 1)p̄

(
3∑
i=1

‖xi − yi‖∞

)
+

(b− a)
α
q̄

Γ(α+ 1)p̄
‖x1 − y1‖∞

=
(‖x− y‖X + 2‖x1 − y1‖∞)q̄

2Γ(α+ 1)p̄
(b− a)α.

Similarly, we have

|Fix− Fiy| 6
(‖x− y‖X + 2‖xi − yi‖∞)q̄

2Γ(α+ 1)p̄
(b− a)α, i = 2, 3.

So,
‖Fx− Fy‖∞ = ‖F1x− F1z‖∞ + ‖F2x− F2z‖∞ + ‖F3x− F3z‖∞

6
(3‖x− y‖X + 2‖x− y‖∞)q̄

2Γ(α+ 1)p̄
(b− a)α

6
5(b− a)

α
q̄

2p̄Γ(α+ 1)
‖x− y‖X.

Since condition (15) is satisfied, F is contraction operator.
(iii) Continuity of the functions fi implies that operators Gi is continuous. By condi-

tion (i), we conclude that Gi are uniformly bounded on the set Bε. Then, for a < s1 <
s2 6 b, we have∣∣G1x(s2)−G1x(s1)

∣∣
6

(b− a)β(k1 + l1‖x‖X)

Γ(α)Γ(β + 1)p̄

×

{ s1∫
a

(
(s2 − µ)α−1 − (s1 − µ)α−1

)
dµ+

s2∫
s1

(s2 − µ)α−1 dµ

}

+
r̄(b− a)θλ1

Γ(β)Γ(θ + 1)p̄

{ s1∫
a

(
(s2 − µ)α−1 − (s1 − µ)α−1

)
dµ+

s2∫
s1

(s2 − µ)α−1 dµ

}
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+
r̄(b− a)θ((s2 − a)α − (s1 − a)α)

Γ(α+ 1)Γ(θ + 1)p̄

3∑
i=1

wiλi

+
(b− a)β((s2 − a)α − (s1 − a)α)

Γ(α+ 1)Γ(β + 1)p̄

3∑
i=1

w1(k1 + l1‖x‖X)

6
(s2 − a)α − (s1 − a)α

Γ(α+ 1)p̄

{
(b− a)β

Γ(β + 1)

[
w1(k1 + l1‖x‖X) + w2

(
k2 + l2‖x‖X

)
+ w3

(
k3 + l3‖x‖X

)
+
(
k1 + l1‖x‖X

)]
+
r̄(b−a)θ(λ1+w1λ1+w2λ2+w3λ3)

Γ(θ+1)

}
.

Similarly, we get∣∣G2x(s2)−G2x(s1)
∣∣

6
(s2 − a)α − (s1 − a)α

Γ(α+ 1)p̄

{
(b− a)β

Γ(β + 1)

[
w3

(
k1 + l1‖x‖X

)
+ w1

(
k2 + l2‖x‖X

)
+ w2(k3 + l3‖x‖X) +

(
k2 + l2‖x‖X

)]
+
r̄(b−a)θ(λ1+w1λ1+w2λ2+w3λ3)

Γ(θ+1)

}
,∣∣G3x(s2)−G3x(s1)

∣∣
6

(s2 − a)α − (s1 − a)α

Γ(α+ 1)p̄

{
(b− a)β

Γ(β + 1)

[
w2

(
k1 + l1‖x‖X

)
+ w3

(
k2 + l2‖x‖X

)
+ w1(k3 + l3‖x‖X) +

(
k3 + l3‖x‖X

)]
+
r̄(b−a)θ(λ1+w1λ1+w2λ2+w3λ3)

Γ(θ+1)

}
.

|Gix(s2) − Gix(s1)| → 0, i = 1, 2, 3, as s2 → s1 independent of x. Thus, Gi is
equicontinuous on Bε. According to the Arzelà–Ascoli theorem, Gi is a compact on Bε.
Therefore, problem (1)–(2) has at least one solution on [a, b].

