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Abstract. Atrial fibrillation (AF) characterized by rapid and irregular electrical 
activity in the atria represents a prevalent form of cardiac arrhythmia that signifi-
cantly challenges healthcare systems due to its links to heightened mortality and 
morbidity rates. Early detection of AF is critical for accurate and effective mana-
gement and treatment. In response to this pressing need, numerous researchers 
have used machine learning (ML) to enhance the precision and efficiency of AF de-
tection. By analyzing available datasets, signal lengths, preprocessing techniques, 
and a diverse array of ML approaches, this paper aims to cover methodologies of 
AF detection using electrocardiogram (ECG) data and ML.

Keywords: atrial fibrillation, machine learning, ECG, artificial intelligence, deep 
learning

1 Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia seen in clinical 
settings leading to serious health problems such as stroke, heart failure, 
and increased mortality rates. The electrocardiogram (ECG) provides a 
graphical representation of the heart’s electrical activity over time and is the 
standard diagnostic tool for detecting AF. The normal electrocardiogram in 
sinus rhythm depicted in Figure 1 comprises a P wave, a QRS complex, and 
a T wave. The QRS complex is often, but not always, three separate waves: 
the Q wave, the R wave, and the S wave. When AF is present, ECG usually 
comprises the absence of a P wave (while the QRS complex and T waves 
remain present), and an irregular pattern of R-waves.

The diagnosis of AF based on ECG signals requires the expertise of a 
trained specialist, typically a doctor, making it a time and resource-intensive 
process. The need for human interpretation poses challenges, including 
potential delays in diagnosis and limitations in scalability. Given these 
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challenges and the evolving landscape of healthcare technology, there is an 
increasing recognition of the potential role of machine learning algorithms 
in AF detection. Understanding nuances of the development of machine 
learning (ML) algorithms capable of identifying AF from ECG data with high 
accuracy is crucial for the advancement of automated diagnostic tools. This 
paper explores various machine learning approaches applied to ECG data 
for the detection of AF, aiming to systematically present advancements in 
AF detection in the ML field. Through an examination of different metho-
dologies, from data preprocessing to model selection, this analysis seeks to 
review the most common strategies for this vital diagnostic task.

2 Literature review

2.1 Databases

Many recent publications in the field of ML for AF detection use public datasets 
provided by PhysioNet [2], a data repository for biomedical research. Based 
on the research by [3], the MIT-BIH Atrial Fibrillation Database (AFDB) [4] and 
the Computing in Cardiology (CinC) Challenge 2017 Database [5] are the two 

Figure 1. Schematic 
diag ram of normal sinus 
rhythm for a human 
heart as seen on ECG [1] 
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1 Introduction
Atrial fibrillation (AF) is the most common cardiac arrhythmia seen in clinical settings leading
to serious health problems such as stroke, heart failure, and increased mortality rates. The
electrocardiogram (ECG) provides a graphical representation of the heart’s electrical activity
over time and is the standard diagnostic tool for detecting AF. The normal electrocardiogram
in sinus rhythm depicted in Figure 1 comprises a P wave, a QRS complex, and a T wave. The
QRS complex is often, but not always, three separate waves: the Q wave, the R wave, and the
S wave. When AF is present, ECG usually comprises the absence of a P wave (while the QRS
complex and T waves remain present), and an irregular pattern of R-waves.

Figure 1: Schematic diagram of normal sinus rhythm for a human heart as seen on ECG [1]

The diagnosis of AF based on ECG signals requires the expertise of a trained specialist,
typically a doctor, making it a time and resource-intensive process. The need for human inter-
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most popular databases for AF detection, used in around 50 studies out of 
147 reviewed, and both provided by PhysioNet. The AFDB database consists 
of 25 long-term ECG recordings of human subjects with AF, while the CinC 
Challenge 2017 contains a training set with 8528 single lead ECG recordings 
(normal (5076), AF (758), other (2415), and noisy (279)) lasting 9–60 s and a 
test set with 3658 ECG recordings of similar lengths that have been retained 
as a hidden test set. This training dataset is unbalanced and skewed towards 
the normal sinus rhythm class. Other databases, such as MIT-BIH Arrhythmia 
(MITDB) [6], and MIT-BIH Normal Sinus Rhythm (NSRDB) [7] are also often 
used. Based on the recent review of ML in AF detection, 10 out of 14 papers 
reviewed also used the AFDB Database, showing the continued relevance and 
popularity of this database in the field [8].

