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Abstract. This paper explores the issues of exponential stability and positive stabilization of
positive switched systems with time-varying delays. Using the Lyapunov–Razumikhin approach,
we derive exponential stability criteria for positive switched delay systems (PSDSs) across various
switching behaviors, including nondecreasing and decreasing switching patterns. Following this,
we delve into the design of state feedback control to achieve positive stabilization of these systems,
leveraging the established stability conditions. The paper culminates with numerical examples that
confirm the validity of our theoretical findings.
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1 Introduction

With the development of modern control theory and technology, switched systems [4,
11, 13, 24, 33], which are a particular type of hybrid dynamic systems, have attracted
extensive attention from both academia and industry. These systems consist of multiple
subsystems and a switching rule that governs the switching between these subsystems,
and have a widespread presence in numerous practical applications, including power
systems, networked control systems, and mechanical systems. Positive switched systems
[20, 23, 25, 30] represent an important branch within the theory of switched systems,
characterized by the nonnegativity of all state variables. This nonnegativity reflects the
physical properties of certain real systems, such as population dynamics, biochemical
processes, and economic management systems.
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Stability analysis is a critical aspect of the theory of dynamic systems, primarily
concerned with investigating the stability characteristics of system states over time. This
analysis involves not only assessing the stability of a system after a control strategy has
been implemented but also designing an appropriate controller based on stability analysis.
Consequently, the study of system stability is of considerable importance. Notably, even
when all subsystems are stable, an ill-chosen switching rule can destabilize the overall
switched system. Conversely, with an appropriate switching rule, even if some or all
subsystems are unstable [16, 17, 19], the switched system can maintain stability. There-
fore, designing an appropriate switching rule to stabilize the switched system is a com-
mon control strategy. Additionally, state feedback controller [7, 9, 15, 27] offers another
effective approach for achieving system stability. By introducing a state feedback loop,
these controllers adjust the system state in real time, aiming to achieve the desired stable
state. Careful design of a state feedback controller can yield substantial enhancements in
both the dynamic performance and stability of the system. In contrast to research on the
stabilization of normal switched dynamical systems [3, 5, 12, 21], this paper requires that
the states of the switched systems remain positive at all times, an approach referred to as
positive stabilization.

Time delay from controller, actuator, and measurement elements is a widespread
phenomenon in engineering, frequently resulting in oscillation and performance degra-
dation during the dynamic process. The investigation of time delay in control systems has
garnered significant attention [1, 2, 8, 10, 14, 26, 34]. Among these, Chen and Zheng [2]
addressed the time delay by employing the Lyapunov–Razumikhin technique, thereby
deriving stability conditions. Zong et al. [34] addressed the issue of finite-timeH1 control
for a class of discrete-time switched time-delay systems by constructing a Lyapunov-like
functional. Zhang et al. [26] studied the fixed-time and finite-time stability of switched
delay systems using the Lyapunov–Krasovskii technique. Chen et al. [1] developed a time-
dependent Lyapunov function to investigate the stability and L2-gain performance of
linear time-delay systems. It is noteworthy that only the Lyapunov–Razumikhin method
is capable of handling rapid time-varying delay. Nonetheless, literature on the stability
analysis of positive switched systems with time-varying delay utilizing the Lyapunov–
Razumikhin method remains scarce.

Switching behaviors can sometimes cause an increase in the Lyapunov function, which
can adversely affect the stability of the system. Conversely, within a switching sequence,
these behaviors can also play a stabilizing role. Using a discretized Lyapunov–Krasovs-
kii functional, the stability of positive switched delay systems was investigated in [28],
where all subsystems were unstable, implying that every switching action contributes to
stability. Zhou employed the Lyapunov–Krasovskii functional to establish an exponen-
tial stability criterion for positive switched delay systems, as cited in [32], which in-
cludes a switching behavior that involves nondecreasing switching behavior and decreas-
ing switching behavior. Considering these two types of switching behaviors, this paper
addresses the exponential stability of positive switched delay systems and positive stabi-
lization.

Building upon the aforementioned background, this paper centers on the study of
time-varying positive switched delay system (PSDS), examining in depth the issues of
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exponential stability and positive stabilization control. It is crucial to emphasize the dis-
tinctions between the current work and previous research efforts:

(i) This paper employs the Lyapunov–Razumikhin technique to address time delay,
rather than the Lyapunov–Krasovskii method, as in [28] and [32]. The method
employed in this paper is capable of studying the stability of systems with rapid
time delay. In addition, the Lyapunov function constructed in this paper is dis-
cretized, which can reduce the conservatism of the obtained results.

(ii) Unlike the literature, which concentrates on fixed delay system, the findings
presented in this paper are applicable to time-varying delay.

(iii) In contrast to the common approach of utilizing a single pair of maximum and
minimum dwell times for all subsystems, this study is based on mode-dependent
interval dwell-time method, where each subsystem is assigned a pair of maximum
and minimum dwell times.

(iv) The stability results obtained in this paper can address scenarios where stable
subsystems are present, as well as those where all subsystems are unstable. These
criteria are verified through numerical examples. Based on these findings, a de-
sign for a state feedback controller is proposed.

The structure of the remainder of this paper is as follows. Section 2 provides the pre-
liminaries. Section 3 presents the sufficient conditions for exponential stability of PSDS
under mode-dependent interval dwell time. Based on the stability results, the positive
stabilization problem of the system is further investigated in Section 4. Section 5 presents
numerical examples to verify the effectiveness of the conclusions in this paper. Section 6
summarizes the entire paper.

Notations. Let N denote the set of natural numbers. A nonnegative vector x is defined
as a vector in which all elements are nonnegative. Similarly, a nonnegative matrix A is
defined as a matrix in which all elements are nonnegative. Rn (Rn+) and Rn×n (Rn×n+ )
represent n-dimensional (nonnegative) real vector space and (n × n)-dimensional (non-
negative) real matrix space, respectively. Mn denotes the set of Metzler matrices, whose
nondiagonal elements are nonnegative. I represents the identity matrix of the appropriate
dimension. A vector x � 0 (x < 0) means that x is a positive (nonnegative) vector,
conversely, x ≺ 0 (x 4 0) means that x is a negative (nonpositive) vector. The function
x(t) equals its right-hand limit at t, given by x(t) = x(t+). ‖·‖ is the Euclidean norm.
A> is the transpose of matrix A. L = {0, 1, . . . , L} and L− = {0, 1, . . . , L− 1}.