The following uniqueness result relies on the Banach contraction principle [14].

Theorem 2. Assume that:

(A1) The functions fi : [a, b] × R3 → R and gi : [a, b] × R → R, i = 1, 2, 3, are
continuous.

(A4) There exist constants ηi, Li > 0 such that, for all s ∈ [a, b], xi, yi ∈ R, i =
1, 2, 3, the following inequalities hold:∣∣gi(s, xi(s))− gi(s, yi(s))∣∣ 6 ηi|xi − yi|,∣∣fi(s, x1, x2, x3)− fi(s, y1, y2, y3)

∣∣ 6 Li
(
|x1 − y1|+ |x2 − y2|+ |x3 − y3|

)
.

Then problem (1)–(2) has unique solution on [a, b], provided that

2Γ(α+ 1)p̄∆+ 9(b− a)αq̄ < 2Γ(α+ 1)p̄, (16)
where

∆ = (a + b + c)(L1 + L2 + L3) + (e + f + d)(η1 + η2 + η3).
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Proof. Let ρ > 0 be such that

ρ >
(a + b + c)

∑3
i=1Mi + (d + e + f)

∑3
i=1Ni

2Γ(α+ 1)p̄− 9(b− a)
α
q̄ −∆2Γ(α+ 1)p̄

,

where
Mi = max

s∈[a,b]

∣∣fi(s, 0, 0, 0)
∣∣, Ni = max

s∈[a,b]

∣∣gi(s, 0)
∣∣, i = 1, 2, 3.

We prove TBρ ⊂ Bρ, where Bρ = {x ∈ X: ‖x‖X 6 ρ}. From (A4), for all x ∈ Bρ,∣∣gi(s, xi(s))∣∣ 6 ∣∣gi(x, xi(s))− gi(s, 0)
∣∣+
∣∣gi(s, 0)

∣∣
6 ηi

∥∥xi‖∞ +Ni 6 ηi‖xi‖X +Ni 6 ηiρ+Ni,∣∣fi(s, x1, x2, x3)
∣∣ 6 ∣∣fi(s, x1, x2, x3)− fi(s, 0, 0, 0)

∣∣+
∣∣fi(s, 0, 0, 0)

∣∣
6 Li

(
‖x1‖∞ + ‖x2‖∞ + ‖x3‖∞

)
+Mi

6 Li‖x‖X +Mi 6 Liρ+Mi, i = 1, 2, 3,

thus, we have∣∣T1(x1, x2, x3)(s)(x1, x2, x3)
∣∣

6
3(b− a)

α+β

2Γ(α+ 1)Γ(β + 1)p̄

(
3∑
i=1

wi(Liρ+Mi) +

3∑
i=1

(Liρ+Mi) + (L1ρ+M1)

)

+
3r̄(b− a)

α+θ

2Γ(α+ 1)Γ(θ + 1)p̄

(
3∑
i=1

wi(ηiρ+Ni) +

3∑
i=1

(ηiρ+Ni) + (η1ρ+N1)

)

+
r̄(b− a)

θ

2Γ(θ + 1)p̄

(
V3(η1ρ+N1) + V1(η2ρ+N2) + V2(η3ρ+N3)

)
+

3(b−a)αq̄ρ

2Γ(α+1)p̄

+
(b− a)

β

2Γ(β + 1)p̄

(
V3(L1ρ+M1) + V1(L2ρ+M2) + V2(L3ρ+M3)

)
6

3(b− a)
α
q̄ρ

2Γ(α+ 1)p̄
+ a(L1ρ+M1) + b(L2ρ+M2) + c(L3ρ+M3) + d(η1ρ+N1)

+ e(η2ρ+N2) + f(η3ρ+N3).

