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Abstract. This article presents an adaptive event-triggered control scheme for global stabilization
of uncertain nonlinear systems with function control coefficients, input matching uncertainty,
and unknown polynomial-function rates. A single dynamic gain observer is designed to handle
these complexities, replacing the traditional dual-gain approach. An extended state observer
asymptotically estimates the input matching uncertainty. An adaptive output-feedback controller,
based on a time-varying threshold event-triggering mechanism, ensures closed-loop system
stabilization and prevents Zeno behavior. Simulation results validate the proposed strategy.

Keywords: uncertain nonlinear systems, function control coefficients, input matching uncertainty,
event-triggered output feedback.

1 Introduction

Output-feedback control for nonlinear systems has gained considerable attention in recent
research, as demonstrated by [13, 18, 27, 33] and related references. Nonlinear systems
are widely used in practical life, including power systems [4], mechanical systems [5],
biomedical systems [22], among others. Furthermore, these systems not only possess
inherent nonlinear characteristics but also encounter operational challenges due to ex-
ternal disturbances, which are often challenging to accurately model mathematically. To
overcome these challenges, control theory researchers have been actively pursuing effec-
tive control design strategies. These strategies aim to design adaptable nonlinear system
controllers capable of handling diverse situations, thereby ensuring the achievement of
control objectives for uncertain nonlinear systems.

In fact, most control schemes are based on sampling control methods [12, 23, 30, 32],
which operate at fixed and unchanging intervals. The time-triggered control approach
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performs sampling and data transmission at a conservative, fixed rate, regardless of wheth-
er the system actually requires it. While this method is relatively straightforward to im-
plement, it can lead to inefficient use of communication resources and may fail to respond
promptly to changes in system performance. With the increasing adoption of networked
control systems, event-triggered control, an evolution of traditional sampling control, has
garnered significant attention in recent years [1,24,25,31,34]. In contrast to time-triggered
control, event-triggered control ensures robust system performance, while making more
efficient use of computational and communication resources. Additionally, it offers en-
hanced feedback capabilities to address nonlinearities and compensate for uncertainties
in the system.

Significant progress has recently been made in output-feedback stabilization of non-
linear systems [6,10,15–17,19–21,29]. In [19], the system has nonlinearities only present
in the system output, while in [20], the system exhibits linearly dependent growth on un-
measured states. However, these systems allow only certain weak uncertainties rather than
any large uncertainty. In [29], the system allows not only large parametric uncertainties
but also general nonlinear functions that are not required to be globally Lipschitz. In
[15,16], the systems under investigation allow large parametric uncertainties and linearly
dependent growth on unmeasured states. In [17], unknown polynomial-function rates are
allowed in the growth dependent on unmeasurable states. In [21], the system growth
rates can be arbitrary unknown nonpolynomial functions of the system output. In [10],
the system has two types of significant uncertainties: growth dependent on unknown
unmeasured states and input matching uncertainty. In [6], the nonlinear time-delay system
is studied with input matching uncertainty, and its nonlinearities are bounded by linear
unmeasured states multiplied by unknown constants, polynomial functions of output,
and polynomial functions of input. However, the control schemes in [6, 10] are based
on sampling control. The articles mentioned above are devoted to global stabilization
via output feedback for uncertain nonlinear systems, but the control coefficients of the
systems are known constants.

This article is devoted to establishing an adaptive event-triggered output-feedback
scheme to achieve global stabilization for a class of nonlinear systems. We first introduce
an adaptive observer with a dynamic gain compensating the extra nonlinearities from
the function control coefficients and counteracting the polynomial-function rate. Then,
inspired by the idea and method in [6,10,16], an adaptive output-feedback event-triggered
controller is successfully designed to guarantee the global stabilization. Particularly, we
design an event-triggering mechanism with time-varying threshold, which is strictly pos-
itive and gradually decaying. This mechanism is proposed to reduce communication fre-
quency and avoid Zeno phenomenon by selecting appropriate event-triggered threshold
parameter. Compared with the related literatures [16,17,21,24,25], the main contributions
of this article are summarized in the following aspects.

(i) Within the event-triggered framework, the systems under investigation exhibit
a high degree of generality. Specifically, the system simultaneously incorporates
function control coefficients, input matching uncertainty, and unmeasured state-
dependent growth with unknown dynamics.
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(ii) In contrast to related studies [12, 14, 17], our approach employs an adaptive
technique that introduces only a single dynamic gain (rather than dual gains),
to both compensate for the additional nonlinearities induced by function control
coefficients and counteract the polynomial-function growth rate. Utilizing this
dynamic gain, we design an adaptive extended state observer with dual objec-
tives: reconstructing the unmeasured states and estimating the input matching
uncertainty.

The remainder of this paper is arranged as follows. Section 2 presents the detailed
formulation of the system model and control objective. Section 3 establishes an adaptive
output-feedback event-triggered stabilization scheme for uncertain nonlinear systems.
The main results are provided in Section 4, which conducts the performance analysis
of the closed-loop system. Section 5 presents two numerical examples, and Section 6
concludes the paper.

