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Abstract. This paper is devoted to the development of heuristics for the dynamic pricing problem. 
A discrete time model of dynamic pricing on the fixed time horizon is proposed. It is applicable to 
products that satisfy two properties: 1) product value expires at a certain predetermined date, and 2) 
consumers demand at most a single unit of the product. This type of demand structure allows deriving 
a simple system of recursive equations for optimal prices using dynamic programming techniques. 
Optimal pricing policy is expressed as a function of time to expiration and inventory levels of unsold 
products. An analytical solution to this problem was obtained for special cases, while for the general 
case, a numerical algorithm has been developed. Qualitative characteristics of the optimal pricing po-
licy are established, and their implications for dynamics of inventories and prices are discussed. Based 
on these observations, a simple heuristic rule for dynamic price adjustments is proposed. Performance 
of this heuristic is evaluated against the optimal dynamic and fixed-price policies using Monte-Carlo 
experiments. Results demonstrate high efficiency of the proposed heuristic strategy and its even simpler 
derivatives. Heuristics’ adaptability and ease of implementation should make it suitable and attractive 
for small and medium businesses. 
Keywords: dynamic pricing , revenue management, price discrimination, inventory, backward 
induction, dynamic programming, heuristics

1. Introduction

Dynamic pricing is commonly defined as a strategy of flexibly changing sales prices 
depending on market conditions (Deksnyte & Lydeka, 2012). This definition is some-
what imprecise as the ability of prices to adapt to changing environment is the main 
element that ensures proper functioning of the market mechanism. However, the fre-
quency of price adjustments is not always high. Among factors that slow down the pace 
of price changes entrepreneurs often cite: 
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•	 lack	of	operational	information;
•	 time	required	to	realize	the	changes	that	have	taken	place;
•	 high	costs	associated	with	price	changes	(Elmaghraby	&	Keskinocak,	2003).
Some	prominent	economists	(in	particular,	of	 the	Keynesian	and	Neo-Keynesian	

schools) even consider excessively static “sticky” prices to be one of the main factors 
of periodic economic crises (Barro & Tenreyro, 2006) and failures of macroeconomic 
regulatory policies (Wang & Werning, 2022). 

Development of electronic commerce provides companies with more opportunities 
for prompt price adjustments. This is facilitated by:  

•	 availability	of	large	volumes	of	data	on	the	structure	of	demand	in	real	time	(data	
on	site	visits,	sales	conversion,	etc.);

•	 low	costs	for	changing	sales	prices;
•	 possibility	of	integrating	complex	price	adjustment	algorithms	directly	into	the	

general software environment of the online store.
These considerations have intensified interest in dynamic pricing algorithms for 

sales management. These algorithms automatically apply a computerized rule to set 
prices based on various inputs. These inputs commonly include demand and supply 
conditions, competitors’ prices, customer demographics and preferences, time of day, 
day	of	the	week,	and	time	of	year	(MacKay	&	Weinstein,	2022).	Pricing	algorithms	al-
low firms, particularly e-commerce firms, to update and optimize their pricing quickly 
and continuously. Dynamic pricing is a form of price discrimination where different 
buyers pay different prices for the same product. 

Dynamic pricing methods have gained particular popularity in those industries 
where it is difficult to change the supply of goods in the short term. Examples of such 
situations	can	be	the	sale	of	tickets	for	flights,	trains,	concerts,	or	sports	events;	hotel	
reservations;	road	tolls;	gas	and	electricity	supply	services,	etc.	Dynamic	pricing	strate-
gies have become especially popular when selling airplane seats, where the price of the 
ticket for the same flight can vary by an order of magnitude depending on the season, 
day of the week, time before departure, booking conditions and other factors (Ma-
lighetti	et	al.,	2009;	Wittman	&	Belobaba,	2019).	

Figure 1 represents an example of this pricing pattern which shows ticket prices for 
one-way Wizzair Vilnius-Milan flight sampled at different times for various departure 
dates. Even in this small sample, prices range almost by a factor of three (from €50 to 
€145). It is also evident that there is no set pattern for the change in prices: although in 
most cases prices increase as departure date nears, for departures on 9/26 and 10/10, 
seat prices had declined.

Other industries where dynamic pricing is widespread include hospitality (Gibbs et 
al., 2018), entertainment (Bouchet et al., 2016), retail (Hendel & Nevo, 2013), public 
transportation (Branda et al.,  2020), etc.
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Figure 1
Prices for Wizzair Vilnius-Milan Malpensa Flight Seats Sampled at Different Dates Prior to Departure

 

 
Note. Retrieved from https://wizzair.com on specified dates.

The success of such practices promotes their spread to other areas of the economy as 
well. The development of automated trading systems also facilitates implementation of 
dynamic pricing mechanisms. The advent of artificial intelligence and big data analytics 
allows for increasingly more complicated pricing rules.

