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Abstract. This paper addresses the distributed optimization problem in linear multiagent systems
(MASs) under external disturbances. Firstly, an observation system is designed by utilizing the
output values of agents, which can eliminate external disturbances of system. Secondly, an event-
triggered control algorithm is proposed through the gradient information of local cost functions,
and its convergence is rigorously established using the Lyapunov stability and looped functional
theory. This novel event-triggered protocol incorporates dwell time within the threshold function,
effectively eliminating Zeno behavior. By leveraging the looped functional technique, more relaxed
conditions are derived for solving the distributed optimization problem. Finally, the validity and
feasibility of the proposed protocol are substantiated through numerical simulation.

Keywords: external disturbances, multiagent system, distributed optimization, looped functional
method.

1 Introduction

The distributed optimization of MASs has aroused considerable attention in the recent
decade due to its broad applications, including but not limited to smart microgrids [26],
economic dispatch [24], and so on. The primary goal of solving the distributed optimiza-
tion problems is to develop appropriate algorithms that ensure the global objective func-
tion is minimized. The distributed control methods, leveraging the entirety of available
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computational power, are more practical compared to conventional centralized control
techniques.

Research on distributed optimization algorithms can be broadly categorized into dis-
crete and continuous forms. Discrete distributed optimization algorithms have been pre-
sented in [7, 10, 17]. However, in practical applications such as autonomous underwater
vehicles, UAVs, and manipulators, the dynamic behaviors of these systems are contin-
uous. Consequently, lots of continuous distributed optimization algorithms have been
proposed in [5, 16, 21]. It is noteworthy that these algorithms primarily address single-
integrator dynamical systems. Given that many practical dynamical models cannot be
accurately described by integral systems, general linear dynamical systems have gained
significant attention in distributed cooperative control.

Recently, distributed optimization in linear MASs has yielded promising results. For
example, the gradient descent method has been employed to solve unconstrained op-
timization problems in [3, 4]. Additionally, the Lagrange multiplier method has been
utilized to address the distributed optimization problems for linear systems subject to
equality constraints in [19, 28]. However, when designing distributed optimization al-
gorithms for MASs, practical challenges such as external disturbances, communication
delays, packet loss, and other unforeseen faults may arise. Consequently, various studies
[11,12,15,25] have examined distributed optimization problems under various real-world
scenarios.

It is important to note that the above research primarily focuses on continuous com-
munication among MASs for information transmission, which can result in unnecessary
communication overhead. To address this issue, the event-triggered mechanism [8, 9,
27] has proven to be an effective approach for reducing communication costs, and it
has garnered significant attention from researchers. To solve the distributed optimization
problem, very recently, some distributed event-triggered optimization algorithms have
been developed. In [18], a novel event-triggered mechanism was proposed to address the
consensus problem in MASs, and it introduced a dwell time to effectively prevent Zeno
behavior. The distributed algorithm was designed for resource allocation problems via
event-triggered communication [13]. Specifically, the event-triggered zero-gradient-sum
distributed optimization algorithms were introduced to tackle various convex distributed
optimization problems in [22, 30].

Motivated by the above analysis, the goal of this paper is to design the distributed
optimization algorithm for large-scale linear MASs with external disturbances via the
event-triggered mechanism. The following difficulties and challenges may be encoun-
tered: 1. Develop a estimator to eliminate external disturbances. Meanwhile, a reasonable
control protocol is established based on this observation value. 2. Design a suitable event-
triggered control protocol such that (a) the states of agents realize the consensus under the
external disturbances; (b) after MASs achieve the consensus, the state of MASs is able
to achieve the optimal solution. Our main contributions can be summarized in three key
aspects.

(i) Unlike previous works [14, 29], we introduce a distributed observer based on
the system’s state outputs, enabling us to design an effective distributed control
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protocol using these observations. This approach is particularly valuable when
the system’s state is not readily available. Therefore, our proposed distributed
control protocol can be viewed as a generalization of existing results.

(ii) In [23,31], the authors delved into continuous distributed optimization problems
for single- or double-integral dynamical MASs. In contrast, this paper extends
the scope by considering the distributed optimization problem for general linear
MASs. An event-triggered control mechanism is developed to optimize commu-
nication costs, and the dwell time T is introduced into the event trigger condition
to effectively exclude Zeno behavior.

(iii) A looped functional method is introduced to analyze the stability of linear MASs,
effectively overcoming the limitations of Lyapunov–Krasovskii functional. This
approach eliminates the need for derivatives of Lyapunov functions to be strictly
negative, indicating that stability can be achieved under less conservative condi-
tions by employing the looped functional method.