2 Problem formulation

We consider the global stabilization via event-triggered output feedback for the following
uncertain nonlinear system with function control coefficients:

ξ̇i = gi(y)ξi+1 + φi(t, ξ), i = 1, . . . , n− 1,

ξ̇n = gn(y)(u+ ν) + φn(t, ξ),

y = ξ1,

(1)

where ξ = [ξ1, . . . , ξn]T ∈ Rn is the system state vector with the initial condition
ξ(0) = ξ0; u ∈ R and y ∈ R are the control input and system output, respectively; ν ∈ R
is an unknown constant, called the input matching uncertainty; φi(t, ξ), i = 1, . . . , n, are
unknown functions that are continuous in the first argument and locally Lipschitz in the
second argument; and gi(y), i = 1, . . . , n, are known and locally Lipschitz functions.
Since gi(y), i = 1, . . . , n, are functions of the system output rather than constants,
system (1) has control coefficients in a more general sense.

In the following, we assume that only the system output y is measurable. To achieve
the desired research objectives, system (1) satisfies the following assumptions:

Assumption 1. Let c, c, f , f , and p be known positive constants such that for any y ∈ R,

0 < c 6
∣∣gi(y)

∣∣ 6 c
(
1 + |y|p

)
, i = 1, . . . , n,

f 6
∣∣gi(y)/gi−1(y)

∣∣ 6 f, i = 2, . . . , n.

Assumption 2. There exist an unknown positive constant θs and a positive integer q such
that for any t ∈ R+ and any ξ ∈ Rn,

∣∣φi(t, ξ)∣∣ 6 θs
(
1 + |y|q

) i∑
j=1

|ξj |, i = 1, . . . , n.
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As indicated by Assumption 1, system (1) possesses function-based control coeffi-
cients, which is different from other relevant literature [15–17, 21], where the systems
possess constant control coefficients. Assumption 1 indicates that not only should the
control coefficients be bounded by the polynomial-of-output, but the control coefficients
between different subsystems must also satisfy a multiple relationship. Assumption 2
states that the system nonlinearities exhibit growth dependent on unmeasurable states
with a polynomial-of-output rate. More importantly, Assumption 2 shows that the system
nonlinearities allow large uncertainties (reflected by the unknown θs) and are expressed
as the product of unmeasured states, a constant, and the polynomial-of-output, which is
significantly differing from those in [19, 20, 23, 32]. In [23, 32], the systems only have
a known constant growth rate or a known polynomial growth rate. In [19], the system
nonlinearities are only present in the system output, while in [20], the system exhibits
linearly dependent growth on unmeasured states.

3 Adaptive event-triggered control scheme

Motivated by [6,10] and letting ν = ξn+1, we design the following dynamic-gain observer
for system (1) to reconstruct the unmeasurable states:

˙̂
ξi = gi(y)ξ̂i+1 + γi(t)hi(y)(ξ1 − ξ̂1), i = 1, . . . , n− 1,

˙̂
ξn = gn(y)ξ̂n+1 + gn(y)u+ γn(t)hn(y)(ξ1 − ξ̂1),

˙̂
ξn+1 = hn+1(y)γn+1(ξ1 − ξ̂1).

(2)

Here ξ̂ = [ξ̂1, . . . , ξ̂n]T with the initial value ξ̂(0) = ξ̂0, hi(y), i = 1, . . . , n + 1, will be
determined later, and γ is called the dynamic gain satisfying the following updating law:

γ̇ = max

{(
1 +
|y|p

γpb

)
(ξ1 − ξ̂1)2

γ2b
,−β1γ2 + β2

(
1 + |y|q

)2
γ

}
, γ(0) = 1, (3)

where p and q are the same as in Assumptions 1–2, and b satisfies 0 < b < 1/(2q). β1 and
β2 are to-be-determined design parameters, which satisfy 0 < β1 6 β2. In addition, we
define ξ̂[i] = [ξ̂1, . . . , ξ̂i]

T, i = 1, . . . , n, for later use.
The event-triggered output-feedback controller is designed as

u(t) = ω(tk), t ∈ [tk, tk+1),

tk+1 = inf
{
t > tk

∣∣ ∣∣gn(y)
(
ω(t)− ω(tk)

)∣∣ > e−αt
}
, t1 = 0, α > 0,

ω(γ, ξ̂, y) = − 1

gn(y)

n∑
i=1

γn−i+1ki(y)ξ̂i − ξ̂n+1,

(4)

where ki(y), i = 1, . . . , n, will be determined later, and threshold parameter α satisfies
α < λ/2 = min{1/(2λmax(P )), 1/(2λmax(Q))}.
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Remark 1. There are two main approaches to handling the unknown term θs: one is the
estimation-based method [8, 11], and the other is the high-gain-based method [10, 17].
A single dynamic gain γ is introduced through an adaptive technique to simultaneously
compensate for the extra nonlinearities arising from the function control coefficients and
counteract the unknown polynomial-of-output growth rate associated with the system
nonlinearities. The updating law of γ involves two components:

(i) The component (
1 +
|y|p

γpb

)
(ξ1 − ξ̂1)2

γ2b

is designed to compensate for the unknown constant θs and the extra nonlinear-
ities from the function control coefficients gi(y), i = 1, . . . , n, which will be
demonstrated in Proposition 1 and inequality (14) of Proposition 2, respectively.

(ii) The component
−β1γ2 + β2

(
1 + |y|q

)2
γ

is designed to handle the polynomial-of-output term (1 + |y|q).

Remark 2. Compared to the dual-gain approach [17, 28], the single dynamic gain offers
a more compact structure. Specifically, in the subsequent proof of Proposition 2, only
the boundedness of this single gain needs to be demonstrated, significantly enhancing
the conciseness and readability of the proof process. Although we only adopt a single
dynamic gain, it effectively serves the purpose of a dual-gain structure. On one hand,
it can compensate the extra nonlinearities from the function control coefficients; on the
other hand, it can counteract the polynomial-function rate.