However, this increasing sophistication should not deter small and medium busi-
nesses from employing dynamic pricing mechanisms. Many pricing regularities that 
arise in dynamic pricing algorithms are simple and intuitive. The objective of this paper 
is to explore such regularities and to develop simple, practical and easy to implement 
dynamic pricing heuristics on this basis. This fills a gap in the literature concerned with 
practical adoption of dynamic pricing techniques, which may be especially relevant to 
entrepreneurs in the emerging economies where limited resources often make using 
expensive dedicated software impractical.

The rest of the paper is organized as follows. Section 2 reviews key literature on dy-
namic pricing. Section 3 presents a simple model of dynamic pricing based on invento-
ry fluctuations and establishes important properties of the optimal pricing policy. Sec-
tion 4 analyzes common patterns of price and inventory behavior that arise in the above 
model and suggests several heuristic pricing rules on this basis. Section 5 estimates ben-
efits from adopting dynamic pricing and evaluates performance of suggested heuristics 
vs. the optimal pricing policy via analytical calculations and numerical Monte Carlo 
experiments. Results show that proposed heuristic rules sacrifice very little in terms 
of performance while being much easier to implement. The last section concludes and 
discusses some possible venues for further research. 

https://wizzair.com/
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2. Literature Overview and Research Objectives

Probably, the idea of changing prices dynamically to maximize revenue from product 
sales	was	first	proposed	and	rigorously	studied	by	Kincaid	and	Darling	(1963),	whose	
work did not become widely known until much later. 

Lazear (1986) considered the problem of selling an indivisible product to homo-
geneous consumers with an unknown demand function, which the seller can grad-
ually learn by changing prices. He showed that the optimal policy for the seller is to 
slowly lower prices over time, effectively employing a practice known as “clearance” in 
retailing and as “price skimming” in general marketing. Early empirical papers inves-
tigated dynamic pricing patterns common in retail industry and tried to explain them 
using	various	hypotheses,	such	as	fashion	hypothesis	(Lazear,	1986;	Pashigian,	1988;	
Pashigian & Bowen, 1991), peak-load pricing (Chao, 1983), and the thick-market hy-
pothesis (Warner & Barsky, 1995).

Perhaps the most influential study on this topic is the work of Gallego and van Ryzin 
(1994). They modeled demand as a time-invariant Poisson process with an intensity 
that depends on the selling price. Calculus of variations is employed to derive differen-
tial equations for the optimal control policy. The authors obtain an analytical solution 
for the exponential demand function and establish some properties of the optimal pric-
ing policy for a more general case. 

There are many modifications and extensions of the Gallego-van Ryzin model. Gal-
lego and van Ryzin (1997) extended their model to the case of multiple products with 
possibly interconnected demand. Bitran and Mondschein (1997) and Zhao and Zheng 
(2000) model demand as a non-homogenous Poisson process and allow the elastici-
ty of demand to change over time. Smith and Achabal (1998) and Mantrala and Rao 
(2001) consider initial inventory decisions in conjunction with markdown pricing de-
cisions. 

All these models call for the continuous updating of prices over time, which is rarely 
practical. Gallego and van Ryzin (1994) also considered a scenario where the price 
must be chosen from a discrete set of allowable prices. Under this assumption, price 
changes become less frequent. Feng and Gallego (1995) proposed a model that allows 
for a single possible price change during the planning horizon and optimizes the timing 
of such change. Feng and Xiao (2000) allow for several price changes during the season. 
Aguirregabiria (1999) accounts for the “menu costs” of changing prices, which produc-
es a similar effect of lowering the frequency of price adjustments.

A	 detailed	 review	 of	 these	 studies	 can	 be	 found	 in	 Elmaghraby	 and	Keskinocak	
(2003). 

All studies mentioned above treat consumer behavior as myopic. A different line of 
research studies the implications of strategic, forward-looking behavior on consumers’ 
side. This topic is largely motivated by the classic work of Nobel Laureate Ronald Coase 
(1972), which questioned the effectiveness of the skimming policy. According to Coase,  
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rational consumers will anticipate future price reductions and thus postpone their deci-
sion to buy the product, which in turn will force the seller to immediately reduce prices, 
even in a monopoly case. The role of expectations and forward-looking consumer be-
havior for sales management was analyzed by Su (2007), Melnikov (2013), Levin et al. 
(2009), among others.

Talluri and Van Ryzin (2004) employed discrete choice models to study the situa-
tion when consumer’s purchase decision depends not only on price but also on other 
factors such as proximity of the expiration date. This may be particularly relevant to the 
airline industry, where it is commonly believed that the overall market can be segment-
ed into (at least) two classes: early-booking leisure travelers and late-booking business 
travelers. Williams (2022) findings seem to confirm this conjecture based on a large 
dataset on US airlines fares. 