The subsequent sections of this study are delineated as follows. Section 2 provides the
fundamental preliminaries. Our primary results are presented in Section 3. The feasibility
is verified by applying an example in Section 4. Finally, we give the conclusions and
outline potential future directions.

Notations. Let Rn and N denote the sets of n-dimensional vectors and natural numbers,
respectively. The notation 1n (or 0n) represents n × 1 column vector with all elements
set to 1 (or 0), and In signifies n-dimensional identity matrix. For any matrix A, AT

represents its transpose, and⊗ is the Kronecker product. If square matrixA > 0, thenA is
a positive definite matrix, otherwise, A is a seminegative definite matrix. A−1 denotes its
inverse, and sym(A) = A+AT. ∗ indicates a symmetric term in a symmetric matrix. The
smallest and largest eigenvalues of matrix A are represented by λmin(A) and λmax(A),
respectively. For vectors x1, x2, . . . , xn, col(x1, x2, . . . , xn) = [x1

T, x2
T, . . . , xn

T]T.
Let ‖·‖ denotes the 2-norm of a matrix, and the gradient of a function f is indicated by
∇f .

2 Preliminaries

Consider a network graph G = (V,ℵ, A) with N agents, where V = {1, 2, . . . , N} and
ℵ ⊆ V × V represent the nonempty node set and edge set, respectively. The weighted
adjacency matrix is denoted by A = [aij ] ∈ RN×N with aii = 0, aij > 0 if and only
if (j, i) ∈ ℵ, otherwise, aij = 0. A path between nodes i and j is a vertex sequence
of different edges that connect distinct nodes from i to j. The neighbor set of node i is
defined as Ni = {j ∈ V | (j, i) ∈ ℵ}. The graph is undirected and connected if there
exists a path between any two nodes. Furthermore, the Laplacian matrix is denoted as
L = [lij ] ∈ RN×N , where lii =

∑N
j=1 aij and lii = −aij for i 6= j.

Consider a linear MAS governed by N agents with the following dynamics:

ẋi(t) = A xi(t) + Bui(t) + Ddi(t),

yi(t) = Cxi(t), i = 1, 2, . . . , N,
(1)
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where xi(t) ∈ Rn and yi(t) ∈ Rr denote the state and output of the ith agent, ui(t) ∈ Rm
represents the control input. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n, and D ∈ Rn×s are
constant matrices in which (A ,B) is stabilizable, (D ,S ) and (A ,C ) are observable.
Suppose that the disturbance di(t) ∈ Rs is generated by an external system (ḋi(t) =
S di(t), S ∈ Rs×s) and is matched, then there exists a matrix F ∈ Rm×s satisfying
D = BF .

Furthermore, we present a distributed optimization problem as follows:

minF(x) =

N∑
i=1

fi(xi) s.t. (L ⊗ In)x = 0, (2)

where x = col(x1, x2, . . . , xN ), fi(xi) and F(x) are local cost function of agent i and
global objective function, respectively.

Remark 1. In [31] and [23], the authors considered the distributed optimization problem
of the simple first-order integrator system, highlighting its limitations in practical appli-
cations. From the perspective of the system model, this paper addresses the distributed
optimization problem of linear systems subject to external disturbances. Furthermore, in
contrast to traditional pure optimization problems, this study explores optimization issues
in MASs using a distributed strategy, significantly improving robustness and applicability.

The aim of this study is to devise an appropriate controller for linear MAS (1), ensur-
ing that all agents’ states converge to the optimal solution of the distributed optimization
problem in (2). To achieve this goal, specific assumptions are required concerning the
management of linear MAS (1) and their communication topology.

Assumption 1. The topological graph G is undirected and connected.

Assumption 2. For each agent i ∈ V , the local cost function fi(·) is differentiable and
ωi-strongly convex with ωi > 0. Furthermore, the gradient ∇fi(·) satisfies mi-Lipschitz
with constant mi > 0, i.e., ‖∇fi(x)−∇fi(y)‖ 6 mi‖x− y‖ for all x, y ∈ Rn.

Assumption 3. The eigenvalues of the matrix S have negative real parts.

Remark 2. Assumptions 2 and 3 are commonly utilized in studies such as [14] and [31].
Assumption 2 guarantees the existence and uniqueness of the optimal solution to the dis-
tributed optimization problem (2). Assumption 3 is often applied to disturbance rejection
and output regulation. While practical applications involve both matched and unmatched
external disturbances, this study focuses exclusively on matched disturbances. Future
work will explore more general disturbance scenarios such as plant-model mismatch,
transient disturbances, and so on.