2 Preliminaries

Consider the system defined as follows:

ẋ(t) = Aσ(t)x(t) +Bσ(t)x
(
t− ω(t)

)
+Dσ(t)u(t), t > 0,

x(δ) = ρ(δ), δ ∈ [−ω̂, 0],
(1)

where x(t) ∈ Rn is the state, u(t) ∈ Rn is the control input. The time-varying delay
ω(t) is constrained such that 0 6 ω(t) 6 ω̂, where ω̂ is a known positive constant. ρ(δ) :
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[−ω̂, 0] → Rn is an initial function. The piecewise function σ(t) : [0,+∞) → P =
{1, 2, . . . , p} is the switching signal. The time sequence tk for k ∈ N forms a sequence
characterized by 0 < t1 < · · · < tk < · · · and limk→+∞ tk = +∞. τk represents the
dwell time on the σ(tk)th subsystem. For each i ∈ P , Ai, Bi, and Di are known constant
system matrices with appropriate dimensions.

Definition 1. (See [31].) System (1) with the switching signal σ(t) is said to be positive
if, given the initial state ρ(t) < 0 for t ∈ [−ω̂, 0] and the input vector u(t) < 0, the state
trajectory satisfies x(t) < 0 for all t > 0.

Definition 2. (See [22].) System (1) with the switching signal σ(t) is said to be expo-
nentially stable if there exist constants p0 > 0, q0 > 0 such that, for any initial function
ρ(t) < 0, the solution of system (1) satisfies ‖x(t)‖ 6 p0e

−q0t‖ρ‖ω̂ , t > 0, where
‖ρ‖ω̂ = sup−ω̂6t60 ‖ρ(t)‖.

Definition 3. (See [29].) A switching signal σ(t) is called a mode-dependent interval
dwell-time (MDIDT) switching signal if for each mode i ∈ P , there exist constants τi1
and τi2 such that τi1 = infk∈N{τk: σ(tk) = i, i ∈ P} and τi2 = supk∈N{τk: σ(tk) =
i, i ∈ P}, where τk = tk+1 − tk.

Definition 4. (See [29].) The region D is called the stability region for admissible upper
bound and lower bound of dwell time, which ensures the exponential stability of the
switched system (1).

Lemma 1. (See [18].) System (1) is positive if Ai ∈ Mn, Bi ∈ Rn×n+ , and Di ∈ Rn×n+

for all i ∈ P .

Lemma 2. (See [6].) A matrix Ai ∈ Mn for all i ∈ P if and only if there exists a scalar
~ for which the inequality Ai + ~I > 0 is satisfied.

The interval [tk, tk+1) is partitioned intoL equal subintervals, each denoted byCk,q =
[tk + q`k, tk + (q + 1)`k) for q ∈ L−, where `k = (tk+1 − tk)/L is the length of each
subinterval. It follows that ∪L−1q=0 Ck,q = [tk, tk+1) and Ck,m ∩ Ck,n = ∅ for m 6= n. For
each subinterval Ck,q , let σ(tk) = i, and we select positive constant vectors ξi,q ∈ Rn+,
ξi,q+1 ∈ Rn+, q ∈ L−. By using the convex combination technique, a positive time-
varying function ξi(t) can be described as

ξi(t) = f(t)ξi,q+1 + f̃(t)ξi,q, t ∈ Ck,q, (2)

where f(t) = (t − tk − q`k)/`k and f̃(t) = (tk + (q + 1)`k − t)/`k. Note that f̃(t) =
1− f(t). Similarly, we define

εi(t) = f(t)εi, q+1 + f̃(t)εi,q, t ∈ Ck,q.

Then, taking the derivation of ξ(t), we obtain

ξ̇i(t) =
ξi,q+1 − ξi,q

`k
= L

(
ξi,q+1 − ξi,q
tk+1 − tk

)
, t ∈ Ck,q. (3)
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Since τi1 6 tk+1 − tk 6 τi2, by using the convex combination technique again, there
exists a function g(t) ∈ [0, 1] such that

ξ̇i(t) = L

(
ξi,q+1 − ξi,q
tk+1 − tk

)
= g(t)

L

τi2
(ξi,q+1 − ξi,q) + g̃(t)

L

τi1
(ξi,q+1 − ξi,q), (4)

where g̃(t) = 1− g(t).

3 Exponential stability analysis

In this section, we investigate the exponential stability of system (1) with u(t) = 0. The
system (1) is simplified and rewritten as

ẋ(t) = Aσ(t)x(t) +Bσ(t)x
(
t− ω(t)

)
, t > 0,

x(δ) = ρ(δ), δ ∈ [−ω̂, 0],
(5)

where Ai ∈ Mn and Bi ∈ Rn×n+ with the other symbols defined as in system (1). By
Lemma 1, system (5) is a PSDS. We proceed to utilize the Lyapunov–Razumikhin method
to establish the exponential stability criteria for this PSDS.

First, we consider the case of nondecreasing switching behavior.

Theorem 1. Given an integer L > 0, suppose there exist vectors ξi,q � 0, ξi,q+1 � 0 for
q ∈ L− and i ∈ P , a vector ξ∗ � 0, and constants βi > 0, θ > 1, α > 0 such that

L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (βi + α)ξ>i,q ≺ 0,

L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (βi + α)ξ>i,q ≺ 0,

L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (βi + α)ξ>i,q+1 ≺ 0,

L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (βi + α)ξ>i,q+1 ≺ 0,

(6)

ξ>i,qBi − yie−αω̂ξ∗ ≺ 0, q ∈ L, (7)

ξ∗ 4 ξi,q, q ∈ L, (8)

ξj,0 4 θξi,L, i 6= j, j ∈ P. (9)

Then system (5) is exponentially stable under the MDIDT switching signal with τ1 >
ln(θ)/α, where τ1 = mini∈P{τi1}.

Proof. For t ∈ [tk, tk+1), when σ(t) = i, we construct a copositive time-varying Lya-
punov function as follows:

Vi
(
t, x(t)

)
= eαtξ>i (t)x(t), (10)
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where α is a positive constant. From (6) there exists µ > 1 such that

L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (βiµ+ α)ξ>i,q ≺ 0

L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (βiµ+ α)ξ>i,q ≺ 0

L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (βiµ+ α)ξ>i,q+1 ≺ 0

L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (βiµ+ α)ξ>i,q+1 ≺ 0.

(11)

There exist two positive constants ξ and ξ such that ξ1 < ξi,q and ξ1 4 ξi,q for all
i ∈ P and q ∈ L with 1 = (1, 1, . . . , 1)> being a vector of the same dimension as ξi,q .
Next, we aim to prove that

V
(
t, x(t)

)
< µξ‖ρ‖ω̂θk, t ∈ [tk, tk+1), k ∈ N. (12)

The proof is divided into two steps based on mathematical derivations.
(i) For the time interval t ∈ [0, t1), we verify that (12) holds.
At t = 0, it is evident that V (t, x(t)) < µξ‖ρ‖ω̂ . Next, we will demonstrate that

V
(
t, x(t)

)
< µξ‖ρ‖ω̂, t ∈ (0, t1).