A large body of research is devoted to the use of machine learning algorithms to 
estimate the intensity of consumer flow and the impact of prices on purchase proba-
bilities, from classical as well as from Bayesian perspective. Den Boer (2015) provides 
a comprehensive survey of related literature. Recent important additions to this line of 
research include Avramidis (2020) and Wang et al. (2021). 

There are many empirical studies that investigate dynamic pricing practices in var-
ious	 industries,	 such	as	airlines	(Malighetti	et	al.,	2009;	Wittman	&	Belobaba,	2019;	
Williams, 2022), hotels (Gibbs et al., 2018), retail (Hendel & Nevo, 2013), public 
transportation	(Branda	et	al.,	2020),	food	delivery	(MacKay	et	al.,	2022)	and	others.

However, despite a large body of research, many aspects of dynamic pricing remain 
controversial. They include, among others:

•	 assessment	of	the	profitability	of	this	strategy	versus	more	common	fixed	prices;	
•	 welfare	implications	of	dynamic	pricing;
•	 applicability	of	dynamic	pricing	to	particular	industries;
•	 common	pricing	patterns	that	emerge	from	employing	dynamic	pricing;
•	 development	of	simple	heuristic	pricing	rules	that	would	facilitate	adoption	of	

dynamic pricing by small and medium businesses. 
This paper aims to develop a model of dynamic adaptive pricing for the sale of prod-

ucts whose value expires with time, which is easy to estimate and to implement prac-
tically. In contrast to the Gallego-van Ryzin model, we use a discrete time setting and 
model demand as a composite process which is a superposition of consumer arrivals 
and price-dependent conversion rates. To simplify the model further, we consider the 
case of discrete demand, when each individual consumer is interested in acquiring at 
most a single unit of a product. A typical example of such demand structure is the above 
mentioned sale of airline tickets, when it is necessary to sell a fixed number of seats in 
the cabin before the departure of the flight. Similar situations arise when selling hotel 
rooms, tickets to concerts and sporting events, perishable goods, and so on. 

This type of demand structure leads to a computationally simple model which can 
be solved analytically in some special cases. For the general case, it is possible to estab-
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lish qualitative properties of the optimal policy. This allows devising simple heuristics 
which are easy to implement without extensive software support.

3. The Model 

Consider a simple single-agent, homogeneous products model. The seller has X units 
of a homogeneous product to sell over a finite time interval t = 1, ..., T. All costs related 
to procurement of these units are sunk, so the seller’s objective is to maximize their 
expected revenue. Product value expires at time T. This assumption is applicable to 
different industries, including travel (airplane seats, hotel rooms), retailing (perishable 
products, fashion apparel, seasonal goods), and entertainment (concerts, sport events).

Customers arrive continuously according to a constant intensity deterministic flow. 
We normalize the number of periods so that customer arrival rate equals exactly one 
customer per time period. Each customer demands a single unit of the seller’s product. 
Consumer arriving at time t is willing to pay at most rt for a unit of product, a value 
which will be referred to below as a consumer’s reservation price (Steedman, 1987). 
Further assume that rt are independent identically distributed random variables drawn 
from the distribution given by cumulative distribution function F(r) with a finite sup-
port 0 ≤ rt ≤ v. 

A consumer arriving at time t buys one unit of a good if pt ≤ rt , where pt is the 
price charged by the seller. Thus, the probability of sale in period t equals the value of 
the complementary distribution function G(pt) = 1 – F(pt). Otherwise, the consumer 
buys nothing, and the process restarts at the next period with the same inventory level. 
Gi ven these assumptions, the expected demand at time t would be equal to G(pt), so 
G(pt) can be interpreted as the usual demand function.

Let xt denote remaining stock at the beginning of period t and assume for simplicity 
zero storage costs. 

The seller’s problem is to maximize the following objective function over a sequence 
of prices pt :

1
1

( ) { 0}( { }) |
T

t t t t
t

V x E I x p I p r x x


 
    

  
 .  (1)

subject to

 1 { }t t t tx x I p r      (2) 

where E[∙|∙] is the conditional expectation operator, and I{∙} is the indicator function.
It is easier to derive the optimal pricing policy and establish its properties by con-

sidering first the special case when x = 1, that is, when the seller has a single indivisible 
unit of a product to sell. This might be of interest by itself for such instances as selling 
real estate, art objects, and other unique products.
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3.1 Single Unit Case

The	problem	 is	 easy	 to	 solve	 by	 backward	 induction	 (Stokey	&	 Lucas,	 1989;	 Judd,	
1998). Denote by Vt the maximum expected income of the seller in period t, if the 
product has not yet been sold by that time. According to the boundary condition of the 
problem, Vt+1. For the last time period, the optimal price and expected seller’s gain can 
be found from