Lemma 1. (See [6]). If the matrix pair (S ,D) is observable, then (Ā , J) is observable,
where Ā =

(
A−G C D

0 S

)
and J = [I 0]. Further, there exists a matrix P > 0 with

appropriate dimension such that

P Ā + Ā TP − 2JTJ < 0.
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Lemma 2. (See [2]). For a matrix R =
( R1 R2

RT
2 R3

)
< 0, the following conditions are

equivalent:

(i) R3 < 0, R1 −R2R
−1
3 RT

2 < 0;
(ii) R1 < 0, R3 −RT

2 R
−1
1 R2 < 0.

Lemma 3. (See [1].) Consider the differential equation as follows:

ż = h(z, t), (3)

where h : Rn × R → Rn is a nonlinear function, and z = 0 is an equilibrium point of
Eq. (3). If there exists a continuous radially unbounded function V : Rn → R, which
satisfies V (z) = 0 ⇔ z = 0 and V̇ (z) < 0 in R \ {0}, then z = 0 is asymptotically
stable.

3 Main results

In this section, we establish an event-triggered algorithm with a sequence of triggered
instants given by 0 = ti0 < ti1 < ti2 < · · · < tik < · · · , where limk→∞ tik = +∞. The
controller of agent i will be activated only at prescribed instants tik, k ∈ N, which are
determined by predefined conditions. To proceed, an observation system is reconstructed
for the linear MAS (1) based on the event-triggered instant

˙̂xi(t) = A x̂i(t) + Bui(t) + D d̂i(t) + G
(
yi(t)− ŷi(t)

)
+ bΓ1G

N∑
j=1

aij
(
yi
(
tik
)
− yj(tik)− ŷi

(
tik
)

+ ŷj
(
tik
))
,

˙̂
di(t) = S d̂i(t) + bΓdG

N∑
j=1

aij
(
yi
(
tik
)
− yj

(
tik
)
− ŷi

(
tik
)

+ ŷj
(
tik
))
,

˙̂yi(t) = C x̂i(t),

(4)

where x̂i(t) ∈ Rn, ŷi(t) ∈ Rr, and d̂i(t) ∈ Rs represent the observations of xi(t), yi(t),
and di(t), respectively. yi(tik), ŷi(tik) represent the output state, and output observation
state at the kth trigger instant of agent i, respectively. Here b is a positive real constant, and
G ∈ Rn×r is an undetermined feedback matrix. The control protocol ui(t) is designed as
follows:

ui(t) = −αBT∇fi
(
x̂i(t)

)
−K x̂i(t)−F d̂i(t)

−Π
N∑
j=1

aij
[
ŷj
(
tik
)
− ŷi

(
tik
)]
∀t ∈ [tik, t

i
k+1), (5)

where α > 0 is constant. Π is a feedback matrix, and K is a constant gain matrix with
suitable dimension such that A −BK is Hurwitz stable. Let e1i (t) = xi(t) − x̂i(t),
e2i (t) = di(t)− d̂i(t), ei(t) = col(e1i (t), e

2
i (t)), i = 1, 2, . . . , N . In combination with (1),
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(4), and (5), one gets

ẋi(t) = (A −BK )xi(t) + B[K,F ]ei(t) + BΠC
N∑
j=1

lij x̂j
(
tik
)

− αBBT∇fi
(
x̂i(t)

)
,

˙̂xi(t) = (A −BK )x̂i(t) + BΠC
N∑
j=1

lij x̂j(t
i
k) + G C Jei(t)

− αBBT∇fi
(
x̂i(t)

)
+ bΓ1G C J

N∑
j=1

lijej
(
tik
)
,

ėi(t) = Āei(t) + bΓG C J
N∑
j=1

lijej
(
tik
)
,

where Γ = col(Γ1, Γd) = P−1JT. Furthermore, an orthogonal matrix transformation
and an error difference variable transformation are carried out, respectively. We construct
error variables as follows:

x̃i(t) = xi(t)−
1

N

N∑
j=1

xj(t), ˜̂xi(t) = x̂i(t)−
1

N

N∑
j=1

x̂j(t),

η̃i(t) = ηi(t)−
1

N

N∑
j=1

ηj(t), ∇f̃i
(
˜̂xi(t)

)
= ∇fi

(
x̂i(t)

)
− 1

N

N∑
j=1

∇fj
(
x̂j(t)

)
.