Supposed that there exists a t ∈ (0, t1) such that V (t, x(t)) > µξ‖ρ‖ω̂ . Set

t∗ = inf
{
t ∈ (0, t1): V

(
t, x(t)

)
> µξ‖ρ‖ω̂

}
and

t◦ = sup
{
t ∈ [0, t∗): V

(
t, x(t)

)
6 ξ‖ρ‖ω̂

}
.

Given that V (t, x(t)) is continuous on t ∈ [0, t1), we obtain V (t∗, x(t∗)) = µξ‖ρ‖ω̂ and
V (t◦, x(t◦)) = ξ‖ρ‖ω̂ . Consequently, for any t ∈ [t◦, t∗], it yields that

V
(
t+ δ, x(t+ δ)

)
6 µV

(
t, x(t)

)
, δ ∈ [−ω̂, 0]. (13)

Taking the derivative of V (t, x(t)) with respect to t, t ∈ [t◦, t∗], for any positive constant
βi, one can derive from (8) and (13)

V̇
(
t, x(t)

)
= eαt

[
ξ̇>i (t)x(t) + ξ>i (t)

(
Aix(t) +Bix

(
t− ω(t)

))
+ αξ>i (t)x(t)

]
6 eαt

[
ξ̇>i (t) + ξ>i (t)Ai + αξ>i (t)

]
x(t) + eαtξ>i (t)Bix

(
t− ω(t)

)
+ βi

[
µV

(
t, x(t)

)
− V

(
t− ω(t), x

(
t− ω(t)

))]
6 eαt

[
ξ̇>i (t) + ξ>i (t)Ai + αξ>i (t)

]
x(t) + eαtξ>i (t)Bix

(
t− ω(t)

)
+ βie

αt
[
µξi(t)x(t)− e−αω̂ξj

(
t− ω(t)

)
x
(
t− ω(t)

)]
6 eαt

[
ξ̇>i (t) + ξ>i (t)Ai + (α+ βiµ)ξ

>
i (t)

]
x(t)

+ eαt
[
ξ>i (t)Bi − βie−αω̂ξ∗

]
x
(
t− ω(t)

)
. (14)
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By (2)–(4) and (14), we can infer that

V̇
(
t, x(t)

)
6 eαt

[
f(t)g(t)

(
L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (α+ βiµ)ξ

>
i,q+1

)
+ f(t)g̃(t)

(
L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (α+ βiµ)ξ

>
i,q+1

)
+ f̃(t)g(t)

(
L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (α+ βiµ)ξ

>
i,q

)
+ f̃(t)g̃(t)

(
L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (α+ βiµ)ξ

>
i,q

)]
x(t)

+ eαt
[
f(t)

(
ξ>i,q+1Bi − βie−αω̂ξ∗

)
+ f̃(t)

(
ξ>i,qBi − βie−αω̂ξ∗

)]
x
(
t− ω(t)

)
.

From (7) and (11) it follows that

V̇
(
t, x(t)

)
< 0, t ∈ [t◦, t∗],

which means that V (t∗, x(t∗)) < V (t◦, x(t◦)). This leads to a contradiction, implying
that (12) holds for t ∈ [0, t1).

(ii) Within the time interval t ∈ [tk, tk+1), we illustrate that (12) is true.
Suppose (12) is true for [tk−1, tk), where k = 1, 2, . . . , r. Then we proceed to demon-

strate that (12) remains valid on [tr, tr+1). According to (9), we have

V
(
tr, x(tr)

)
6 θV

(
t−r , x(t

−
r )

)
< µξ‖ρ‖ω̂θr.

Assume that there exists t ∈ (tr, tr+1) such that V (t, x(t)) > µξ‖ρ‖ω̂θr, and let

t∗ = inf
{
t ∈ (tr, tr+1): V

(
t, x(t)

)
> µξ‖ρ‖ω̂θr

}
and

t◦ = sup
{
t ∈ [tr, t

∗): V
(
t, x(t)

)
6 ξ‖ρ‖ω̂θr

}
.

Note that if {t ∈ [tr, t
∗): V (t, x(t)) 6 ξ‖ρ‖ω̂θr} = ∅, we set t◦ = tr. Therefore, it is

evident that

V (t+ δ, x(t+ δ)) 6 µV
(
t, x(t)

)
, t ∈ [t◦, t∗], δ ∈ [−ω̂, 0).

Similar to the case t ∈ [0, t1), by combining (7), (8), and (11), we obtain V̇ (t, x(t)) < 0
for t ∈ [t◦, t∗] ⊂ [tr, tr+1), which implies that V (t∗, x(t∗)) < V (t◦, x(t◦)). This leads
to a contradiction, suggesting that (12) holds for t ∈ [tr, tr+1).

Consequently, V (t, x(t)) < µξ‖ρ‖ω̂θk holds on t ∈ [tk, tk+1), k ∈ N, by mathemat-
ical induction.
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Finally, we prove that system (5) is exponentially stable. The definition of V (t, x(t))
implies that

V
(
t, x(t)

)
> ξeαt

∥∥x(t)∥∥.
From (12) it follows that

ξeαt
∥∥x(t)∥∥ 6 µξθk‖ρ‖ω̂ = µξek ln θ‖ρ‖ω̂

6 µξet ln(θ)/τ1‖ρ‖ω̂.

We then derive that ∥∥x(t)∥∥ 6 p0e
(ln(θ)/τ1−α)t‖ρ‖ω̂,

where p0 = µξ/ξ. It is straightforward to see that system (5) is exponentially stable. This
completes the proof.

Remark 1. L is a given positive integer, and as L increases, the conclusions become less
conservative, whereas the computational effort required for the analysis increases. The
comparison in conservativeness for different values of L can be observed in Example 1.

Remark 2. Theorem 1 addresses the case of nondecreasing switching behavior, which
means that the Lyapunov function remains constant or increases following a switch.

When τi2 ≡ τ2 and τi1 ≡ τ1, the MDIDT switching signal is simplified to the interval
dwell-time (IDT) switching signal. Subsequently, we will study the stability criterion for
system (5) under IDT switching signal.

Corollary 1. Given an integer L > 0, suppose there exist vectors ξi,q � 0, ξi,q+1 � 0
for q ∈ L− and i ∈ P , a vector ξ∗ � 0, and constants βi > 0, θ > 1, α > 0 such that

L

τ1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (βi + α)ξ>i,q ≺ 0,

L

τ2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (βi + α)ξ>i,q ≺ 0,

L

τ1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (βi + α)ξ>i,q+1 ≺ 0,

L

τ2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (βi + α)ξ>i,q+1 ≺ 0,

(15)

ξ>i,qBi − βiξ∗ ≺ 0, q ∈ L, (16)

ξ∗ 4 ξi,q, q ∈ L, (17)

ξj,0 4 θξi,L, i 6= j, j ∈ P. (18)

Then system (5) is exponentially stable under the MDIDT switching signal with τ1 >
ln(θ)/α.