Remark 3. ω(t) denotes ω(γ(t), ξ̂(t), y(t)) for convenience. Event-triggering mecha-
nisms are generally classified by threshold into four types: absolute (fixed) [2, 9], (static)
relative, dynamic, and time-varying [3, 16]. Sampling/execution times tk are generated
by the second relation in controller (4), which is called time-varying event-triggering
mechanism. The threshold |gn(y)(ω(t) − ω(tk))| > e−αt in controller (4), achieved by
choosing the function e−αt, offers two advantages:

(i) for any time t, it is strictly positive;
(ii) it decays to zero as time goes on.

Building upon this time-varying event-triggering mechanism, we design an adaptive out-
put-feedback controller (4). By carefully selecting design parameters, this controller en-
sures the convergence of both the original system states and their corresponding observer
states, effectively preventing the Zeno phenomenon. Additionally, by incorporating ξ̂n+1

into the designed controller, it guarantees that the estimation of the input matching uncer-
tainty accurately converges to its true value.

Remark 4. Under the architecture depicted in Fig. 1, we design an adaptive event-trig-
gering output-feedback controller based on a dynamic-gain observer, which guarantees
that the system states globally converge to the origin. As shown in Fig. 1, the information
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Figure 1. Event-triggered control architecture.

flow from the controller to the actuator is determined by the event-triggering mechanism.
We design a triggering condition derived from the estimated execution error, enabling the
system to persistently track state variables. Consequently, relevant data is dispatched to
the actuator. Thus, the control input u is updated to ω(γ(tk), ξ̂(tk)) only at each sampling
instant tk and remains constant between two consecutive sampling instants.

We next introduce the following scaling transformation:

ηi =
ξi − ξ̂i
γb+i−1

, i = 1, . . . , n+ 1,

εi =
ξ̂i

γb+i−1
, i = 1, . . . , n.

(5)

Then, by (1), (2), and (4), we have

D+ε = γ(t)B(y)ε+ γ(t)Hn(y)η1 −
γ̇(t)

γ(t)
Dnε+

Cgn(y)(u− ω)

γb+n−1
,

D+η = γ(t)A(y)η + Φ(t, ξ, γ)− γ̇(t)

γ(t)
Dn+1η,

(6)

where η = [η1, . . . , ηn+1]T, ε = [ε1, . . . , εn]T, Φ(t, ξ, γ) = [φ1(t, ξ)/γb, . . . , φn(t, ξ)/
γn−1+b, 0]T, k(y) = [k1(y), . . . , kn(y)]T, C = [0, . . . , 0, 1]T ∈ Rn, Hi(y) = [h1(y),
. . . , hi(y)]T, i = n, n+ 1, Dn = diag{b, 1 + b, . . . , n−1 + b}, Dn+1 = diag{b, 1 + b,
. . . , n+ b}, and

A(y) =


−h1(y) g1(y) · · · 0

... 0
. . . 0

−hn(y) 0 · · · gn(y)
−hn+1(y) 0 · · · 0

 ,

B(y) =


0 g1(y) · · · 0
... 0

. . . 0
0 0 · · · gn−1(y)

−k1(y) −k2(y) · · · −kn(y)

 .
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Table 1. Common symbols of upper and lower bounds.

Category Mathematical expression
Function control coefficients 0 < c 6 |gi(y)| 6 c̄(1 + |y|p), i = 1, . . . , n

|g1(y)| 6 c̃γpb(1 + |η1 + ε1|p)

Matrix inequalities PA(y) +AT(y)P 6 −νo|g1(y)|In+1

QB(y) +BT(y)Q 6 −νc|g1(y)|In
Dn+1P + PDn+1 > νoIn+1

QDn +DnQ > νcIn

Nonlinearity bounds |φi(t, ξ)| 6 θs(1 + |y|q)
∑i

j=1 |ξj |, i = 1, . . . , n

‖Hi(y)‖ =
√∑i

j=1 h
2
j (y) 6 h̄|g1(y)|, i = n, n+1

Based on Assumption 1 and [13, Remark 4], we choose hi(y), i = 1, . . . , n + 1,
and ki(y), i = 1, . . . , n, which are locally Lipschitz functions and linear combinations
with constant coefficients of gi(y), i = 1, . . . , n. There exist known symmetric positive
definite matrices P and Q and positive constants νo, νc, νo, νc such that for all y ∈ R,

Dn+1P + PDn+1 > νoIn+1, PA(y) +AT(y)P 6 −νo
∣∣g1(y)

∣∣In+1,
(7)

QDn +DnQ > νcIn, QB(y) +BT(y)Q 6 −νc
∣∣g1(y)

∣∣In.
Moreover, by Assumption 1, there exists a known positive constant h̄, and we have

‖Hi(y)‖ =

√√√√ i∑
j=1

h2j (y) 6 h̄
∣∣g1(y)

∣∣, i = n, n+ 1. (8)

In order to enhance the readability of the paper, we have organized the above formulas
and presented the upper and lower bounds of commonly used symbols in subsequent
proofs in Table 1.

4 Performance analysis of event-triggered control

This section presents the stability analysis of closed-loop system (1)-(3) under the event-
triggered controller (4), and the main results are summarized later.