(6)

It is noted that the compact forms of (6) are

x̃(t) = (H ⊗ In)x(t), ˜̂x(t) = (H ⊗ In)x̂(t), Ẽ(t) = (H ⊗ In+s)E(t),

∇f̃
(
˜̂x(t)

)
= (H ⊗ In)∇f

(
x̂(t)

)
,

where H = IN − (1/N)1N1T
N with LH = H L = L, and H 1N = 0. Combining

these compact forms yields

˙̂̄x(t) =
(
IN ⊗ (A −BK )

)
¯̂x(t) + (Ξ ⊗BΠC )¯̂x(tk) + (IN ⊗ G C J)ē(t)

− α
(
IN ⊗BBT

)
∇f̄
(
¯̂x(t)

)
+ b(Ξ ⊗ Γ1G C J)ē(tk),

˙̄e(t) = (IN ⊗ Ā )ē(t) + b(Ξ ⊗ ΓG C J)ē(tk),

(7)

where ¯̂x(tk) = col(¯̂x1(t1k), ¯̂x2(t2k), . . . , ¯̂xN (tNk )) and ē(tk) = col(ē1(t1k), ē2(t2k), . . . ,
ēN (tNk )). Define the vector z(t) = col(¯̂x(t), ē(t)) ∈ RN(2n+s), then system (7) can
be represented as following closed-loop system:

ż(t) = Az(t) + Bz(tk)− αBf∇f̄
(
Hz(t)

)
, (8)
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where

A =

(
IN ⊗ (A −BK ) IN ⊗ G C J

0 IN ⊗ Ā

)
, B =

(
Ξ ⊗BΠC bΞ ⊗ Γ1G C J

0 bΞ ⊗ ΓG C J

)
,

Bf =

(
IN ⊗BBT

0

)
, and H = [INn 0].

Suppose that ζi(t) = zi(t
i
k) − zi(t) is observation error. Then the following generic

threshold function is introduced to determine the sampling instants:

tik+1 = min
{
t > tik + T

∣∣ ζTi (t)Qζζi(t)− yTai(t)Q−1ε yai(t) > 0
}
, (9)

where T is a dwell time, yai(t) = col(¯̂xi(t), ēyi(t)) with ēyi(t) = yi(t) − ŷi(t) denotes
the output error, Qζ and Qε are positive definite matrices.

Remark 3. In [20], the MAS was also taken into consideration, but it does not reduce the
communication cost between agents. As observed from the term Π

∑N
j=1 aij [ŷj(t

i
k) −

ŷi(t
i
k)] in protocol (5), the communication frequency has been reduced due to the con-

troller only updating when the event occurs. Hence, this research can be regarded as
an improvement of previous works. Furthermore, it can be observed from the event-
trigger condition (9) that each agent must wait for time units before making the threshold
judgment. As a result, the event-triggered mechanism designed in this paper inherently
prevents Zeno behavior. It is worth noting that due to the introduction of the dwell time T ,
the stability analysis of the system must be conducted in two intervals [tik, t

i
k + T ) and

[tik + T, tik+1).

To ensure a strict decrease in the overall variance of the Lyapunov function during the
dwell time, a looped functional technique is taken into consideration. From a Lyapunov
perspective the basic idea consists in considering a Lyapunov candidate function V (x)
that satisfies the following conditions:

(i) V (x(tk + T )) < V (x(tk)),
(ii) ˙V (x(t)) < 0 for all t ∈ [tk + T, tk+1).

Remark 4. Noteworthy, the application of the looped functional approach has proven
successful in the stability analysis of linear MASs, as documented in [20]. Additionally,
condition (i) does not necessitate strict monotonicity of that V (x(t)) within the interval
[tk, tk + T ). In other words, it is not required that ˙V (x(t)) < 0 hold throughout this
interval. To meet condition (i), the control signal must remain constant during the interval
[tk, tk + T ).

Lemma 4. (See [18].) For 0 < µ1 < µ2 and 1 6 p, V (x(t)) : Rn → R+ is a differen-
tiable function and satisfies

µ1

∣∣x(t)
∣∣p 6 V

(
x(t)

)
6 µ2

∣∣x(t)
∣∣p ∀x(t) ∈ Rn.

Then the following two statements are equivalent:
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Figure 1. The illustration of Lemma 4.

(i) For all k ∈ N, the Lyapunov function exhibits a strictly decreasing trend with each
increment, i.e.,

∆V = V (tk+1)− V (tk) < 0.

(ii) For all t ∈ [tk, tk+1), there exists a differentiable function W (t) that fulfills the
condition

∆W = W (tk+1)−W (tk) > 0,

and it satisfies
˙̃V (t) = Ẇ (t) + V̇ (t) < 0.

Lemma 4 is clearly illustrated in Fig. 1. As shown in the figure, the established
Lyapunov function does not require strict monotonicity, it only needs to satisfy specific
conditions at the sampling time. Compared to the traditional Lyapunov–Krasovskii func-
tion, this approach effectively relaxes the sufficient conditions for system stability, making
it more suited to practical applications.