Next, we consider the case of decreasing switching behavior.
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Theorem 2. Given an integer L > 0, suppose there exist vectors ξi,q � 0, ξi,q+1 � 0 for
q ∈ L− and i ∈ P , a vector ξ∗ � 0, and constants βi > 0, 0 < θ < 1, α > 0 such that

L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (βi − α)ξ>i,q ≺ 0,

L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (βi − α)ξ>i,q ≺ 0,

L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (βi − α)ξ>i,q+1 ≺ 0,

L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (βi − α)ξ>i,q+1 ≺ 0,

(19)

ξ>i,qBi − βiξ∗ ≺ 0, q ∈ L, (20)

ξ∗ 4 ξi,q, q ∈ L, (21)
ξj,0 4 θξi,L, i 6= j, j ∈ P.

Then system (5) is exponentially stable under the MDIDT switching signal with τ2 >
− ln(θ)/α, where τ2 = maxi∈P{τi2}.

Proof. For t ∈ [tk, tk+1), as σ(t) = i, we construct a copositive time-varying Lyapunov
function as follows:

Vi
(
t, x(t)

)
= e−αtξ>i (t)x(t), (22)

where α is a positive constant. From (19) and (20) there exists 0 < µ < 1 such that

L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi +

(
βi

1

µ
− α

)
ξ>i,q ≺ 0,

L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi +

(
βi

1

µ
− α

)
ξ>i,q ≺ 0,

L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai +

(
βi

1

µ
− α

)
ξ>i,q+1 ≺ 0,

L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai +

(
βi

1

µ
− α

)
ξ>i,q+1 ≺ 0.

(23)

There exist two positive constants ξ and ξ such that ξ1 < ξi,q and ξ1 4 ξi,q for all
i ∈ P and q ∈ L with 1 = (1, 1, . . . , 1)> being a vector of the same dimension as ξi,q .
Next, we aim to prove that

V
(
t, x(t)

)
<

1

µ
ξ‖ρ‖ω̂θk, t ∈ [tk, tk+1), k ∈ N. (24)

The proof is divided into two steps based on mathematical derivations.
(i) For the time interval t ∈ [0, t1), we verify that (24) is true.
When t = 0, V (t, x(t)) < ξ‖ρ‖ω̂/µ holds. Next, we provide a proof that

V
(
t, x(t)

)
<

1

µ
ξ‖ρ‖ω̂, t ∈ (0, t1).
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It is assumed that there exists a t ∈ (0, t1) such that V (t, x(t)) > ξ‖ρ‖ω̂/µ, and we set

t∗ = inf

{
t ∈ (0, t1): V (t, x(t)) >

1

µ
ξ‖ρ‖ω̂

}
and

t◦ = sup
{
t ∈ [0, t∗): V (t, x(t)) 6 ξ‖ρ‖ω̂

}
.

As the function V (t, x(t)) is continuous on [0, t1), we have V (t∗, x(t∗)) = ξ‖ρ‖ω̂/µ and
V (t◦, x(t◦)) = ξ‖ρ‖ω̂ . Hence, for any t ∈ [t◦, t∗], we arrive at

V
(
t+ δ, x(t+ δ)

)
6

1

µ
V
(
t, x(t)

)
, δ ∈ [−ω̂, 0]. (25)

Taking the derivative of V (t, x(t)), t ∈ [t◦, t∗], for any βi > 0, we can derive the
following from (21) and (25):

V̇
(
t, x(t)

)
= e−αt

[
ξ̇>i (t)x(t) + ξ>i (t)

(
Aix(t) +Bix

(
t− ω(t)

))
− αξ>i (t)x(t)

]
6 e−αt

[
ξ̇>i (t) + ξ>i (t)Ai − αξ>i (t)

]
x(t) + e−αtξ>i (t)Bix

(
t− ω(t)

)
+ βi

[
1

µ
V
(
t, x(t)

)
− V

(
t− ω(t), x

(
t− ω(t)

))]
6 e−αt

[
ξ̇>i (t) + ξ>i (t)Ai − αξ>i (t)

]
x(t) + e−αtξ>i (t)Bix

(
t− ω(t)

)
+ βie

−αt
[
1

µ
ξi(t)x(t)− ξj

(
t− ω(t)

)
x
(
t− ω(t)

)]
6 e−αt

[
ξ̇>i (t) + ξ>i (t)Ai +

(
βi

1

µ
− α

)
ξ>i (t)

]
x(t)

+ e−αt
[
ξ>i (t)Bi − βiξ∗

]
x
(
t− ω(t)

)
. (26)

In light of (2)–(4) and (26), the following is established:

V̇
(
t, x(t)

)
6 e−αt

[
f(t)g(t)

(
L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai +

(
βi

1

µ
− α

)
ξ>i,q+1

)
+ f(t)g̃(t)

(
L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai +

(
βi

1

µ
− α)ξ>i,q+1

)
+ f̃(t)g(t)

(
L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi +

(
βi

1

µ
− α)ξ>i,q

)
+ f̃(t)g̃(t)

(
L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi +

(
βi

1

µ
− α

)
ξ>i,q

)]
x(t)

+ e−αt
[
f(t)

(
ξ>i,q+1Bi − βiξ∗

)
+ f̃(t)

(
ξ>i,qBi − βiξ∗

)]
x
(
t− ω(t)

)
.

By combining (20) and (23), we obtain that

V̇ (t, x(t) < 0, t ∈ [t◦, t∗],
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which means that V (t∗, x(t∗)) < V (t◦, x(t◦)). This leads to a contradiction, implying
that (12) holds for t ∈ [0, t1). A contradiction arises, implying that (24) holds for t ∈
[0, t1).

(ii) Within the time interval t ∈ [tk, tk+1), we illustrate that (24) is true.
Assuming that (25) holds on [tk−1, tk), k = 1, 2, . . . , r, we next show that (24) also

holds on [tr, tr+1). From (21) we have

V
(
tr, x(tr)

)
6 θV

(
t−r , x(t

−
r )

)
<

1

µ
ξ‖ρ‖ω̂θr.

Assume that there exists t ∈ (tr, tr+1) such that V (t, x(t)) > ξ‖ρ‖ω̂θr/µ, and let

t∗ = inf

{
t ∈ (tr, tr+1): V

(
t, x(t)

)
>

1

µ
ξ‖ρ‖ω̂θr

}
and

t◦ = sup
{
t ∈ [tr, t

∗): V
(
t, x(t)

)
6 ξ‖ρ‖ω̂θr

}
.