Noting the local Lipschtizness of φi(t, ξ)’s, the right-hand side of resulting closed-
loop system (1)–(4) is locally Lipschitz in (ξ, ξ̂, γ). By [7, p. 18, Thm. 3.1], for any
initial value (ξ(0), ξ̂(0), γ(0)), the entire system with constant-valued u(t) ≡ u(t1)
has a unique solution on a small existence interval [0, Tm1), where t1 = 0 is the first
execution time. By [7, p. 17, Thm. 2.1], interval [0, Tm1

) can be right maximized to
[0, Tm2

). If the next execution time arises at t2 ∈ [0, Tm2
), we regard t2 as the new

initial time, and the controller is switched to another constant-valued u(t2). Then we
can establish the existence and uniqueness of solution (ξ(t), ξ̂(t), γ(t)) with initial value
(ξ(t2), ξ̂(t2), γ(t2)) and u(t) ≡ u(t2). This process would be iterated in a consistent
manner, provided that a larger execution time exists after each execution. Hence, by
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[7, p. 17, Thm. 2.1], the unique solution can be extended to maximal interval [0, Tm)
and 0 < Tm 6 +∞.

Next, we give Proposition 1 to characterize the dynamic behavior of the closed-loop
system via Lyapunov functions. This proposition is very important for guaranteeing the
boundedness of γ, as will be shown in the proof of Proposition 2.

Proposition 1. Define V (ε) = εTQε and V (η) = ηTPη, where P and Q have been
defined in (7). Note that V (η, ε) = µV (η) + V (ε) with µ = 8h̄2‖Q‖2/(νoνc) + 1. Along
the trajectories of (6), there holds

D+V (η, ε) 6 −β(γ −Θ)
(
µ‖η‖2 + ‖ε‖2

)
+

4‖QC‖2

νccγ2b+2n−1e2αt
, (9)

whereD+V (η, ε)=lim suph→0+(V (t+h)−V (t))/h denotes the upper right-hand deriv-
ative of V (η, ε), β = cmin{νo, νc}/4, and Θ = 2µn3θ2‖P‖2 max{1/(νoc), 1/(νcc)}.

Proof. From (6) and (7) there holds

D+V (η, ε)

= µ

(
γ
(
ηTAT(y)Pη + ηTPA(y)η

)
+ 2ηTPΦ− γ̇

γ
ηT(Dn+1P + PDn+1)η

)
+ γ
(
εTBT(y)Qε+ εTQB(y)ε

)
+ 2γη1ε

TQHn(y)

− γ̇

γ
εT(DnQ+QDn)ε+

2εTQCgn(y)(u− ω)

γb+n−1

6 −µνoγ
∣∣g1(y

)
| · ‖η‖2 + µνoβ1γ‖η‖2 − µνoβ2

(
1 + |y|q

)2‖η‖2
− νcγ

∣∣g1(y)
∣∣ · ‖ε‖2 + νcβ1γ‖ε‖2 − νcβ2

(
1 + |y|q

)2‖ε‖2
+ 2µηTPΦ+ 2γη1ε

TQHn(y) +
2gn(y)(u− ω)

γb+n−1
εTQC. (10)

By (8) and the method of completing squares, the last three terms of (10) satisfy

2µηTPΦ 6 2µ2n3θ2‖P‖2‖η‖2 +
(
1 + |y|q

)2(‖η‖2 + ‖ε‖2
)
,

2γη1ε
TQHn(y) 6

νc
4
γ
∣∣g1(y)

∣∣ · ‖ε‖2 +
4h̄2‖Q‖2

νc
γ
∣∣g1(y)

∣∣ · ‖η‖2,
2gn(y)(u− ω)

γb+n−1
εTQC 6

νc
4
γ
∣∣g1(y)

∣∣ · ‖ε‖2 +
4‖QC‖2|gn(y)(u− ω)|2

νc|g1(y)|γ2b+2n−1 .

(11)

Next, we choose parameters β1 and β2 that satisfy{
β1 6 min{ cνc4νc

, cνo4νo
},

β2 > max{ 1
νc
, 1
νo
}.

(12)
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By Assumption 1 and controller (4), noting that V (η, ε) = µV (η) + V (ε) with µ =
8h̄2‖Q‖2/(νoνc) + 1 and substituting (11), (12) into (10), we have that

D+V (η, ε)

6 −νoc
4
γµ‖η‖2 − νcc

4
γ‖ε‖2 + 2µ2n3θ2‖P‖2‖η‖2 +

4‖QC‖2

νccγ2b+2n−1e2αt

6
cmin{νo, νc}

4
γ
(
µ‖η‖2+‖ε‖2

)
+ 2µn3θ2‖P‖2

(
µ‖η‖2+‖ε‖2

)
+

4‖QC‖2d2

νccγ2b+2n−1

6 −β(γ −Θ)
(
µ‖η‖2 + ‖ε‖2

)
+

4‖QC‖2

νccγ2b+2n−1e2αt

with β = cmin{νo, νc}/4, Θ = 2µn3θ2‖P‖2 max{1/(νoc), 1/(νcc)}.
The proof of Proposition 1 is completed.

The following Propositions 2–3 present the boundedness of the closed-loop system
states and exclude Zeno phenomenon.

Proposition 2. For the closed-loop system consisting of (1)–(4), states ε(t), η(t) and
dynamic gain γ(t) are bounded on [0, Tm), and moreover,

lim
t→∞

t∫
0

∥∥ε(s)∥∥2 ds < +∞, lim
t→∞

t∫
0

∥∥η(s)
∥∥2 ds < +∞.