Theorem 1. Under Assumptions 1–3, if there exist positive definite matrices Qζ , Qε, Q,
and R, matrices Q1, Q2, X1, X2, Y1, X1a, and X2a with appropriate dimensions to
satisfy the following inequalities

Σ1 + T (Σ2 +Σ3) < 0, (10)[
Σ1 − TΣ3 TN
∗ −TR

]
< 0,

[
Σa ΣT

b

∗ −Qε

]
< 0, (11)

where

Σ1 = sym
{
ιT1Qι1 −Nι12 − ιT12Q2ι2

+
(
ιT1X

T
1 + ιT3X

T
2

)[
Aι1 + Bι2 − ι3 − αBfHTHι4

]}
− ιT12Q1ι12,

Σ2 = sym
{
ιT3Q1ι12 + ιT3Q2ι2

}
+ ιT3 Y1ι3, Σ3 = ιT2 Y ι2,

Σa = sym
{
ιT1Qι2 +

(
ιT1X

T
1a + ιT2X

T
2a

)[
(A+ B)ι1 − ι2 + Bι3 − αBfHTι4

]
+ m̂ιT1H

Tι4 − ιT4 ι4
}
− ιT3Qζι3,

Σb = Caι1,
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ι1 = [IN(2n+s) 0 0 0], ι2 = [0 IN(2n+s) 0 0], ι3 = [0 0 IN(2n+s)], ι4 = [0 0 0 INn],
and ι12 = ι1− ι2, then the linear MAS (1) with controller (5) can converge to the optimal
solution of problem (2).

Proof. Firstly, the stability of system (8) is discussed in the dwell time interval [tk, tk+T ).
We choose the Lyapunov function V (z(t)) = zT(t)Qz(t) with Q > 0 and define
Xk(τ(t)) = z(tk + τ(t)) = z(t) with τ(t) ∈ [0, T ). Then

Ẋk

(
τ(t)

)
= AXk

(
τ(t)

)
+ BXk(0)− αBf∇f̄

(
HXk

(
τ(t)

))
. (12)

Furthermore, we have

V
(
z(t)

)
= V

(
Xk

(
τ(t)

))
= X T

k

(
τ(t)

)
QXk

(
τ(t)

)
, τ(t) ∈ [0, T ).

Inspired by [18], we design the following looped functional:

W
(
τ(t),Xk

)
=
(
T − τ(t)

)(
Xk

(
τ(t)

)
−Xk(0)

)T[
Q1

(
Xk

(
τ(t)

)
−Xk(0)

)
+ 2Q2Xk(0)

]
+
(
T − τ(t)

)
τ(t)X T

k (0)YXk(0)−
(
T − τ(t)

) τ(t)∫
0

Ẋ T
k (s)Y1Ẋk(s) ds.

It can be founded that W (0,Xk) = W (T,Xk) = 0. Now, we define Ṽ (τ(t),Xk) =
V (Xk(τ(t))) +W (τ(t),Xk), and it is easy to conclude that

˙̃V
(
τ(t),Xk

)
=
(
T − τ(t)

)
Ẋ T
k

(
τ(t)

)[
Y1Ẋk

(
τ(t)

)
+ 2Q1

(
Xk

(
τ(t)

)
−Xk(0)

)
+ 2Q2Xk(0)

]
+ 2X T

k

(
τ(t)

)
QẊk

(
τ(t)

)
−

τ(t)∫
0

Ẋ T
k (s)Y1Ẋk(s) ds

−
(
Xk

(
τ(t)

)
−Xk(0)

)T[
Q1

(
Xk

(
τ(t)

)
−Xk(0)

)
+ 2Q2Xk(0)

]
+
(
T − 2τ(t)

)
X T
k (0)YXk(0). (13)

To show that ˙̃V (τ(t),Xk) < 0, the augmented vector ςk(τ(t)) = col(Xk(τ(t)),
Xk(0), Ẋk(τ(t)),∇f̄(τ(t))) is constructed in which ∇f̄(τ(t)) = ∇f̄(HXk(τ(t))) for
any matrix with appropriate dimensions X1 and X2. The following zero equation can be
generated through the coupling relation between the components of ςk(τ(t)) and
Eq. (12):

2
(
X T
k

(
τ(t)

)
XT

1 + Ẋ T
k

(
τ(t)

)
XT

2

)
X0ςk

(
τ(t)

)
= 0, (14)
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where X0 = [A B −IN(2n+s) −αBf ]. Subsequently, incorporating Eq. (14) into (13),
we obtain

˙̃V (τ(t),Xk)

= 2X T
k

(
τ(t)

)
QẊk

(
τ(t)

)
+
(
T − τ(t)

)
Ẋ T
k

(
τ(t)

)
×
[
Y1Ẋk(τ(t)

)
+ 2Q1

(
Xk

(
τ(t)

)
−Xk(0)

)
+ 2Q2Xk(0)

]
−
(
Xk

(
τ(t)

)
−Xk(0)

)T[
Q1

(
Xk

(
τ(t)

)
−Xk(0)

)
+ 2Q2Xk(0)

]
+
(
T − 2τ(t)

)
X T
k (0)YXk(0) + Ẋ T

k (τ(t)XT
2 )X0ςk

(
τ(t)

)
−

τ(t)∫
0

Ẋ T
k (s)Y1Ẋk(s) ds+ 2(X T

k (τ(t)XT
1 .