Note that if {t ∈ [tr, t
∗): V (t, x(t)) 6 ξ‖ρ‖ω̂θr} = ∅, we set t◦ = tr. Hence, it yields

that
V
(
t+ δ, x(t+ δ)

)
6

1

µ
V
(
t, x(t)

)
, t ∈ [t◦, t∗], δ ∈ [−ω̂, 0).

As in the scenario with t ∈ [0, t1), based on (20), (21), and (23), we can conclude that
V̇ (t, x(t)) < 0, t ∈ [t◦, t∗] ⊂ [tr, tr+1), which means that V (t∗, x(t∗)) < V (t◦, x(t◦)).
This is a contradiction, which implies that (24) holds for t ∈ [tr, tr+1).

Consequently, V (t, x(t)) < ξ‖ρ‖ω̂θk/µ holds on t ∈ [tk, tk+1), k ∈ N, by mathe-
matical induction.

Finally, we prove that system (5) is exponentially stable. The definition of V (t, x(t))
implies that

V
(
t, x(t)

)
> ξe−αt

∥∥x(t)∥∥.
Then the following can be inferred from (24):

ξe−αt
∥∥x(t)∥∥ 6

1

µ
ξθk‖ρ‖ω̂ =

1

µ
ξek ln θ‖ρ‖ω̂ 6

1

µ
ξet ln(θ)/τ2‖ρ‖ω̂.

We then derive that ∥∥x(t)∥∥ 6 p0e
(ln(θ)/τ2+α)t‖ρ‖ω̂,

where p0 = (ξ/ξ)/µ. It is straightforward to see that system (5) is exponentially stable.
This completes the proof.

Remark 3. Theorem 2 addresses the case of decreasing switching behavior, where switch-
ing leads to a reduction in the Lyapunov function, thereby exerting a positive influence on
the stability of the system.

Remark 4. The conclusion demonstrated in Theorem 2 is independent of the time-
varying delay ω(t). Hence, it can be applied to scenarios where ω(t) is unknown.
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We will also study the stability condition for system (5) under IDT switching signal.

Corollary 2. Given an integer L > 0, suppose there exist vectors ξi,q � 0, ξi,q+1 � 0
for q ∈ L− and i ∈ P , a vector ξ∗ � 0, and constants βi > 0, 0 < θ < 1, α > 0 such
that

L

τ1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (βi − α)ξ>i,q ≺ 0,

L

τ2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (βi − α)ξ>i,q ≺ 0,

L

τ1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (βi − α)ξ>i,q+1 ≺ 0,

L

τ2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (βi − α)ξ>i,q+1 ≺ 0,

(27)

ξ>i,qBi − βiξ∗ ≺ 0, q ∈ L, (28)

ξ∗ 4 ξi,q, q ∈ L, (29)
ξj,0 4 θξi,L, i 6= j, j ∈ P. (30)

Then system (5) is exponentially stable under the IDT switching signal with τ2 >
− ln(θ)/α.

Remark 5. In contrast to the majority of research [17–19, 28, 32], we do not specify
a maximum dwell time τ2 and a minimum dwell time τ1. Considering that inequali-
ties (15)–(18) ((27)–(30)) result in mutual constraints between τ2 and τ1, the stability
region is the most intuitive method for characterizing the relationship between the maxi-
mum and minimum dwell times, as well as the admissible region for dwell time.

4 Positive stabilization

Assuming that system (1) is unstable without a control input, we aim to stabilize it using
state feedback. The proposed state feedback controller is given by

u(t) = Kσ(t)(t)x(t),

where Ki(t) ∈ Rn×n denotes the time-varying gain matrix for i ∈ P . This controller
transforms (1) into the closed-loop system

ẋ(t) =
(
Aσ(t) +Dσ(t)Kσ(t)(t)

)
x(t) +Bσ(t)x

(
t− ω(t)

)
, t > 0,

x(δ) = ρ(δ), δ ∈ [−ω̂, 0],
(31)

with matrices Ai ∈ Mn, Bi ∈ Rn×n+ , and Di ∈ Rn×n+ , where the rest of the symbol
definitions are consistent with those in system (1).

Remark 6. Different from the stabilization control design for general systems, positive
stabilization necessitates ensuring that the closed-loop system (31) remains positive for
any t > 0.
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First, we consider the issue of positive stabilization in the nondecreasing switching
behavior.

Theorem 3. Given an integer L > 0, suppose there exist vectors ξi,q � 0, ξi,q+1 � 0,
ϑi � 0, εi,q , εi,q+1, q ∈ L−, i ∈ P , a vector ξ∗ � 0, and constants βi > 0, θ > 1, α > 0,
and ~ such that

ξ>i,qDiϑiAi +Diϑiε
>
i,q + ~I > 0, q ∈ L, (32)

L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (βi + α)ξ>i,q + ε>i,q ≺ 0,

L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (βi + α)ξ>i,q + ε>i,q ≺ 0,

L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (βi + α)ξ>i,q+1 + ε>i,q+1 ≺ 0,

L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (βi + α)ξ>i,q+1 + ε>i,q+1 ≺ 0,

(33)

ξ>i,qBi − βiξ∗ ≺ 0, q ∈ L, (34)

ξ∗ 4 ξi,q, q ∈ L,
ξj,0 4 θξi,L, i 6= j, j ∈ P.

Then system (31) is positive and exponentially stable under the MDIDT switching signal
with τ1 > ln(θ)/α, where τ1 = mini∈P{τi1}. Moreover, the controller can be designed
as follows:

u(t) = Ki(t)x(t) =
ϑiε
>
i (t)

ξ>i (t)Diϑi
x(t), i ∈ P. (35)

Proof. First, we verify that system (31) is positive. Based on (32), one has

ξ>i (t)DiϑiAi +Diϑiε
>
i (t) + ~I

= f(t)
(
ξ>i,qDiϑiAi +Diϑiε

>
i,q + ~I

)
+ f̃(t)

(
ξ>i,q+1DiϑiAi +Diϑiε

>
i,q+1 + ~I

)
> 0. (36)

From (36) we obtain

Ai +
Diϑiε

>
i (t)

ξ>i (t)Diϑi
+

~
ξ>i (t)Diϑi

I > 0.

By Lemma 2, Ai + Diϑiε
>
i (t)/(ξ

>
i (t)Diϑi), i ∈ P , is a Metzler matrix, from which it

can be deduced that Ai + DiKi(t) is a Metzler matrix. According to Lemma 1, system
(31) is positive.