Proof. For contradiction, let γ(t) be unbounded on [0, Tm). Then, noting γ(t) > 1, we
have limt→Tm

γ(t) = +∞, and hence there exists a finite time t1 ∈ [0, Tm) such that

γ(t) > Θ + 1 ∀t ∈ [t1, Tm).

Together with (9), this yields that

D+V (η, ε) 6 −β
(
µ‖η‖2 + ‖ε‖2

)
+

4‖QC‖2

νccγ2b+2n−1e2αt

6 − 1

λmax(P )
µηTPη − 1

λmax(Q)
εTQε+

4‖QC‖2

νccγ2b+2n−1e2αt

6 −λV +
4‖QC‖2

νcce2αt
, (13)

where λ = min{1/λmax(P ), 1/λmax(Q)}.
From (13) it can be seen that

D+V (η, ε) 6 −λV +
4‖QC‖2

vcce2αt
6

4‖QC‖2

vcc
.
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Thus, we obtain

D+
(
eλtV

)
6

4‖QC‖2eλt

vcc
.

By integrating over [T1, t), it follows that

eλtV (t)− eλT1V (T1) 6
4‖QC‖2

vcc

t∫
T1

eλτ dτ 6
4‖QC‖2eλt

vccλ
.

Thus,

eλtV (t) 6 eλT1V (T1) +
4‖QC‖2eλt

vccλ
.

So we have

V (t) 6 eλT1V (T1) +
4‖QC‖2

vccλ
,

which implies that V (η, ε) is bounded on [t1, Tm).
From this it is easy to show that η1 and ε1 are bounded on [t1, Tm). Since 0 < b <

1/(2q), there exists a finite time t2 ∈ [t1, Tm) such that

−β1γ2 + β2γ
(
1 + |y|q

)2
6 −β1γ2 + β2γ

1+2bq
(
1 + |η1 + ε1|q

)2
< 0 ∀t ∈ [t2, Tm).

Hence, by dynamic gain updating law (3), we have

γ̇ =
(
1 + |η1 + ε1|p

)
η21 ∀t ∈ [t2, Tm),

and there exists a positive constant N such that 0 < supt→Tm
(1 + |η1 + ε1|p) < N .

However, integrating both side of (13) over [t2, t] ⊂ [t2, Tm) and noting that α <
λ/2 = min{1/(2λmax(P )), 1/(2λmax(Q))}, we obtain

+∞ = lim
t→Tm

γ(t)− γ(t2) = lim
t→Tm

t∫
t2

γ̇(s) ds 6 lim
t→Tm

N

λmin(P )

t∫
t2

V (s) ds

6 lim
t→Tm

N

λmin(P )

t∫
t2

(
V (t2)e−λ(t−t2) +

4‖QC‖2

νcc

t∫
t2

e−λte(λ−2α)s ds

)
dt

6
N

λmin(P )

(
λ

V (t1)
+

4‖QC‖2

νcc(λα− 2α2)
e−2αt2

)
< +∞,

which is a contradiction for some t2 ∈ [0, Tm). Therefore, γ(t) is bounded on [0, Tm).
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Let γm = supt∈[0,Tm) γ(t). We next show that ε is bounded on [0, Tm). Consider the
function V (ε) = εTQε. From (7) and (11), noting that γ > 1, it clearly follows that

D+V (ε) 6 −νcc
4
γ‖ε‖2 +

4h̄2‖Q‖2

νc
γ
∣∣g1(y)

∣∣η21 +
4‖QC‖2

νccγ2b+2n−1e2αt
.

In addition, by Assumption 1, (5), and γ > 1, we know that there exists an unknown
positive constant c̃ such that∣∣g1(y)

∣∣ 6 c̄
(
1 + |y|p

)
= c̄
(
1 +

∣∣γb(η1 + ε1)
∣∣p)

6 c̄max
{

1, 2p−1
}(

1 + γpb|η1 + ε1|p
)

6 c̄max
{

1, 2p−1
}
γpb
(
1 + |η1 + ε1|p

)
6 c̃γpb

(
1 + |η1 + ε1|p

)
. (14)

Then using the definition of γ̇ and the fact that γ > 1, we have

D+V (ε) 6 −νcc
4
γ‖ε‖2 +

4h̄2‖Q‖2

νc
γpb+1
m γ̇ +

4‖QC‖2

νccγ2b+2n−1e2αt

6 − νcc

4λmax(Q)
V (ε) +

4h̄2‖Q‖2c̃
νc

γpb+1
m γ̇ +

4‖QC‖2

νccγ2b+2n−1e2αt

6 −l1V (ε) + l2γ̇ +
l3

e2αt
, (15)

where

l1 =
νcc

4λmax(Q)
, l2 =

4h̄2‖Q‖2c̃
νc

γpb+1
m , l3 =

4‖QC‖2

νccγ2b+2n−1

are positive constants. From this it is easy to see that on [0, Tm),

D+
(
el1tV (ε)

)
6 l2el1tγ̇ + l3el1t.

Hence, for any t ∈ [0, Tm), we have

V
(
ε(t)
)
6
V (ε(0))

el1t
+ l2

t∫
0

el1(s−t) dγ(s) + l3

t∫
0

el1(s−t) ds

6 V
(
ε(0)

)
+ l2γm +

l3
l1
,

which shows that ε is bounded on [0, Tm).
Moreover, integrating both sides of (15) over [0, t] ⊂ [0, Tm) directly yields

V
(
ε(t)
)
− V

(
ε(0)

)
6 −l1

t∫
0

V
(
ε(s)

)
ds+ l2

t∫
0

γ̇(s) ds+ l3

t∫
0

1

e2αs
ds,
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which implies that

l1

t∫
0

V
(
ε(s)

)
ds 6 V

(
ε(0)

)
+ l2γm +

l3
2α

< +∞.