   *max ( ) ; arg max ( )
T T

T T T T T Tp p
V p G p p p G p  .  (3)

Knowing	the	seller’s	optimal	policy	in	the	last	period,	we	can	formulate	their	optimi-
zation task in the penultimate period. When setting the price, two results are possible:

1)  the product will be sold, and the seller will receive revenue of pT–1. The probabil-
ity of this result is equal to G(pT–1);

2)  the product will not be sold with complementary probability 1 – G(pT–1). Then 
the seller will find himself/herself in the conditions of problem (3), for which 
the optimal solution was already derived.

Thus, expected seller’s gain at period t-1 is given by

   
1 1

1 1 1 1 1 1max ( ) (1 ( )) max ( ) ( ) .
T T

T T T T T T T T Tp p
V p G p V G p V p V G p

 
             (4)

Continuing in this fashion, we will get a solution to the problem for an arbitrary 
time period. It will be determined as a solution to the equation

 1 1max ( ) ( ) .
t

t t t t tp
V V p V G p      (5)

Proposition 1 establishes some properties of the optimal pricing policy.
Proposition 1. Expected seller’s gain and optimal prices are both non-increasing 

functions of time:

* *
1 1; {1,..., }.t t t tV V p p t T      

 Proof of this proposition is given in Appendix A.
A pattern of gradually declining prices is known as the skimming strategy in market-

ing. Proposition 1 establishes that price skimming is indeed optimal for sales of unique 
products.

For a numerical example, consider the special case with uniform U(0,1) distribu-
tion of reservation prices. Then F(p)	=	p;	G(p) = 1 – p, and equation (5) simplifies to 

1max[ (1 ) ]
t

t t t t tp
V p p V p   .  (6)

First-order optimality condition for problem (6) is given by

11 2 0t
t t

t

dV p V
dp     ,  (7)
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from which it follows that

 
2 2* *1 11 1;

2 2
t t

t t t
V Vp V p      

 
.  (8)

Figure 2 shows the graph of the optimal price as a function of time. It also plots nu-
merically computed optimal prices for the case where reservation prices are normally 
distributed. Parameters of the normal distribution are chosen so that the bulk of the 
distribution is concentrated on the unit interval, and results are directly comparable 
with the uniform distribution case. It is easy to see that without time pressure optimal 
prices flatten out, converging to the upper bound of the distribution of consumer pric-
es. However, if the product remains unsold as the expiration time approaches, the seller 
is likely to offer substantial price discounts. 

Figure 2
Optimal Prices for a Single Product as a Function of Time

3.2 Multiple Units Case

Now let us return to the general case with multiple countable units of a homogeneous 
product to sell. 

Clearly, it is easier to sell a smaller number of products within any given time frame. 
Thus, the price of products in each period should depend not only on time, but also on 
the stock of unsold products xt . Accordingly, we will look for the optimal prices in the 
form of a feedback loop, with inventories xt as a state variable. To this end, define V xt 
and p xt  to be the expected revenue and the price as of time t, correspondingly, when the 
current inventory level equals x. 

We maintain the assumption that a single period demand cannot exceed one unit. 
Thus, at any point in time there are two possible outcomes of the seller’s interaction 
with a potential buyer:
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1)  the product is not sold at the current price. Then in the current period t, the sell-
er receives no income and moves on to the next period with unchanged stocks, 
xt+1 = x;

2)  the product is successfully sold. Then in the current period, the seller receives 
income p xt   and proceeds to the next period with the stock level xt+1 = x – 1.

Combining these two possibilities, we arrive at the following Bellman equation for 
dynamics of the value function V xt  : 

1 1
1 1 1 1 1max ( )[ ] ( ) max[ ( ) ( )]x x x x x x

t t t t t tp p
V G p p V F p V V p V V G p 

                (9)

subject to the boundary conditions
0

1 0 0; 0 1,...,x
T tV x V t T       . . (10)

Optimal state-dependent prices p xt  are then determined as a solution to the optimi-
zation problem (9). First order optimality conditions for this problem are

1
1 1( )x x x x

t t t tp H p V V 
    ,  (11)

where H(p xt  ) is an inverse value of the hazard rate,

1 ( )( )
( )

x
x t
t x

t

F pH p
f p


   (12)

and f(p) = dF(p) / dp is a probability density function. 