Next, we prove that system (31) is exponentially stable. We construct a discretized
time-varying Lyapunov function that is identical to (10). From (33) there exists µ > 1
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such that

L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (βiµ+ α)ξ>i,q + ε>i,q ≺ 0,

L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (βiµ+ α)ξ>i,q + ε>i,q ≺ 0,

L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (βiµ+ α)ξ>i,q+1 + ε>i,q+1 ≺ 0,

L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (βiµ+ α)ξ>i,q+1 + ε>i,q+1 ≺ 0.

(37)

There exist two positive constants ξ and ξ such that ξ1 < ξi,q and ξ1 4 ξi,q for all
i ∈ P and q ∈ L with 1 = (1, 1, . . . , 1)> being a vector of the same dimension as ξi,q .
Next, we aim to prove that

V
(
t, x(t)

)
< µξ‖ρ‖ω̂θk, t ∈ [tk, tk+1), k ∈ N. (38)

The proof is divided into two steps based on mathematical derivations.

(i) For the time interval t ∈ [0, t1), we verify that (38) holds.
At t = 0, it is evident that V (t, x(t)) < µξ‖ρ‖ω̂ . Next, we will demonstrate that

V
(
t, x(t)

)
< µξ‖ρ‖ω̂, t ∈ (0, t1).

Supposed that there exists a t ∈ (0, t1) such that V (t, x(t)) > µξ‖ρ‖ω̂ . Set

t∗ = inf
{
t ∈ (0, t1): V (t, x(t)) > µξ‖ρ‖ω̂

}
and

t◦ = sup
{
t ∈ [0, t∗): V (t, x(t)) 6 ξ‖ρ‖ω̂

}
.

Given that V (t, x(t)) is continuous on t ∈ [0, t1), we obtain V (t∗, x(t∗)) = µξ‖ρ‖ω̂ and
V (t◦, x(t◦)) = ξ‖ρ‖ω̂ . Consequently, for any t ∈ [t◦, t∗], it yields that

V
(
t+ δ, x(t+ δ)

)
6 µV

(
t, x(t)

)
, δ ∈ [−ω̂, 0].

By differentiating V (t, x(t)) with respect to t, t ∈ [t◦, t∗], and considering any positive
constant βi, we have

V̇
(
t, x(t)

)
= eαt

[
ξ̇>i (t)x(t) + ξ>i (t)

((
Ai +DiKi(t)

)
x(t) +Bix

(
t− ω(t)

))
+ αξ>i (t)x(t)

]
= eαt

[
ξ̇>i (t) + ξ>i (t)Ai + εi(t) + αξ>i (t)

]
x(t) + eαtξ>i (t)Bix

(
t− ω(t)

)
6 eαt

[
ξ̇>i (t) + ξ>i (t)Ai + εi(t) + αξ>i (t)

]
x(t) + eαtξ>i (t)Bix

(
t− ω(t)

)
+ βi

[
µV

(
t, x(t)

)
− V

(
t− ω(t), x

(
t− ω(t)

))]
https://www.journals.vu.lt/nonlinear-analysis
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6 eαt
[
ξ̇>i (t) + ξ>i (t)Ai + εi(t) + αξ>i (t)

]
x(t) + eαtξ>i (t)Bix

(
t− ω(t)

)
+ βie

αt
[
µξi(t)x(t)− e−αω̂ξj

(
t− ω(t)

)
x
(
t− ω(t)

)]
6 eαt

[
ξ̇>i (t) + ξ>i (t)Ai + εi(t) + (α+ βiµ)ξ

>
i (t)

]
x(t)

+ eαt
[
ξ>i (t)Bi − βie−αω̂ξ∗

]
x
(
t− ω(t)

)
. (39)

From (2)–(4) and (39) we get that

V̇
(
t, x(t)

)
6 eαt

[
f(t)g(t)

(
L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (α+ βiµ)ξ

>
i,q+1 + ε>i,q+1

)
+ f(t)g̃(t)

(
L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (α+ βiµ)ξ

>
i,q+1 + ε>i,q+1

)
+ f̃(t)g(t)

(
L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (α+ βiµ)ξ

>
i,q + ε>i,q

)
+ f̃(t)g̃(t)

(
L

τi1
(ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi + (α+ βiµ)ξ

>
i,q + ε>i,q

)]
x(t)

+ eαt
[
f(t)

(
ξ>i,q+1Bi − βie−αω̂ξ∗

)
+ f̃(t)

(
ξ>i,qBi − βie−αω̂ξ∗

)]
× x

(
t− ω(t)

)
.

From (34) and (37) we obtain

V̇
(
t, x(t)

)
< 0, t ∈ [t◦, t∗].

The remaining steps are identical to those in the proof of Theorem 1 and are therefore
omitted here. This completes the proof.

Theorem 4. Given an integer L > 0, suppose there exist vectors ξi,q � 0, ξi,q+1 � 0,
ϑi � 0, εi,q , εi,q+1, q ∈ L−, i ∈ P , a vector ξ∗ � 0, and constants βi > 0, 0 < θ < 1,
α > 0, and ~ such that

ξ>i,qDiϑiAi +Diϑiε
>
i,q + ~I > 0, q ∈ L, (40)

L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi +

(
βi − α)ξ>i,q + ε>i,q ≺ 0,

L

τi2
(ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi +

(
βi − α)ξ>i,q + ε>i,q ≺ 0,

L

τi1
(ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai +

(
βi − α)ξ>i,q+1 + ε>i,q+1 ≺ 0,

L

τi2
(ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai + (βi − α)ξ>i,q+1 + ε>i,q+1 ≺ 0,

(41)

ξ>i,qBi − βiξ∗ ≺ 0, q ∈ L, (42)

ξ∗ 4 ξi,q, q ∈ L,
ξj,0 4 θξi,L, i 6= j, j ∈ P.
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Then system (31) is positive and exponentially stable under the MDIDT switching sig-
nal with τ2 > − ln(θ)/α, where τ2 = maxi∈P{τi2}. Moreover, the controller can be
designed as follows:

u(t) = Ki(t)x(t) =
ϑiε
>
i (t)

ξ>i (t)Diϑi
x(t), i ∈ P. (43)

Proof. Based on Theorem 3, it can be inferred that conditions (40) and (43) guarantee
that system (31) is positive.

Next, we prove that system (31) is exponentially stable. We construct a discretized
time-varying Lyapunov function that is identical to (22). From (41) there exists 0 < µ < 1
such that

L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi +

(
βi

1

µ
− α

)
ξ>i,q + ε>i,q ≺ 0,

L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi +

(
βi

1

µ
− α

)
ξ>i,q + ε>i,q ≺ 0,

L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai +

(
βi

1

µ
− α

)
ξ>i,q+1 + ε>i,q+1 ≺ 0,

L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai +

(
βi

1

µ
− α

)
ξ>i,q+1 + ε>i,q+1 ≺ 0.