Similarly, we can deduce that∣∣T2(x1, x2, x3)(s)
∣∣

6
3(b− a)

α
q̄ρ

2Γ(α+ 1)p̄
+ c(L1ρ+M1) + a(L2ρ+M2) + b(L3ρ+M3)

+ f(η1ρ+N1) + d(η2ρ+N2) + e(η3ρ+N3),∣∣T3(x1, x2, x3)(s)
∣∣

6
3(b− a)

α
q̄ρ

2Γ(α+ 1)p̄
+ b(L1ρ+M1) + c(L2ρ+M2) + a(L3ρ+M3)

+ e(η1ρ+N1) + f(η2ρ+N2) + d(η3ρ+N3).
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As a result, we have∥∥T (x1, x2, x3)(s)
∥∥
X 6

9(b− a)
α
q̄ρ

2Γ(α+ 1)p̄
+ (a + b + c)

3∑
i=1

Mi + (d + e + f)

3∑
i=1

Ni

+

(
(a + b + c)

3∑
i=1

Li + (d + e + f)

3∑
i=1

ηi

)
ρ 6 ρ.

This implies TBρ ⊂ Bρ. Now we prove that T is a contraction mapping on Bρ. For any
x = (x1, x2, x3), y = (y1, y2, y3) ∈ X, we have∣∣T1x(s)− T1y(s)

∣∣
6

(b− a)αq̄

Γ(α+ 1)p̄
‖x1 − y1‖X +

(b− a)α+β

Γ(α+ 1)Γ(β + 1)p̄

(
3∑
i=1

wiLi‖x− y‖X

)

+
r̄(b− a)

α+θ

Γ(α+ 1)Γ(θ + 1)p̄

(
3∑
i=1

wiµi‖x− y‖X

)
+

(b− a)
α
q̄

2Γ(α+ 1)p̄
‖x− y‖X

+
3(b− a)

α+β

2Γ(α+ 1)Γ(β + 1)p̄

(
3∑
i=1

Li‖x− y‖X + L1‖x− y‖X

)

+
r̄(b− a)

α+θ

2Γ(α+ 1)Γ(θ + 1)p̄

(
3∑
i=1

µi‖x− y‖X + 2µ1‖x− y‖X

)

+
(b− a)

β

2Γ(β + 1)p̄

(
V3L1‖x− y‖X + V1L2‖x− y‖X + V2L3‖x− y‖X

)
+

r̄(b− a)
θ

2Γ(θ + 1)p̄

(
V3µ1‖x− y‖X + V1µ2‖x− y‖X + V2µ3‖x− y‖X

)
6 (aL1 + bL2 + cL3 + dµ1 + eµ2 + fµ3)‖x− y‖X

+

(
‖x− y‖X + 2‖x1 − y1‖X

)
q̄

2Γ(α+ 1)p̄
(b− a)α.

Similarly, we can get∣∣T2x(s)− T2y(s)
∣∣ 6 (cL1 + aL2 + bL3 + fη1 + dη2 + eη3)‖x− y‖X

+

(
‖x− y‖X + 2‖x2 − y2‖X

)
q̄

2Γ(α+ 1)p̄
(b− a)α,∣∣T3x(s)− T3y(s)

∣∣ 6 (bL1 + cL2 + aL3 + eη1 + fη2 + dη3)‖x− y‖X

+

(
‖x− y‖X + 2‖x3 − y3‖X

)
q̄

2Γ(α+ 1)p̄
(b− a)α.

Thus, we obtain

‖Tx− Ty‖X 6

(
∆+

9q̄(b− a)
α

2p̄Γ(α+ 1)

)
‖x− y‖X.
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According to condition (16), T has a unique fixed point x ∈ Bρ, which is the unique
solution for problem (1)–(2). The proof is completed.

4 Ulam stability

In this section, we prove the Ulam–Hyers stability of system (1)–(2). To this end, we first
present the relevant stability concepts related to our problem. Let fi : [a, b]×R3 → R be
continuous, εi > 0, i = 1, 2, 3, and s ∈ [a, b]. Suppose∣∣CDβ

[(
p(s)CDα + q(s)

)
xi(s) + r(s)Iθgi

(
s, xi(s)

)]
− fi

(
s, x1(s), x2(s), x3(s)

)∣∣ 6 εi. (17)

Definition 3. Problem (1)–(2) is said to be Ulam–Hyers stable if there exist a constant
cf1,f2,f 3 > 0 and a function ε = ε(ε1, ε2, ε3) > 0 such that, for each z = (z1, z2, z3) ∈ X
satisfying (17) and BVPs (2), there exists a solution x = (x1, x2, x3) ∈ X of problem (1)–
(2) with

‖x− z‖X 6 cf1,f2,f3ε.