Plugging (11) into (9) gives

1 ( ) ( )x x x x
t t t tV V G p H p  .  (13)

Numerically, the above problem can be solved by backward induction. Combining 
optimality conditions (11) with boundary conditions (10) yields

( ) 0 0x x
T Tp H p x    .  (14)

Thus, the last period optimal price is independent of x. Equation (14) can be rear-
ranged as

( ) / 1.
/

x x
T T
x x
T T

dG p dp
dp p



 

 

 (15)

Given that G(p) can be interpreted as a demand function, the last equation just re-
states a familiar rule that the revenue-maximizing price corresponds to the point where 
demand curve is unit-elastic. 

Plugging p xT  into equation (13) we obtain V xt  , solve for p xt–1 using optimality condi-
tions (11) and so on.
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Expression on the left-hand side of equation (11) is known as the virtual valuation 
in the auction literature (Myerson, 1981). A probability distribution function F(p) is 
called regular if its virtual valuation function is weakly increasing. A sufficient condition 
for regularity is monotone hazard rate (which in turn implies that its inverse H(p) will 
be weakly decreasing). This condition is satisfied for the majority of commonly used 
distributions.

Properties of the optimal pricing policy and seller’s expected revenue are established 
by the following: 

Proposition 2.
2.1)  Expected seller’s revenue V xt   is a weakly decreasing function of t. 
2.2)  Expected seller’s revenue V xt   is a weakly increasing function of x. 
2.3)  Optimal pricing policy p xt   is a weakly decreasing function of t.
2.4)  If the distribution of consumer reservation values has monotone hazard rate, 

then optimal pricing policy p xt   is a weakly decreasing function of x.
Proof of these propositions is given in Appendix B.
As a numerical example, let’s continue the case of uniform distribution of reser-

vation prices considered above. For x=1, the sequence of optimal prices p 1t  is already 
found and given by equation (8). From equation (14) it follows that 1 .x

T Tp p x      N.  
Then, applying iteratively formulae (13) and (11) for t = T–1, T –2, ... and or x = 2, 3, ..., 
we arrive at the following sequence:

1 2
1 1

2 1 2
1 1

1 ( ) ;
2

1 ( ) ( )
.

2

t
t

x x
t tx

t

pp

p p
p




 




   

  
 (16)

Figure 3 shows these price sequences for x=5 and T=30. 

Figure 3
Optimal Prices as a Function of Time and Remaining Stock Levels, rt~U(0,1)

 

min( ) ( )eX T TG p  
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A combination of pricing policy properties established by Proposition 2.2 makes 
the observed behavior of prices much more complicated than in the single product 
case. Observed price pt belongs to the set  1 2{ , ,..., }xt t tp p p   , but true value of xt is known 
to the seller but not to the buyer. With stable stock levels, prices will be gradually low-
ered over time. However, when sale happens, inventory levels drop, and the optimal 
price jumps from p xt  to 1x

tp
 , , which must be higher than p xt   by Proposition 2.2. This may 

cause observed prices to rise sharply. As the timing of successful sales is random, so is 
the observed price path. 

The mechanism of this process is illustrated in Figure 4, where price fluctuations 
(black line) are superimposed on possible inventory movements (blue line) obtained 
as a result of computer simulation (this and subsequent figures assume standard uni-
form distribution of consumers’ reservation prices unless explicitly stated otherwise). 

Figure 4
Price Adjustment Mechanism

Figure 5
Some Simulated Price Paths
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Figure 5 shows results of several computer simulations that illustrate possible price 
dynamics that may arise in the above model. As evident from these graphs, prices may 
decline over time just as easily as they can rise up. 

4. Implementation and Simple Pricing Heuristics

The assumptions made about the structure of demand for seller’s products impose cer-
tain restrictions on the possible inventory evolution patterns.  As one-period demand 
is at most one unit, total sales cannot exceed the number of periods. However, realistic 
sales targets should be much lower. Propositions 2.3 and 2.4 imply that the minimum 
price the seller would ever charge is the last period price, given by the solution of equa-
tion (14). Let us denote this price by pmin. Then in the absence of inventory constraints, 
the expected sales for T periods would be equal to Xe(T) = TG(pmin). For example, for 
rt ~U[0,1], pmin =1/2 and Xe(T) = T/2. Hence, higher values of initial inventories are 
unlikely to sell out. 

Equations 11–13 jointly create a Markov chain for the evolution of inventories Xt 
during the sales period. It has a structure identical to the pure death processes common 
in queuing theory (Ross, 1992). Exact distribution of inventory levels at any given time 

{ }x
t tP X x    

 

 can be obtained from the following system of recursive equations:
1

1 1 1 1

1 1
0 0 1 1

1 1 1

( ) ( ), 1,2,..., 1;

( );

( ).

x x x x x
t t t t t
X X x
t t t

t t t t

F p G p x X

F p

G p

  

 

  


   

 

  

   



 

   (17)

The initial probability distribution under X0 = X is given by 0 01, 0 .X x x X       .
In turn, the distribution of inventories jointly with the set of state-dependent prices 

p xt  defines the distribution of observed product prices, sales, inventories, seller’s reve-
nues and any other numerical characteristics of stochastic processes Xt ,  pt and their 
derivatives for each time period. For instance, expected inventory levels as a function of 
time can be obtained as

 0 0
[ | ] .X x

t tx
E X X X x


   

 

 (18)

Figure 6 shows how expected inventory levels change over time depending on initial 
stocks.