Notably, it is found in [20] that

τ(t)∫
0

Ẋ T
k (s)Y1Ẋk(s) ds > 2ςTk

(
τ(t)

)
N
(
Xk

(
τ(t)

)
−Xk(0)

)
− τ(t)ςTk

(
τ(t)

)
NR−1NTςk

(
τ(t)

)
.

Furthermore, we have

˙̃V
(
τ(t),Xk

)
6 2X T

k

(
τ(t)

)
QẊk

(
τ(t)

)
+
(
T − τ(t)

)
Ẋ T
k (τ(t)

)
×
[
Y1Ẋk(τ(t)

)
+ 2Q1

(
Xk

(
τ(t)

)
−Xk(0)

)
+ 2Q2Xk(0)

]
−
(
Xk

(
τ(t)

)
−Xk(0)

)T[
Q1

(
Xk

(
τ(t)

)
−Xk(0)

)
+ 2Q2Xk(0)

]
− 2ςTk

(
τ(t)

)
N
(
Xk

(
τ(t)

)
−Xk(0)

)
+ 2(X T

k

(
τ(t)XT

1

)
+ Ẋ T

k

(
τ(t)XT

2

)
X0ςk

(
τ(t)

)
+
(
T − 2τ(t)

)
X T
k (0)YXk(0) + τ(t)ςTk

(
τ(t)

)
NR−1NTςk

(
τ(t)

)
. (15)

Carrying out some algebraic operations, (15) can be rewritten as

˙̃V
(
τ(t),Xk

)
6 ςTk

(
τ(t)

)[
Σ1 +

(
T − τ(t)

)
Σ2

+
(
T − 2τ(t)

)
Σ3 + τ(t)NR−1NT

]
ςk
(
τ(t)

)
, (16)

where the definition of Σ1, Σ2, and Σ3 has been given in Theorem 1.
Notice that the right side of (16) is affine with respect to τ(t). Let us substitute τ(t) =

0 and τ(t) = T into (16), this leads to the following conditions:

Σ1 + T (Σ2 +Σ3) < 0,

Σ1 − TΣ3 + TNR−1NT < 0. (17)
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Applying Lemma 1 to (17) yields conditions (11), ensuring that ˙̃V (τ(t),Xk) < 0 for all
τ(t) ∈ [0, T ] and

τ∫
0

˙̃V (τ(t),Xk) dτ(t)

= V
(
Xk(T )

)
− V

(
Xk(0)

)
+W (T,Xk)−W (0,Xk)

< 0.

Since W (0,Xk) = W (T,Xk) = 0, one may conclude that

V
(
Xk(T )

)
− V

(
Xk(0)

)
= V

(
z(tk + T )

)
− V

(
z(tk)

)
< 0.

Secondly, we consider the stability condition for t ∈ [tk +T, tk+1). Based on ζ(t) =
z(tk)− z(t), system (8) is reformulated as follows:

ż(t) = (A+ B)z(t) + Bζ(t)− αBf∇f̄
(
Hz(t)

)
.

From Assumption 2 ∥∥∇f̄(¯̂x(t)
)∥∥2 6 m̂¯̂xT(t)∇f̄

(
¯̂x(t)

)
,

where m̂ = max{m1,m2, . . . ,mN}. For any δ > 0, the above inequality is also equiva-
lent to

0 6 δm̂¯̂xT(t)∇f̄
(
¯̂x(t)

)
− δ∇f̄T

(
¯̂x(t)

)
∇f̄
(
¯̂x(t)

)
.

Therefore,

2m̂zT(t)HT∇f̄
(
Hz(t)

)
− 2∇f̄T

(
Hz(t)

)
∇f̄
(
Hz(t)

)
< 0.