Theorem 3. If hypotheses (A1), (A4) and condition (15) are satisfied, then prob-
lem (1)–(2) is Ulam–Hyers stable.

Proof. Let zi satisfy (17) and BVPs (2), and let zi, i = 1, 2, 3, be solution of

CDβ
[
(p(s)CDα + q(s))zi(s) + r(s)Iθgi(s, zi(s))

]
= fi

(
s, z1(s), z2(s), z3(s)

)
+ ϕi(s).

By Lemma 3, we have

z1(s) =
1

Γ(α)

s∫
a

(s− µ)α−1 1

p(s)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1|ϕ1(ν)| dν

)
dµ

+
1

2Γ(β)

b∫
a

(b− µ)β−1|V1ϕ2(µ)− V3ϕ1(µ)− V2ϕ3(µ)| dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1|ϕ3(ν)− ϕ1(ν)− ϕ2(ν)| dν

)
dµ

+
(s− a)α

p(s)Γ(α+ 1)Γ(β)

b∫
a

(b− µ)β−1|w3ϕ3(µ)− w1ϕ1(µ)− w2ϕ2(µ)|dµ+ x1(s),

z2(s) =
1

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1|ϕ2(ν)| dν

)
dµ

+
1

2Γ(β)

b∫
a

(b− µ)β−1
∣∣V1ϕ3(µ)− V2ϕ1(µ)− V3ϕ2(µ)

∣∣ dµ
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+
1

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1
∣∣ϕ1(ν)− ϕ2(ν)− ϕ3(ν)

∣∣dν)dµ

+
(s− a)α

p(s)Γ(α+ 1)Γ(β)

b∫
a

(b− µ)β−1
∣∣w3ϕ1(µ)− w1ϕ2(µ)− w2ϕ3(µ)

∣∣dµ+ x2(s),

z3(s) =
1

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1ϕ3(ν) dν

)
dµ

+
1

2Γ(β)

b∫
a

(b− µ)β−1(V1ϕ1(µ)− V2ϕ2(µ)− V3ϕ3(µ)
)

dµ

+
1

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)α−1(ϕ2(ν)− ϕ1(ν)− ϕ3(ν)
)

dν

)
dµ

+
(s− a)α

p(s)Γ(α+ 1)Γ(β)

b∫
a

(b− µ)β−1(w3ϕ2(µ)− w1ϕ3(µ)− w2ϕ1(µ)
)

dµ+ x3(s).

Under the current conditions, T defined in (15) is a contraction operator, and hence
problem (1)–(2) has a unique solution x = (x1, x2, x3) ∈ X, which is the fixed point
of T . From (16) we have

‖Tx− Tz‖X = ‖x− Tz‖X 6

[
∆+

5(b− a)αq̄

2Γ(α+ 1)p̄

]
‖x− z‖X.

This implies

‖x− z‖X 6
2Γ(α+ 1)p̄

2Γ(α+ 1)p̄(1−∆)− 5(b− a)αq̄
‖Tz − x‖X.