From this and noting V (ε) = εTQε, hence limt→Tm

∫ t
0
‖ε(s)‖2 ds < +∞.

We next prove that η is bounded on [0, Tm) as well. We introduce the following scaling
transformation:

ζi =
ηi

(γ∗)b+i−1
, i = 1, 2, . . . , n+ 1,

where γ∗ is a positive constant satisfying γ∗ = max{8n3θ2‖p‖2/(νoc + 1, γm)}. Then,
by (6), we derive that

D+ζ = γ∗γA(y)ζ + γ∗γHn+1(y)ζ1 − rΓHn+1(y)ζ1

− γ̇

γ
Dn+1ζ + Ψ(t, ξ, γ∗, γ), (16)

where ζ = [ζ1, . . . , ζn+1]T, Γ = diag{1, 1/γ∗, . . . , 1/(γ∗)n}, Hn+1(y), A(y), Dn+1

are the same as before, and

Ψ(t, ξ, γ∗, γ) =

[
φ1(t, ξ)

(γ∗γ)b
, . . . ,

φn(t, ξ)

(γ∗γ)b+n−1
, 0

]T
.

Define V3(ζ) = ζTPζ. By (3), (7), and (16), we have

D+V (ζ) 6 −νoγ∗γ
∣∣g1(y)

∣∣ · ‖ζ‖2 + 2γ∗γξTPHn+1(y)ζ1 − 2γζTPΓHn+1(y)ζ1

+ β1νoγ‖ζ‖2 − β2νo
(
1 + |y|q

)2‖ζ‖2 + 2ζTPΨ. (17)

Then, by the method of completing square, we obtain

2γ∗γζTPHn+1(y)ζ1 6
νo
4
γ∗γ

∣∣g1(y)
∣∣ · ‖ζ‖2 +

4h̄2‖P‖2(γ∗)1−2b

νo

∣∣g1(y)
∣∣γη21 ,

−2γζTPΓHn+1(y)ζ1 6
νo
4
γ∗γ

∣∣g1(y)
∣∣ · ‖ζ‖2 +

4h̄2‖P‖2‖Γ‖2

νo(γ∗)1+2b

∣∣g1(y)
∣∣γη21 ,

2ζTPΨ 6 2n3θ2‖P‖2
(
‖ζ‖2 + ‖ε‖2

)
+
(
1 + |y|q

)2‖ζ‖2.
(18)

Substituting (12) and (18) into (17), then using Assumption 1, (3), and the definition
of γ∗, we obtain

D+V (ζ) 6
νoc

4
γ∗γ‖ζ‖2 + 2n3θ2‖P‖2(‖ζ‖2 + ‖ε‖2)

+

(
4h̄2‖P‖2(γ∗)1−2b

νo
+

4h̄2‖P‖2‖Γ‖2

νo(γ∗)1+2b

)
|g1(y)|γη21

https://www.journals.vu.lt/nonlinear-analysis
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6 −
(
νoc

4
γ∗ − 2n3θ2‖P‖2

)
γ‖ζ‖2 + 2n3θ2‖P‖2‖ε‖2

+

(
4h̄2‖P‖2(γ∗)1−2b

νo
+

4h̄2‖P‖2‖Γ‖2

νo(γ∗)1+2b

)
c̃γ1+pbγ̇

6 − νoc

4λmax(P )
V (ζ) + 2n3θ2‖P‖2‖ε‖2

+

(
4h̄2‖P‖2(γ∗)1−2b

νo
+

4h̄2‖P‖2‖Γ‖2

νo(γ∗)1+2b

)
c̃γ1+pbm γ̇

= −c1V (ζ) + c2γ̇ + c3‖ε‖2, (19)

where

c1 =
νoc

4λmax(P )
,

c2 =

(
4h̄2‖P‖2(γ∗)1−2b

νo
+

4h̄2‖P‖2‖Γ‖2

νo(γ∗)1+2b

)
c̃γ1+pbm ,

and

c3 = 2n3θ2‖P‖2.

From this it follows that

D+
(
ec1tV (ζ)

)
6 c2γ̇ec1t + c3‖ε‖2ec1t.

Integrating both side of the above inequality over [0, t] ⊂ [0, Tm), we obtain

V
(
ζ(t)

)
6
V (ζ(0))

ec1t
+ c2

t∫
0

ec1(s−t)dγ(s) + c3‖ε‖2
t∫

0

ec1(s−t) ds

6 V
(
ζ(0)

)
+ c2γm +

c3‖ε‖2

c1
,

which shows the boundedeness of ε. It is deduced that ζ is bounded on [0, Tm). Recalling
that ζi = ηi/(γ

∗)b+i−1, we can easily show that η is bounded on [0, Tm). Moreover, (19)
implies that for any t ∈ [0, Tm),

c1

t∫
0

V
(
ζ(s)

)
ds 6 V

(
ζ(0)

)
+ c2

t∫
0

γ̇(s) ds+ c3

t∫
0

∥∥ε(s)∥∥2 ds.

Hence, together with V (ζ) = ζTQζ, we can know limt→Tm

∫ t
0
‖ζ(s)‖2 ds < +∞.