2.2 Signal length

The determination of an ECG signal length for the detection of AF using ML 
can depend on several factors, such as the objectives of the study, and the 
practical considerations of the machine learning algorithm. The authors of 
[9] tested various signal lengths for paroxysmal atrial fibrillation classification 
and got the best results with a 4 s window using the Second-Order System 
(SOS) algorithm. Another study by [10] employed both 2 s and 5 s windows 
using Convolutional Neural Network (CNN) and found that the 2 s segments 
achieved a higher specificity while 5 s segments showed a slightly better 
overall accuracy and sensitivity. However, study by [11] also used CNN and 
varying windows of 9–60 seconds and concluded that it was difficult to 
distinguish AF from other rhythms on small signal segments. Longer signal 
of 31 heartbeats was also backed up by [12] where the combination of CNN 
and Recurrent-Neural Networks (RNN) achieved specificity and sensitivity 
of 98.96% and 86.04% on unseen data. This variation in segment window 
and ML methods underscores the absence of a universal standard in the 
selection process. Optimal signal duration should satisfy the prerequisites 
of machine learning algorithms while simultaneously capture the dynamic 
nature of AF to facilitate precise classification.

2.3 ECG preprossessing techniques and features extraction

Morphological characteristics of the ECG are often derived and widely 
used in ML-based AF detection. One part of them is called time-domain 
transformations and includes RR interval, Heart Rate Variability (HRV), and 
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P-wave. Another group of transformations work on the frequency domain 
to detect high vs. low-frequency segments of the ECG and requires the use 
of Fourier Transform (FT) or Wavelet Transform (WT). These two domains, 
separately or together, are used widely in the research [13], [14, 15], [16]. 
In recent years, models such as CNN and RNN have been employed that 
directly process raw ECG signals, simplifying the detection process by 
eliminating the need for complex preprocessing steps [17], [18], [19]. This 
shift from complex preprocessing techniques to methods requiring minimal 
or no ECG preparation highlights an increasing trend in developing more 
efficient and accurate machine learning-based approaches for AF detection.

2.4 Machine learning algorithms

Machine learning algorithms for AF detection have demonstrated sig-
nificant diversity and innovation, integrating traditional machine learning  
approaches with sophisticated deep learning models to enhance diagnostic 
accuracy. Deep learning methods, particularly CNN and Long Short-Term 
Memory (LSTM) networks, have shown to surpass traditional classifiers  
like Multilayer Perceptrons (MLP) and logistic regression in effectively 
processing ECG signals for AF detection, indicating a shift towards more  
complex models for better performance [20].

Further advancements include the use of CNNs in both single-channel 
and innovative two-channel models. A two-channel CNN model, for 
instance, uses one channel to identify where to look for the detection of AF 
in the ECG, while the other performs the actual detection [19]. Additionally, 
CNNs have been employed directly on raw ECG waveforms, bypassing 
traditional feature extraction processes [21], and in combination with RNN 
for extracting high-level features from RR intervals [12]. The study by [17] 
combined CNN and bagged tree ensemble to classify a filtered ECG signal - 
if the confidence of the classifier reaches a certain threshold, CNN is used, 
otherwise 43 PQRS features are used in a bagged tree ensemble.

Ensemble models and decision trees have also been instrumental in 
AF detection, utilizing a combination of expert features, signal processing 
methods, and learned features. These models benefit from the ensemble 
strategy by integrating multiple classifiers to improve prediction outcomes, 
evidenced by the use of bagged tree ensembles, gradient-boosted tree, and 
random forest classifiers based on hand-crafted and selected features for 
reliable AF detection [22], [23], [24].
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Recent developments in the field have introduced innovative methods 
to enhance the detection and classification of AF. One such method utilizes 
a deep residualdense network based on a bidirectional recurrent neural 
network (Bi-RNN). This approach combines one-dimensional dense residual 
networks with Bi-RNNs and attention mechanisms to enable end-to-end 
feature learning from ECG signals, simplifying labour-intensive feature ex-
traction steps [25]. Another approach merges the strengths of multilayer 
CNNs and RNNs with LSTM capabilities into a singular classifier. First, the 
multilayer CNN is utilized for extracting high-level features from the raw 
input sequence and then the RNN structure known as LSTM is used for pro-
cessing the sequential features extracted by CNN. Lastly, the logistic classi-
fier provides the posterior probability of the input sequence containing AF 
with notable sensitivity, specificity, and accuracy rates [26].