On the other hand, we have the following estimate:∣∣T1(z1, z2, z2)(s)− x1(s)
∣∣

6
1

Γ(α)

s∫
a

(s− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1|ϕ1(ν)|dν

)
dµ

+
1

2Γ(β)

b∫
a

(b− µ)β−1
∣∣V1ϕ2(µ)− V3ϕ1(µ)− V2ϕ3(µ)

∣∣ dµ
+

(s− a)α

p(s)Γ(α+ 1)Γ(β)

b∫
a

(b− µ)β−1
∣∣w3ϕ3(µ)− w1ϕ1(µ)− w2ϕ2(µ)

∣∣dµ
+

1

2Γ(α)

b∫
a

(b− µ)α−1 1

p(µ)

(
1

Γ(β)

µ∫
a

(µ− ν)β−1|ϕ3(ν)− ϕ1(ν)− ϕ2(ν)| dν

)
dµ
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6
(b− a)α+β

2Γ(β + 1)

{
(V3ε1 + V1ε2 + V2ε3) +

(3ε1 + ε2 + ε3 + 2
∑3
i=1 wiεi)

p̄Γ(α+ 1)

}
.

Using a similar approach, we get

∣∣T2(z1, z2, z3)(s)− x2(s)
∣∣ 6 (b− a)

α+β

2Γ(β + 1)

{
(V2ε1 + V3ε2 + V1ε3)

+
[(1 + 2w3)ε1 + (2w1 + 3)ε2 + (2w2 + 1)ε3]

2p̄Γ(α+ 1)

}
,

∣∣T3(z1, z2, z3)(s)− x3(s)
∣∣ 6 (b− a)

α+β

2Γ(β + 1)

{
(V1ε1 + V2ε2 + V3ε3)

+
[(1 + 2w2)ε1 + (2w3 + 1)ε2 + (2w1 + 3)ε3]

2p̄Γ(α+ 1)

}
.

Based on the above inequality, we obtain

‖Tz − x‖X 6
(b− a)

α+β∑3
i=1 εi

2Γ(β + 1)

{
5 +

∑3
i=1 wi

p̄Γ(α+ 1)
+

3∑
i=1

Vi

}
.

Let ε = max{ε1, ε2, ε3}, then we have

‖x− z‖X 6
3Γ(α+ 1)p̄(b− a)

α+β

[2Γ(α+ 1)p̄− 5(b− a)αq̄]Γ(β + 1)

{
5 +

∑3
i=1 wi

p̄Γ(α+ 1)
+

3∑
i=1

Vi

}
.

Hence, problem (1)–(2) is Ulam–Hyers stable.

5 Examples

Example 1. Let β = 4/5, α = 1/4, θ = 1/2, i = 1, 2, 3. Consider

CD1/4
[
p(s)CD4/5 + q(s)xi(s) + r(s)I1/2gi(s, xi(s)

]
= fi

(
s, x1(s), x2(s), x3(s)

)
,

x1(0) + x2(1) = 0, CD4/5x1(0) + CD4/5x2(1) = 0,

x2(0) + x3(1) = 0, CD4/5x2(0) + CD4/5x3(1) = 0,

x3(0) + x1(1) = 0, CD4/5x3(0) + CD4/5x1(1) = 0,

gi
(
s, xi(s)

)
=

|xi(s)|
3(49 + i+ s)(1 + |xi(s)|)

, i = 1, 2,

f1

(
s, x1(s), x2(s), x3(s)

)
= es +

cosx1(s)

25(5 + s)
+

x2(s)

15(3 + 5es)
+

s

120

x2
3(s)

(1 + |x3(s)|)
,

(181)
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f2

(
s, x1(s), x2(s), x3(s)

)
= 1 +

x1(s)

15
√

2s2 + 81
+

x2(s)

9 + (5 + 4es)
2 +

s

100

|x3(s)|
(1 + |x3(s)|)

,

f3

(
s, x1(s), x2(s), x3(s)

)
= 3 + ln(1 + s) +

x1(s)

80 + s2
+

(s+ 2)x2(s)

8(5 + s)
2 +

x3(s)

2(es + 47)
.

(182)

We choose

p(s) =

(
s− 1

2

)2

+
3

4
, q(s) =

s

50
, r(s) = 1,

k1(s) = es, k2(s) = 1 + sin s, k3(s) = 3 + ln(1 + s),

u1(s) =
1

25(5 + s)
, u2(s) =

1

15
√

2s2 + 81
, u3(s) =

x1(s)

80 + s2
,

v1(s) =
1

15(3 + 5es)
, v2(s) =

1

9 + (5 + 4es)
2 , v3(s) =

(s+ 2)

8(5 + s)
2 ,

$1(s) =
s

120
, $2(s) =

1

(10 + s)
2 , $3(s) =

1

2(es + 47)
.