Supposing that

W (t) = V̇ (z)− g
(
ζ(t), ya(t)

)
+ 2m̂zT(t)HT∇f̄

(
Hz(t)

)
− 2∇f̄T

(
Hz(t)

)
∇f̄
(
Hz(t)

)
,

if we ensure W (t) < 0, then

V̇ (z) < g
(
ζ(t), ya(t)

)
− 2m̂zT(t)HT∇f̄

(
Hz(t)

)
+ 2∇f̄T

(
Hz(t)

)
∇f̄
(
Hz(t)

)
< 0

for any t ∈ [tk + T, tk+1) by the event-triggered condition (9).
Constructing a vector ς(t)=col(z(t), ż(t), ζ(t),∇f̄(t)), where ∇f̄(t)=∇f̄(Hz(t)),

so we can rephrase W (t) as

W (t) = ςT(t)
{

sym
{
ιT1Qι2 + m̂ιT1H

Tι4 − ιT4 ι4
}

− ιT3Qζι3 + ιT1 C
T
a Q
−1
ε Caι1

}
ς(t).
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Similar to (14), the following zero equation can be generated for any matrices X1a and
X2a with appropriate dimensions:

2
(
zT(t)XT

1a + żT(t)XT
2a

)
X0aς(t) = 0,

where X0a = [A + B −IN(2n+s) B −αBf ]. The zero equation can be added to W (t),
we can deduce that

W (t) = ςT(t)
{

sym
{
ιT1Qι2 + m̂ιT1H

Tι4 − ιT4 ι4
+
(
ιT1X

T
1a + ιT2X

T
2a

)
X0a

}
− ιT3Qζι3 + ιT1 C

T
a Q
−1
ε Caι1

}
ς(t)

= ςT(t)
(
Σa +ΣT

b Q
−1
ε Σb

)
ς(t).

According to condition (10), we can get that W (t) < 0. Further, through the above
analysis, V̇ (z) < 0 for all t ∈ [tk + T, tk+1).

Next, we will demonstrate that the average consensus value is the optimal solution of
the global objective function F (x). Let x∗ = (1/N)

∑N
j=1 xj(t) be an optimal solution

to the optimization problem (2). Since all agents achieve the same state, thus one obtains
that ei(t) = 0 and

∑N
j=1 lij x̂i(t− τ(t)) = 0. Furthermore, we have

ẋ∗(t) =
1

N

N∑
j=1

ẋj(t)

=
1

N

N∑
j=1

(A −BK )xj(t) +
1

N

N∑
j=1

B
(
−αBT∇fj

(
xj(t)

))
= (A −BK )x∗(t) +

1

N

N∑
i=1

B
(
−αBT∇fi

(
xi(t)

))
. (18)

Based on Eq. (18), it is readily seen that

d(
∑N
i=1 xi(t)−Nx∗(t))

dt

=
(
1TN ⊗ In

)
ẋ(t)−Nẋ∗(t)

=
(
1TN ⊗ In

)[(
IN ⊗ (A −BK )

)
x(t) +

(
IN ⊗B[K ,F ]

)
e(t)

+ (L ⊗BΠC )x̂
(
t− τ(t)

)
− α

(
IN ⊗BBT

)
∇f
(
x(t)

)]
−N(A −BK )x∗(t) + α

(
1TN ⊗BBT

)
∇f
(
x(t)

)
= (A −BK )

(
N∑
i=1

xi(t)−Nx∗(t)

)
.

Because A −BK is Hurwitz stable, then (A −BK )TΨ +Ψ(A −BK ) + 2In < 0,
where matrix Ψ > 0. Let us select Lyapunov function

V̄ (t) =

(
N∑
i=1

xi(t)−Nx∗(t)

)T
Ψ

(
N∑
i=1

xi(t)−Nx∗(t)

)
.
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We compute the derivative of V̄ as follows:

˙̄V (t) =

(
N∑
i=1

xi(t)−Nx∗(t)

)T
S

(
N∑
i=1

xi(t)−Nx∗(t)

)

< −2

∥∥∥∥∥
N∑
i=1

xi(t)−Nx∗(t)

∥∥∥∥∥
2

< 0,

where
S =

(
(A −BK )TΨ + Ψ(A −BK )

)
.

Then one has

lim
t→∞

xi(t) =
1

N

N∑
j=1

xj(t) = x∗.

Remark 5. Note that the construction of the looped functional W (τ(t),Xk) does not
necessarily require positive definiteness, which represents an improvement over the clas-
sical Lyapunov–Krasovskii functional approach. In Theorem 1, it is rigorously proven
that the MAS (1) asymptotically converges to the optimal value of the optimization prob-
lem (2) under the event-triggered mechanism (9) with the dwell time T . Furthermore,
compared to the traditional event-triggered control strategy, which requires the exclu-
sion of Zeno behavior, this paper automatically eliminates Zeno behavior by introducing
a dwell time T into the event-triggered mechanism.

4 Simulation example

Consider the linear MAS (1) consisting of four agents under the network topology shown
in Fig. 2. The selection of all matrices is provided as follows:

A =

[
0 1
4 0

]
, B =

[
0
1

]
, C =

[
1

1.5

]
,

F =

[
1
0

]
, S =

[
−2 1
−1 −1.5

]
.