The above graph allows making some observations on the qualitative properties of 
the optimal pricing policy. Expected inventory paths are close to linear. When initial 
stocks are comparatively low (below Xe(T)), prices are set so as to sell out inventories 
by the end of the period. If initial stocks are high, prices are set to sell out as much as 
possible, at the level close to pmin. In both scenarios expected sales intensity is approx-
imately constant.
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Figure 6
Expected Inventory Levels as a Function of Time for Various Starting Values 

Note. X0=X, T=30.

These observations suggest the following simple heuristic rule for dynamic pricing. 
To achieve sell-out of x inventory units in t periods of time, the expected per-period 
sales should equal x/t. Define the sell-out price pso(x, t) as a solution to the equation 
G(p) = x/t or

1( , ) 1 ,so
xp x t F
t

   
 

 

 

  (19)

where F–1(•)	is	an	inverse	of	the	cumulative	distribution	function	and	assuming	x≤t. 
Then set the current price pt according to the rule

minmax( ( , 1), ).t so tp p X T t p    

 

 (20)

This heuristic rule is much simpler to implement than the full model (11)-(13) as it 
only requires solving a single equation (20), which often allows for an analytical solu-
tion;	 for	 example,	 in	 the	uniform	case	 1max 1 ,

1 2
t

t
Xp

T t
    

 

 

. It also has a simple 

and intuitive interpretation. Each period current inventories are compared against their 
target level, which is assumed to evolve linearly over time so that inventories would sold 
out by the end of their expiration value. If sales proceed faster than planned, product 
prices rise. When sales process slows down compared to the target, prices fall. If it be-
comes apparent that inventories cannot be sold by the end of the selling period, prices 
are set at the minimum acceptable level, which maximizes per-period revenue rate.

The proposed heuristic rule still requires changing prices every period. In many cas-
es, this is not practical. It is easy to make up some derivative heuristic rules based on 
equation (20) which would limit the frequency of price adjustments. These rules may 
impose changing prices only at certain predetermined time intervals (e.g., on a weekly 
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basis) or when a certain event happens (e.g., when current sales deviate from their tar-
get level by a certain threshold).

Performance of the proposed heuristic (20) and of some derivative rules will be 
evaluated in the next section.

5. Benchmarking

To assess efficiency of the dynamic pricing strategy and proposed heuristics, it is worth-
while discussing alternative pricing rules. The obvious yardstick for comparing perfor-
mance is a fixed price policy. However, finding the optimal fixed price for the above 
problem is not trivial.

If prices were to remain constant at pt = p during sales period, the probability of a 
sale in any given period would also be constant equaling to λ = G(p). Evolution of sales 
can be modeled as a Markov chain, which is reduced to the following system of recur-
sive equations:

1
1 1

1
0 0 1

1 1

(1 ) , 1,2,..., 1;

(1 );

.

x x x
t t t
X X
t t

t t t

x X    

  

   


 



 

    

 

 

  
 (21)

Then seller’s expected revenue as of time t can be found as

 
0

[ ( )] ( ).
x

k
t T

k

E V x p x k


    (22)

Alternatively, one can view a successful sale as a success in series of independent 
trials, each trial being a single interaction between the seller and a buyer. Were it not for 
the limited stocks, the distribution of sales on [t, T] would be binomial with T – t + 1 
trials and success probability λ. Taking inventory considerations into account, sales over 
[t, T] can be viewed as a random variable St = min{Z, xt}, where Z ~ B(T – t + 1, λ), and 
expected revenue is then

E[Vt(x)] = pE[St]. (23)

Optimal fixed price PFP can be found by maximizing objective functions (22) or 
(23) over p. Interestingly, even in the uniform case used in examples above, this would 
require employing numerical optimization routines.

One exemption is the case of selling a single product. At the fixed price p, the prob-
ability that a product will not be sold during T periods of time equals (F(p))T. Hence, 
the probability of a successful sale equals 1 – (F(p))T, and the seller’s expected reve-
nue is given by p[1 – (F(p))T]. The optimal fixed price can be found by maximizing 
the above expression over p. For the uniform case rt~U(0,1), it is straightforward to 
show that the optimal fixed price equals (1+T)1/T. Expected revenue can be obtained 
by plugging this formula into formula (22).
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Evaluating performance of different pricing strategies is not straightforward, either. 
In general, payoff of a particular strategy depends on factors such as:

•	 starting	inventory	level;	
•	 length	of	the	selling	period;	
•	 shape	of	the	distribution	of	consumers’	reservation	prices;
•	 point	in	time	when	evaluation	is	performed,	etc.
It is not possible to account for all these variables in a single graph, so at least some 

of them should be held constant for a meaningful interpretation.