For s ∈ [0, 1], we can calculate p̄ = 3/4, q̄ = 1/50, r̄ = 1, λ1 = 1/150, λ2 = 1/153,
λ3 = 1/156, u1 = 1/125, u2 = 1/135, u3 = 1/80, v1 = 1/120, v2 = 1/90, v3 =
1/100, $1 = 1/120, $2 = 1/100, $3 = 1/96,

3∑
i=1

li =

3∑
i=1

(ui + vi +$i) ≈ 0.08610,

3∑
i=1

λi ≈ 0.01962,

a + b + c =
79

12Γ(5/4)Γ(9/5)
≈ 8.1951, d + e + f =

47

6Γ(5/4)Γ(3/2)
≈ 9.7520.

Hence, we obtain

5(b− a)αq̄

2Γ(α+ 1)p̄
+ (a + b + c)

3∑
i=1

li + (d + e + f)

3∑
i=1

λi ≈ 0.9705 < 1.

Therefore, condition (15) is satisfied, and problem (18) has at least one solution on [0, 1].

Example 2. Let α = 7/8, β = θ = 4/5, i = 1, 2, 3. Consider

CD4/5
[
p(s)CD7/8 + q(s)zi(s) + r(s)I4/5gi

(
s, xi(s)

)]
= fi

(
s, x1(s), x2(s), x3(s)

)
,

x1(0) + x2(1) = 0, CD7/8x1(0) + CD7/8x2(1) = 0,

x2(0) + x3(1) = 0, CD7/8x2(0) + CD7/8x3(1) = 0,

x3(0) + x1(1) = 0, CD7/8x3(0) + CD7/8x1(1) = 0,

(19)
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where

p(s) =
4(s− 1

2 )
2

+ 7

8
, q(s) =

s

25
, r(s) = 1,

gi
(
s, xi(s)

)
=

|xi(s)|
3(24 + i+ s)(1 + |xi(s)|)

, i = 1, 2,

f1

(
s, x1(s), x2(s), x3(s)

)
=

2 + |x1(s)|+ |x2(s)|+ |x3(s)|
(s+ 50)(1 + |x1(s)|+ |x2(s)|+ |x3(s)|)

,

f2

(
s, x1(s), x2(s), x3(s)

)
=

1

5(s2 + 8)

[
esx1(s) + sin(x2(s)) +

|x3(s)|
1 + |x3(s)|

]
,

f3

(
s, x1(s), x2(s), x3(s)

)
=

cos(s)x1(s)

30(es + 1)
+

sin(πx2(s))

60π
+

cosx1(s)

30
√

4 + s2

for s ∈ [0, 1]. We take p̄ = 7/8, q̄ = 1/25, µ1 = 1/75, µ2 = 1/78, µ3 = 1/81,
L1 = 1/50, L2 = 1/40, L3 = 1/60,

∆ = (a + b + c)(L1 + L2 + L3) + (d + e + f)(µ1 + µ2 + µ3) ≈ 0.6665.

Therefore, we find

∆+
9(b− a)

α
q̄

2Γ(α+ 1)p̄
≈ 0.8854 < 1,

that is, condition (16) is satisfied, so problem (19) has a unique solution. Moreover one
can easily obtain that (19) is Ulam–Hyers stable by Theorem 3.

6 Conclusions

We consider a new triple nonlinear fractional system with cyclic boundary conditions
and delve into the study of the qualitative behaviors of its solutions, including existence,
uniqueness, and stability. By using fixed point theorem, the existence result are obtained.
In addition, the Ulam–Hyers stability results of the given system were analyzed. Based
on the above research, this paper can be extended to study triple nonlinear fractional
pantograph differential equation with p-Laplacian operator.
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