1

2

4

3

Figure 2. The topology graph.
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Based on the matrix provided above, we can calculate D = BF =
[
0 0
1 0

]
. By solving

LMIs in (10)–(11) and considering the above parameters, the corresponding solutions are

Π = 1, K = [8.241 2.831], G = [3 12]T,

P =


0.0203 0 0 0

0 0.0203 0 0
0 0 15.0183 0.0963
0 0 0.0963 19.0083

 .
The local cost functions are given as follows:

f1(x11, x12) = 0.1x211 + 0.1x212 + 2x11x
2
12 + 0.1x11 + 0.2x12 + 0.1,

f2(x21, x22) = 0.1x221 + 0.1x222 + 2x21x
2
22 + 0.2x21 + 0.3x22 + 0.2,

f3(x31, x32) = 0.1x231 + 0.1x232 + 2x31x
2
32 + 0.3x31 + 0.4x32 + 0.3,

f4(x41, x42) = 0.1x241 + 0.1x242 + 2x41x
2
42 + 0.4x41 + 0.5x42 + 0.4.

Based on Theorem 1, the distributed optimization problem (2) is addressed by appro-
priately selecting parameters α = 18, b = 10 via event-triggered control algorithm (5).
The theoretical analysis suggests that the state trajectories of MASs will converge towards
the average value of the initial states x1(0) = [5 8]T, x2(0) = [−3 −5]T, x3(0) =
[3 5]T, x4(0) = [−5 −8]T, the state trajectories of x̄i(t) and ˆ̄xi(t) under the event-
triggered algorithm (9) with T = 0.2 are illustrated in Figs. 3–4. Under the threshold
parameter Qζ = [5 0; 0 5] and Qε = 1, the control input ui(t) and the event-triggered
instants graph can be obtained as shown in Fig. 5. Further, the trajectory graph of the
objective function is obtained, as shown in Fig. 6.

From Figs. 3–4 it can be observed that the state error of each agent gradually con-
verges to zero, demonstrating that under the proposed control protocol (5), each com-
ponent of the system successfully converges to its corresponding average state. Figure 5
shows the graph of control input ui(t) and the event-triggered instants. Additionally, as
seen in Fig. 6, the states of all agents stabilize over time with the optimal values of the
global objective functions reaching 0.815. To further investigate the effect of increas-
ing the dwell time T in the event-triggered mechanism (9), we analyze the variation in
triggered instants by adjusting the dwell time. Without loss of generality, keeping other
parameters and initial conditions constant, simulations were conducted for T = 0.15 and
T = 0.35 with the corresponding results presented in Figs. 7–14.

From the figures below it can be observed that as the dwell time T decreases from 0.2
to 0.15, the number of triggered instants increases, indicating a rise in the communication
frequency between agents in the MASs. In contrast, when the dwell time is increased to
0.35, the number of event triggers decreases significantly, while the system remains stable.
A detailed comparison of the number of event triggers is presented in Fig. 15, where it is
clearly observed that as the dwell time increases, the communication frequency between
agents decreases. Therefore, appropriately increasing the dwell time T can help reduce
communication frequency. However, it is important to note that the dwell time cannot
be increased indefinitely, as a larger dwell time may prevent the trigger protocol from
meeting its threshold conditions, thereby compromising its control effectiveness.
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Figure 3. The trajectory of x̄i1(t) and ˆ̄xi1(t).
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Figure 4. The trajectories of x̄i2(t) and ˆ̄xi2(t).
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Figure 5. The control input ui(t) and triggered
instants.
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Figure 6. The diagrams of fi(xi(t)) and
F (x(t)).
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Figure 7. The trajectory of x̄i1(t) and ˆ̄xi1(t).
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Figure 8. The trajectories of x̄i2(t) and ˆ̄xi2(t).
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Figure 9. The control input ui(t) and triggered
instants.
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Figure 10. The diagrams of fi(xi(t)) and
F (x(t)).
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Figure 11. The trajectory of x̄i1(t) and ˆ̄xi1(t).
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Figure 12. The trajectories of x̄i2(t) and ˆ̄xi2(t).
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Figure 13. The control input ui(t) and triggered
instants.
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Figure 14. The diagrams of fi(xi(t)) and
F (x(t)).
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Figure 15. The comparison graph of the number of triggered-instants.

5 Conclusion

This paper has discussed the distributed optimization problem of linear MASs with ex-
ternal disturbances over undirected networks. A new observation system was established
to avoid the use of state information. Moreover, by utilizing the observation information,
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a distributed event-triggered control protocol was designed, enabling all agents to achieve
state consensus and reach the optimal value of the objective function.

In this paper, we only considered the asymptotic-time distributed optimization prob-
lem for global objective functions. Further work will focus on the prescribed-time dis-
tributed optimization problem.
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