Figure 7
Comparison of the Seller’s Expected Revenue under Fixed and Flexible Prices

Note. rt~U(0,1), X = 1, T = 30.

Figure 7 illustrates the main payoff from using dynamic pricing. It compares expect-
ed seller’s revenues under the optimal fixed price policy pFP (dotted line) and under 
dynamic price adjustment (solid line) for the single unit case if that unit remains unsold 
at the current point in time. Relative efficiency of employing the second strategy is also 
shown. 

As can be seen from the graph, sticking to a predetermined price becomes pro-
gressively inefficient as time goes by and chances of a successful sale diminish. For the 
above scenario, the gain from employing dynamic pricing approaches 159% in relative 
terms towards the end of the selling period. However, chances are that the product will 
be sold long before that under both pricing strategies, so the above graph illustrates the 
worst-case scenario for the seller.

A more objective way to compare performance of different strategies is to compute 
their ex-ante expected payoff. Figure 8 compares expected revenues from selling a single 
unit of a product for T periods as a function of T for the following strategies:
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Figure 8
Comparison of the Seller’s Ex-ante Expected Revenues

 

 
Note. Revenues under different strategies as a function of T(rt~U(0,1), X = 1).

Figure 9
Performance Indices of Different Strategies

a)  

 

b)  
 Note. Performance as a function of starting inventory levels: (a) rt~U(0,1), T	=	30);	(b)	rt~N(1/2, 1/6), 

T = 30).
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•	 optimal	dynamic	pricing	strategy	(optimal);
•	 fixed	price	set	at	the	beginning	of	the	selling	period	at	the	level	of	(20)	(sellout);
•	 optimal	fixed	price	pFP	(optimal	fixed	price);
•	 dynamic	pricing	in	accordance	with	the	heuristic	rule	(20)	(heuristic);
•	 heuristic	rule	(20)	with	price	changes	allowed	every	10	periods	(limited	adjust-

ments).
Expected values for the optimal strategy were computed using formula (8), while for 

the other strategies they were averaged out after running 1000 computer simulations.
Figures 9a and 9b provide similar calculations while holding fixed the number of 

periods (T), while changing the starting inventory levels (X). For a more visual com-
parison, a performance index for each strategy was calculated as a ratio of its expected 
payoff to the payoff of the optimal strategy. Optimal strategy for the normal distribution 
was computed numerically.

Figure 10 shows expected closing stocks of unsold units from the same set of exper-
iments as in Figure 9a. It shows that the proposed heuristic pricing rule is somewhat 
more aggressive than optimal as it results in the higher number of units sold. On the 
other hand, optimal fixed price policy results in underselling stocks relative to the op-
timal strategy.

Figure 10
Expected Closing Stocks for Different Strategies

 

 
Note. Closing stocks as a function of the starting inventory levels (rt~U(0,1), T = 30).

The above calculations show that the proposed heuristic rule performs very well 
overall, within 2% error bounds from the optimal strategy even in the worst case scenar-
io. A simplified heuristic rule with a limited price adjustment frequency also performs 
reasonably except for the very low initial inventory levels. As these strategies are much 
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easier to implement in comparison to the full dynamic optimization model, their adop-
tion may benefit small and medium businesses.

6. Conclusions and Directions for Further Research 

The model developed above allows determining optimal prices as a function of inven-
tory levels and time remaining to the expiration of the product value. Calculations and 
computer simulations show that employing dynamic pricing can bring a substantial 
payoff in comparison to the more common static prices strategy. The established prop-
erties of the optimal pricing mechanism allow developing fairly simple and intuitive 
heuristic rules for dynamic price adjustments.

There are several directions where this line of research can be extended. From the-
oretical perspective, optimal conditions for the pricing policy are very similar to those 
that arise in the auction literature. This is especially apparent for the single unit case, 
where	the	pricing	pattern	is	reminiscent	of	the	Dutch	auction	(Klemperer,	2004).	The	
resemblance is likely due to the fact that both dynamic pricing and auctions can be 
thought of as price discovery mechanisms striving to sell the product to the highest 
bidder(s). Exploring this avenue may bring up some useful theoretical generalizations.

From empirical perspective, it is interesting to explore to which extent the above 
model may account for typical pricing patterns and the degree of price dispersion pres-
ent in particular markets. 