Noting that ζi = ηi/(γ
∗)b+i−1, we can conclude limt→Tm

∫ t
0
‖η(s)‖2 ds < +∞.

The proof of Proposition 2 is thus completed.

Proposition 3. If all the signals of the resulting closed-loop system are bounded on
[0, Tm), then Tm = +∞, and Zeno phenomenon does not occur.

Nonlinear Anal. Model. Control, 31(Online First):1–21, 2026

https://doi.org/10.15388/namc.2026.31.44986


14 Y. Zhang et al.

Proof. From Assumption 1 and the event-triggered controller (4), for any t ∈ [tk, tk+1),
we have ∣∣c(ω(t)− ω(tk)

)∣∣ 6 ∣∣gn(y)
∣∣∣∣ω(t)− ω(tk)

∣∣.
Suppose for contradiction that Tm < +∞. Then, by the hypothesis of Proposition 3,

we see that Zeno phenomenon indeed occurs, and moreover, limk→+∞ tk = Tm.
By event-triggered controller (4), we know that∣∣c(u(t)− ω(t)

)∣∣ 6 ∣∣gn(y)
∣∣∣∣u(t)− ω(t)

∣∣ 6 e−αt.

There exists a positive constant M such that on each [tk, tk+1),∣∣∣∣ d

dt

(
c2
(
u(t)− ω(t)

)2
e2αt

)∣∣∣∣ 6Meαt,

lim
t→tk

c2
(
u(t)− ω(t)

)2
= e−2αtk ,

c2
(
u(tk)− ω(tk)

)2
= 0.

(20)

Then, by (20), we have

1 = lim
t→tk+1

c2
(
u(t)− ω(t)

)2
e2αt − c2

(
u(tk)− ω(tk)

)2
e2αtk

= lim
t→tk+1

t∫
tk

d

dt

(
c2
(
u(s)− ω(s)

)2
e2αs

)
ds

6
M

α

(
eαtk+1 − eαtk

)
.

Let f1(x) = Meαx and f2(x) = x. By Cauchy’s mean value theorem†, there exists
ρk ∈ [tk, tk+1) ⊂ [0, Tm) such that

Meαρk(tk+1 − tk) > 1,

which concludes tk+1 − tk > 1/(Meαρk) > 1/(MeαTm) > 0. This means that inter-
execution intervals δk in event-triggered controller (4) satisfy δk = tk+1 − tk > 0. Thus
we get limk→+∞ tk = +∞, which results in a contradiction and, in turn, implies Tm =
+∞, and Zeno phenomenon does not occur.

The proof of Proposition 3 is completed.

With Propositions 1–3 in hand, based on the above controller (4), we have proved the
boundedness of the closed-loop system in turn. In addition, the presented control scheme
has satisfied the demand of avoiding the Zeno behavior. These outcomes are illustrated in
the following theorem.

†Cauchy’s mean value theorem: “Let f1 and f2 be functions that are continuous on the closed interval [a, b]
and differentiable on the open interval (a, b). Suppose that ḟ2(x) 6= 0 for all x ∈ (a, b). Then there exists at
least one point c ∈ (a, b) such that ḟ1(c)/ḟ2(c) = (f1(b)− f1(a))/(f2(b)− f2(a)).”
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Theorem 1. Consider system (1) under Assumptions 1 and 2. The event-triggered output-
feedback controller (4), combined with the observer (2) and the updating law (3), ensures
that for any initial condition (ξ0, ξ̂0), the closed-loop system admits a unique and bounded
solution on [0,+∞). Moreover, the system states satisfy

lim
t→+∞

(
ξ(t), ξ̂[n](t), ξ̂n+1(t), u(t)

)
= (0, 0, ν,−ν). (21)

Proof. We only need to prove the convergence of (ξ(t), ξ̂[n](t), ξ̂n+1(t), u(t)). By (5), we
can obtain that

ξi = γb+i−1(ηi + εi), i = 1, . . . , n,

ξ̂i = γb+i−1εi, i = 1, . . . , n,

ξ̂n+1 = ν − γb+nηn+1.

(22)

Then, by Proposition 2 and (22), it can be verified that ξ(t) and ξ̂(t) are bounded on
[0,+∞). In fact, by (6) and Proposition 2, we can see that η̇(t) and ε̇(t) are bounded on
[0,+∞). In addition, from Proposition 2 it follows that

+∞∫
0

∥∥η(s)
∥∥2 ds < +∞,

+∞∫
0

∥∥ε(s)∥∥2 ds < +∞.

Using Barbalat lemma [26], we have limt→+∞(η(t), ε(t)) = (0, 0). From (4) and (22)
we can see that (21) holds.

The proof is thus completed.

5 Simulation examples

In this section, two examples are given to illustrate the validity of the theoretical results.

Example 1. Consider the following two-dimensional uncertain nonlinear system:

ξ̇1 = 1.1
(
1 + 0.5y2

)
ξ2,

ξ̇2 = 0.8
(
1 + 0.5y2

)
(u+ ν) + θsξ

2
1ξ2,

y = ξ1.

(23)

It can be verified that this system satisfies Assumptions 1 and 2 with c = 0.8, c̄ = 1.2,
p = q = 2, θs = 0.5, λ = 12.84, and matrices P and Q satisfy

P =

 0.0747 −0.0089 −0.0054
−0.0089 0.0258 −0.0117
−0.0054 −0.0117 0.0687

 , Q =

[
0.0687 0.0093
0.0093 0.0607

]
.
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Figure 2. The trajectories of states ξ1 and ξ2. Figure 3. The trajectories of states ξ̂1, ξ̂2 and ξ̂3.