(44)

There exist two positive constants ξ and ξ such that ξ1 < ξi,q and ξ1 4 ξi,q for all
i ∈ P and q ∈ L with 1 = (1, 1, . . . , 1)> being a vector of the same dimension as ξi,q .
Next, we aim to prove that

V
(
t, x(t)

)
<

1

µ
ξ‖ρ‖ω̂θk, t ∈ [tk, tk+1), k ∈ N. (45)

The proof is divided into two steps based on mathematical derivations.
(i) For the time interval t ∈ [0, t1), we verify that (45) is true.
When t = 0, V (t, x(t)) < ξ‖ρ‖ω̂/µ holds. Next, we provide a proof that

V
(
t, x(t)

)
<

1

µ
ξ‖ρ‖ω̂, t ∈ (0, t1).

It is assumed that there exists a t ∈ (0, t1) such that V (t, x(t)) > ξ‖ρ‖ω̂/µ, and we set

t∗ = inf

{
t ∈ (0, t1): V

(
t, x(t)

)
>

1

µ
ξ‖ρ‖ω̂

}
and

t◦ = sup
{
t ∈ [0, t∗): V

(
t, x(t)

)
6 ξ‖ρ‖ω̂

}
.

As the function V (t, x(t)) is continuous on [0, t1), we have V (t∗, x(t∗)) = ξ‖ρ‖ω̂/µ and
V (t◦, x(t◦)) = ξ‖ρ‖ω̂ . Hence, for any t ∈ [t◦, t∗], we arrive at

V
(
t+ δ, x(t+ δ)

)
6

1

µ
V
(
t, x(t)

)
, δ ∈ [−ω̂, 0].
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By differentiating V (t, x(t)) with respect to t, t ∈ [t◦, t∗], and considering any positive
constant βi, we have

V̇
(
t, x(t)

)
= e−αt

[
ξ̇>i (t)x(t) + ξ>i (t)

((
Ai +DiKi(t)

)
x(t) +Bix

(
t− ω(t)

))
− αξ>i (t)x(t)

]
= e−αt

[
ξ̇>i (t)x(t) + ξ>i (t)

(
Aix(t) + εi(t) +Bix

(
t− ω(t)

))
− αξ>i (t)x(t)

]
6 e−αt

[
ξ̇>i (t) + ξ>i (t)Ai + εi(t)− αξ>i (t)

]
x(t)

+ e−αtξ>i (t)Bix
(
t− ω(t)

)
+ βi

[
1

µ
V
(
t, x(t)

)
− V

(
t− ω(t), x

(
t− ω(t)

))]
6 e−αt

[
ξ̇>i (t) + ξ>i (t)Ai + εi(t)− αξ>i (t)

]
x(t)

+ e−αtξ>i (t)Bix
(
t− ω(t)

)
+ βie

−αt
[
1

µ
ξi(t)x(t)− ξj

(
t− ω(t)

)
x
(
t− ω(t)

)]
6 e−αt

[
ξ̇>i (t) + ξ>i (t)Ai + εi(t) +

(
βi

1

µ
− α

)
ξ>i (t)

]
x(t)

+ e−αt
[
ξ>i (t)Bi − βiξ∗

]
x
(
t− ω(t)

)
. (46)

In light of (2)–(4) and (46), the following is established:

V̇
(
t, x(t)

)
6 e−αt

[
f(t)g(t)

(
L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai +

(
βi

1

µ
− α

)
ξ>i,q+1 + ε>i,q+1

)
+ f(t)g̃(t)

(
L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,q+1Ai +

(
βi

1

µ
− α

)
ξ>i,q+1 + ε>i,q+1

)
+ f̃(t)g(t)

(
L

τi2

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi +

(
βi

1

µ
− α

)
ξ>i,q + ε>i,q

)
+ f̃(t)g̃(t)

(
L

τi1

(
ξ>i,q+1 − ξ>i,q

)
+ ξ>i,qAi +

(
βi

1

µ
− α

)
ξ>i,q + ε>i,q

)]
x(t)

+ e−αt
[
f(t)

(
ξ>i,q+1Bi − βiξ∗

)
+ f̃(t)(ξ>i,qBi − βiξ∗)

]
x
(
t− ω(t)

)
.

From (42) and (44) we get that

V̇
(
t, x(t)

)
< 0, t ∈ [t◦, t∗].

The remaining steps are identical to those in the proof of Theorem 2 and are therefore
omitted here. This completes the proof.
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5 Numerical examples

In this section, several numerical examples are presented to verify the effectiveness of all
the derived results.

Example 1. Consider system (5) with

A1 =

[
−2 1
0.5 −1.1

]
, B1 =

[
0.02 0.05
0 0.04

]
,

A2 =

[
−3 2
0.8 −3

]
, B2 =

[
0.03 0.02
0.11 0.06

]
,

and ω(t) = 0.1− 0.1 sin t. We deduce that ω̂ = 0.2.
It is evident that both subsystems are stable as A1 + B1 and A2 + B2 are Hurwitz

matrices. Given L = 1, θ = 1, β1 = β2 = 0.9, α = 0.1, we consider the case of the
IDT switching signal. Set τ1 = 0.77, and we can obtain the feasible solutions that satisfy
Corollary 1 by utilizing the SQP algorithm as follows:

ξ10 =

[
0.6232
1.4504

]
, ξ11 =

[
0.5009
0.8766

]
, ξ20 =

[
0.5009
0.8766

]
,

ξ21 =

[
0.7304
1.4504

]
, ξ∗ =

[
0.4735
0.8644

]
, τ2 = 1.20.

The appropriate switching signal is selected as shown in Fig. 1, and the initial condi-
tion is set to x(0) = [3, 4]>. The state trajectory of the system under the given switching
signal is depicted in Fig. 2.

Subsequently, by varying the value of the integer L, different stability regions are
obtained using Algorithm 1, as illustrated in Fig. 3. In this figure, ∪si=1Ri represents the
stability region of permissible dwell times when L = s, where s ∈ {1, 2, 3, 4, 5}. From
Fig. 3 it can be observed that as the value of L increases, the range of the stability region
expands, indicating a reduction in the conservativeness of the stability conclusion.

Figure 1. The design switching signal of system (5). Figure 2. The state trajectories of system (5).

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Stability and stabilization of positive switched delay systems 19

Algorithm 1. Stability region algorithm via IDT

Step 1: Input system matrices Ai, Bi, given an integer L > 0, and constants θ, βi, α;
Step 2: Establish the objective function

min
ξi,q, ξ∗

τ1 s.t. (15)−(18) ((27)−(30)), q ∈ L.

Calculate τ1 using the Sequential Quadratic Programming (SQP) algorithm to solve the optimization
problem, then record τ1;

Step 3: By treating τ1 as a variable, plot the trajectory of τ2 as it varies with τ1 to obtain the stability region;
Step 4: Enter the parameters τ1 and τ2, solve (15)–(18) ((27)–(30)) and record ξi,q , ξ∗ for q ∈ L.