 Practical implementation of the above model requires estimates of the intensity of 
consumer flow and price-dependent conversion rates, which may not be readily avail-
able. There is a growing body of research on using machine learning algorithms and 
analytical processing of the sales data for estimating a demand function. However, most 
of these algorithms require extensive price experimentation and processing of the large 
amounts of data. Both of these features may make employing such algorithms too cost-
ly for small and medium businesses, which might prefer using simple and robust heu-
ristics instead. The suggested pricing heuristic can be thought of as a simple feedback 
controller based on the difference between the actual and desired sales dynamics. Such 
schemes are known to be fairly robust to model misspecifications, although evaluating 
performance of the suggested pricing rule under incomplete demand knowledge lies 
beyond the scope of this paper. 

Another interesting expansion of the model would be treating the above problem 
as a repeating process and endogenizing the sales horizon. This would bridge pricing 
decisions with the classical inventory management problems such as determining the 
optimal order size, replenishment frequency and so on. 

Exploring these and other issues related to dynamic pricing may be of substantial 
theoretical and practical interest.
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Appendix A 
Proof of Proposition 1

Setting 1t tp V   in equation  (5) results in 1t tV V  . Since 1t tp V   is not necessarily 

optimal for equation (5), it follows that 1t tV V  . This also automatically implies that 1t tp V  , 

since ( ) 0t tG p p  .  

We next show by induction that * *
1t tp p  . For T=2 we need to show that * *

1 2.p p  

Expected seller’s gain in the first period is given by * * * * *
1 1 1 2 1 2( ) ( ) ( )V p G p p F p G p  . Suppose 

that * *
1 2.p p  Switching these two prices will change seller’s expected revenue to 

' * * * * *
1 2 2 1 2 1( ) ( ) ( )V p G p p F p G p  . But 

 
' * * * * * * * * * *

1 1 2 2 1 2 1 1 1 2 1 2
* * * * * * * * * *
2 2 1 1 1 2 2 1 1 2

( ) ( ) ( ) ( ( ) ( ) ( ))

( )(1 ( )) ( )(1 ( )) ( ) ( ) ( ) 0.

V V p G p p F p G p p G p p F p G p

p G p F p p G p F p p p G p G p

    

      
 (24) 

Thus, switching prices will increase expected revenue and it follows that * *
1 2.p p  

Now, assume that the statement holds for periods [2,3,…,T], that is, * * *
2 3 ... Tp p p   and 

show that this implies * *
1 2.p p  This proof is nearly identical to above: expected seller’s gain 

in the first period is given by  

 * * * * * * *
1 1 1 2 1 2 1 2 3( ) ( ) ( ) ( ) ( )V p G p p F p G p F p F p V   , 

and if * *
1 2p p , swapping *

1p  and *
2p  will improve seller’s expected revenue by the same 

inequality as in (24) (third term will drop out). Thus, we arrive at the contradiction which 

completes the proof. 
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Appendix B 
Proof of Proposition 2

 

Appendix B 

Proof of Proposition 2 
2.1. Setting p v  in equation (9) results in 1

x x
t tV V  . As this may not be optimal, 1

x x
t tV V  . 

2.2. Since in this model there are no costs associated with holding inventories, the seller 

can simply discard an extra unit of goods she sells. As this may not be optimal, 1.x x
t tV V   

2.3. The proof that 1
x x
t tp p   is practically identical to the proof of similar statement of 

Proposition 1. 

2.4. Applying equation (13) to adjacent inventory levels tx x  and 1tx x   and 

subtracting, we obtain 

 1 1 1 1
1 1 ( ) ( ) ( ) ( ).x x x x x x x x

t t t t t t t tV V V V H p G p H p G p   
       (25) 

From optimality conditions  (11),  1
1 1 ( ).x x x x

t t t tV V p H p
     Plugging this expression into 

(25) both for periods t and t+1 and rearranging terms yields 

 1 1
1 1( ) ( ) ( ) ( ) ( ) ( )x x x x x x x x

t t t t t t t tp p H p H p H p G p H p G p 
      . (26) 

From proposition 2.3, 1 0x x
t tp p    and so is the right-hand side of the inequality (26). 

Rearranging again, we get  

 1 1
1( ) ( ) ( ) ( ) ( ) ( ).x x x x x x

t t t t t tH p G p H p G p H p H p 
    (27) 

( )H p  is a decreasing function of its argument by the monotone hazard rate assumption 

and 1
x x
t tp p   from proposition 2.3. Thus, the right-hand side in (27) is non-negative and   

 1 1( ) ( ) ( ) ( ).x x x x
t t t tH p G p H p G p   (28) 

Function ( ) ( )H p G p  is decreasing in p as a product of two monotonically decreasing 

functions. Thus, 1x x
t tp p  . 
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