Figure 4. The trajectory of gain γ. Figure 5. The trajectory of u.

By (2) and (3), we design the following observer and dynamic gain:

˙̂
ξ1 = 1.1

(
1 + 0.5y2

)
ξ̂2 + 2.5

(
1 + 0.5y2

)
γ(ξ1 − ξ̂1),

˙̂
ξ2 = 0.8

(
1 + 0.5y2

)
ξ̂3 + 0.8

(
1 + 0.5y2

)
u+ 2

(
1 + 0.5y2

)
γ2(ξ1 − ξ̂1),

˙̂
ξ3 =

(
1 + 0.5y2

)
γ3(ξ1 − ξ̂1),

γ̇(t) = max

{
−0.2γ2 + 10γ

(
1 + y2

)2
,

(
1 +

ξ21
γ1/5

)
(ξ1 − ξ̂1)2

γ1/5

}
, γ(0) = 1.

Then, by the previous design procedure, we can design the time-varying event-trig-
gered controller with k1 = (1 + 0.5y2), k2 = 1.2(1 + 0.5y2), and α = 6. For sim-
ulation, we choose ν = 1.6 and set the initial conditions as ξ(0) = [−0.1, 0.2]T and
ξ̂(0) = [0.1, 0.5,−0.5]T. The simulation results are shown in Figs. 2–6. Figures 2–5 are
obtained to exhibit the trajectories of all the signals of the closed-loop system and show
the expected convergence of the closed-loop system. Figure 6 provides the inter-execution
interval δk, and we can see that Zeno phenomenon can be excluded.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Adaptive event-triggered output-feedback stabilization for nonlinear systems 17

Figure 6. The inter-execution interval δk .

Example 2. Based on the output-feedback scheme proposed, we consider the nonzero
set-point regulation of the following uncertain nonlinear system:

v̈ + α1

(
1− v2

)
v̇ + α2v = u, (24)

where α1, α2 are unknown constants. Moreover, suppose that only v is measurable.
Specifically, the desired regulation means that signal v converges to a prescribed non-

zero constant v0. Let ξ1 = v − v0 and ξ2 = v̇. Then system (24) becomes

ξ̇1 = ξ2,

ξ̇2 = (u− α2v0)− α2η1 − α1(1− (ξ1 + v0)2)ξ2,

y = ξ1,

(25)

where −α2v0 is the input matching uncertainty of system (25). We can easily see that
system (25) satisfies Assumptions 1–2 with p = 2, θ = max{|α1|, |α2|}·max{1+2v20 , 2}
and q = 2, λ = 12.03. Matrices P and Q satisfy:

P =

 0.0750 −0.0106 −0.0078
−0.0106 0.0212 −0.0115
−0.0078 −0.0115 0.0755

 , Q =

[
0.0673 0.0172
0.0172 0.0580

]
.

Thus, we design the following observer and dynamic gain:

˙̂
ξ1 = ξ̂2 + 2γ(ξ1 − ξ̂1),

˙̂
ξ2 = η̂3 + u+ 3γ2(ξ1 − ξ̂1),

˙̂
ξ3 = γ3(ξ1 − ξ̂1),

γ̇(t) = max

{
−0.25γ2 + 10γ

(
1 + y2

)2
,

(
1 +

ξ21
γ1/4

)
(ξ1 − ξ̂1)2

γ1/4

}
, γ(0) = 1.

Then, by the previous design procedure, we can design the time-varying event-trig-
gered controller with k1 = 2, k2 = 3, and α = 5. We select α1 = 2, α2 = 2. Let v0 = 1
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Figure 7. The trajectories of states ξ1 and ξ2. Figure 8. The trajectories of states ξ̂1, ξ̂2 and ξ̂3.

Figure 9. The trajectory of gain γ. Figure 10. The trajectory of u.

Figure 11. The inter-execution interval δk .

and choose the initial conditions as ξ(0) = [−0.1,−0.3]T and ξ̂(0) = [0.1,−1,−0.5]T.
The simulation results are shown in Figs. 7–11. Figures 7–10 demonstrate the effective-
ness of the control scheme. The inter-execution interval δk is provided in Fig. 11, and
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consequently, Zeno phenomenon can be excluded. It should be particularly noted that
due to the presence of input-matching uncertainties, the event-triggered control schemes
proposed in existing work [17] are no longer applicable.

6 Concluding remarks

This article focuses on developing an adaptive event-triggered output-feedback scheme to
achieve global stabilization for a class of nonlinear systems characterized by function con-
trol coefficients, input matching uncertainty, and an unknown polynomial-function growth
rate. To address this challenging problem, we introduce a dynamic gain to manage the
additional nonlinearities arising from the function control coefficients and the polynomial-
of-output growth rate. Furthermore, the input matching uncertainty is asymptotically
estimated using an extended state observer. Notably, we design an event-triggering mech-
anism featuring a time-varying threshold, which remains strictly positive and gradually
decays over time. Additionally, we provide a rigorous proof demonstrating that the re-
sulting closed-loop system is stabilized and that Zeno behavior is effectively precluded.
But it is worth pointing out that the system control coefficients we designed are known,
and the method mentioned in this article is not applicable when the control coefficients or
control directions of the system are unknown.
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