Figure 3. Stability region for admissible dwell time.

Example 2. Consider system (5) with

A1 =

[
0.4 0.35
0 −1.3

]
, B1 =

[
0.01 0.05
0 0.03

]
,

A2 =

[
−1.4 0.2
0 0.33

]
, B2 =

[
0.2 0.12
0.06 0.01

]
,

and ω(t) = 0.1− 0.1 sin t. We deduce that ω̂ = 0.2.
It is evident that both subsystems are unstable, as A1 + B1 and A2 + B2 are not

Hurwitz matrices. Given L = 1, θ = 0.8, β1 = β2 = 0.1, α = 0.11, and τ1 = 0.95, for
convenience, we consider the case of IDT switching signal. We obtain vectors that satisfy
Corollary 2 by utilizing the SQP algorithm as follows:

ξ10 =

[
0.1581
0.4720

]
, ξ11 =

[
0.1019
1.0473

]
, ξ20 =

[
0.0815
0.8378

]
,

ξ21 =

[
0.1976
0.5901

]
, ξ∗ =

[
0.0749
0.4205

]
, τ2 = 1.18.

The appropriate switching signal is selected as shown in Fig. 4, and the initial condi-
tion is set to x(0) = [2, 4]>. The state trajectory of the system under the given switching
signal is depicted in Fig. 5.
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Figure 4. The design switching signal of system (5). Figure 5. The state trajectories of system (5).

Figure 6. Stability region for admissible dwell time.

Finally, we demonstrate that Theorem 2 derived under the MDIDT switching signal
is less conservative compared to Corollary 2 derived under the IDT switching signal. In
Fig. 6, R1 denotes the stable domain of permissible dwell time under the IDT switching
signal, and R1 ∪ R2 denotes the stable domain of permissible dwell time under the
MDIDT switching signal.

Example 3. Consider system (31) with the state feedback control as follows:

A1 =

[
0.1 1
0.1 −1.25

]
, B1 =

[
0.01 0.02
0.02 0.01

]
, D1 =

[
1.5
0.8

]
,

A2 =

[
−1.1 1
1 −0.8

]
, B2 =

[
0.02 0.03
0.03 0.02

]
, D2 =

[
1
1.2

]
,

and ω(t) = 0.1− 0.1 sin t. We deduce that ω̂ = 0.2.
It is evident that both subsystems are unstable without a control input, as A1 + B1

and A2 +B2 are not Hurwitz matrices. With initial values x(0) = [2, 4]> and parameters
τ1 = 3, τ2 = 4, the design of the switching signal without state feedback control is
depicted in Fig. 7. The corresponding state trajectories are shown in Fig. 8, which suggest
that the system is not exponentially stable.
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Figure 7. The design switching signal of
system (31).

Figure 8. The state trajectories of system (31)
without state feedback control.

Figure 9. The state trajectories of system (31)
with the state feedback control.

Utilizing the SQP algorithm in MATLAB, when ϑ1 = ϑ2 = 1, β1 = β2 = 0.08,
α = 0.02, θ = 2, the following feasible solution are obtained:

ξ10 =

[
2.5986
2.1653

]
, ξ11 =

[
0.9324
1.0169

]
, ξ20 =

[
1.8122
2.0338

]
,

ξ21 =

[
1.2993
1.0827

]
, ξ∗ =

[
0.9315
1.0000

]
,

ε10 =

[
−0.3531
−0.2214

]
, ε11 =

[
−0.2566
−0.1541

]
, ε20 =

[
−1.3711
−1.2935

]
, ε21 =

[
−1.5679
−1.4463

]
.

Besides, from (35) the state feedback gain matrix is designed as follows:

u(t) = Kσ(t)(t)x(t).

Under the same switching signal depicted in Fig. 7, Fig. 9 illustrates the system trajecto-
ries with the aforementioned state feedback control. It is evident that the unstable system
can be positively stabilized through the designed state feedback control.
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Example 4. Consider system (31) with the state feedback control as follows:

A1 =

[
0.1 1
0.5 −0.6

]
, B1 =

[
0.05 0.01
0.02 0.03

]
, D1 =

[
2
1

]
,

A2 =

[
0.6 0.5
1 −0.5

]
, B2 =

[
0.02 0.02
0.02 0.02

]
, D2 =

[
1
2

]
,

and ω(t) = 0.1− 0.1 sin t. We deduce that ω̂ = 0.2.
It is evident that both subsystems are unstable in the absence of a control input, as

A1 + B1 and A2 + B2 are not Hurwitz matrices. With initial values x(0) = [2, 4]> and
parameters τ1 = 0.5, τ2 = 0.9, the design of the switching signal without state feedback
control is depicted in Fig, 10. The corresponding state trajectories are shown in Fig. 11,
which indicates that the system is not exponentially stable.

Utilizing the SQP algorithm in MATLAB, when L = 2, ϑ1 = ϑ2 = 1, β1 = β2 =
0.07, α = 0.08, θ = 0.93, the following feasible solution are obtained:

ξ10 =

[
0.2452
0.1131

]
, ξ11 =

[
0.2959
0.1184

]
, ξ20 =

[
0.2751
0.1101

]
,

ξ21 =

[
0.2637
0.1217

]
, ξ∗ =

[
0.2452
0.1101

]
,

ε10 =

[
−0.2816
−0.2933

]
, ε11 =

[
−0.3511
−0.3307

]
, ε20 =

[
−0.2476
−0.1908

]
, ε21 =

[
−0.2535
−0.2024

]
.

Besides, from (35) the state feedback gain matrix is designed as follows:

u(t) = Kσ(t)(t)x(t).

Under the same switching signal depicted in Fig. 10, Fig. 12 illustrates the system tra-
jectories with the aforementioned state feedback control. It is evident that the unstable
system can be positively stabilized through the designed state feedback control.

Figure 10. The design switching signal of
system (31).

Figure 11. The state trajectories of system (31)
without the state feedback control.
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Figure 12. The state trajectories of system (31) with the state feedback control.

6 Conclusions

This paper addresses the issues of exponential stability and positive stabilization for
positive switched system with time-varying delay. The switching behaviors include both
nondecreasing switching and decreasing switching. Initially, sufficient conditions for
the exponential stability of the system under the MDIDT switching signal are derived
by utilizing the Lyapunov–Razumikhin technique and a discretized Lyapunov function
method. Following this, the paper addresses the issue of positive stabilization for the
system, using the established stability conditions as a foundation. Finally, two numerical
examples are presented to verify the effectiveness of the derived conclusions.

Conflicts of interest. The authors declare no conflicts of interest.
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