In conclusion, the automated AF detection landscape shows significant 
variation across ML algorithms without a single best method for AF detec-
tion. This diversity is highlighted in Table 1, which collates and compares 
different databases, signal lengths, preprocessing techniques, and machine 
learning algorithms with their corresponding performance metrics.

2.5 Evaluation metrics

The evaluation of ML algorithms in the context of AF detection is crucial 
to ensure their reliability and effectiveness in clinical applications. Tradi-
tional metrics for assessing the accuracy of detection methods in medicine 
include sensitivity, specificity, positive predictive value, and accuracy [29], 
[30]. These metrics serve to gauge:

Table 1. Summary of AF detection studies with percentage evaluation scores.

Author Dataset Signal
length Features ML algo-

rithm
Eval.

metric Score

Andersen 
et al (2017) 
[15]

AFDB 60, 100,
and 300 
beats

Time-domain, 
frequency-domain 
features

Support
Vector 
Machine

Se, Sp 96.81%,
96.20%

Zabihi et al 
(2017) [24]

CinC 
Challenge 
2017

5s 
segments 
with 4s 
overlap

Time-domain, 
frequency-domain, 
nonlinear features, 
meta-level features, 
morphological 
features

Random 
forest

F1 84%
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Author Dataset Signal
length Features ML algo-

rithm
Eval.

metric Score

Hong et al 
(2017) [22]

CinC 
Challenge 
2017

20 s Expert features, 
center-wave 
features, and DNN 
features

Decision 
trees

F1 85%

Kamales-
wa ran et al 
(2018) [21]

CinC 
Challenge 
2017

9s to 61s Raw ECG data at 
various sampling 
frequencies

CNN F1 82%

Kropf et al 
(2018) [23]

CinC 
Challenge 
2017

Not  
specified

time-domain, 
frequency-domain, 
and morphological 
features

Gradient
boosted 
tree

F1 84%

Plesinger 
et al (2018) 
[17]

CinC 
Challenge 
2017

6 s PQRS features or 
a 9-times filtered 
ECG signal

Bagged
tree 
or CNN

F1 82%

Andersen 
et al (2017) 
[15]

AFDB 60, 100,
and 300 
beats

Time-domain, 
frequency-domain 
features

Support
Vector 
Machine

Se, Sp 96.81%,
96.20%

Mousavi et 
al (2019) 
[19]

AFDB 5 s Raw ECG data ECGNET Se, Sp, 
Acc

99.53%,
99.26%,
99.40%

Laghari et 
al. (2023) 
[25]

CPSC2018 
[27]

Not  
specified

Residual dense 
CNN and RNN 
features

Residual
dense 
CNN and 
RNN

Se, Sp, 
Acc

93.09%,
98.71%,
97.72%

Kumar et 
al. (2023) 
[26]

CACHET-
CADB [28], 
AFDB, 
NSRDB, 
MITDB

Interval 
of 30 RR

Multilayer CNN 
features

CNN and 
RNN

Se, Sp, 
Acc

96.06%,
98.29%,
97.04%

• Sensitivity (Se), also known as true positive rate (TPR) or recall, 
measures the proportion of signals correctly classified as AF versus 
the actual number of signals identified as AF.

• Specificity (Sp) measures the proportion of negative cases that are 
correctly classified as not AF versus all signals identified as not AF in 
the observed set.

• Positive Predictivity Value (PPV), also known as precision, is the 
proportion of signals correctly classified as AF versus the total number 
of AF in the set.
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•	 Accuracy (Acc) measures the overall model’s performance and is 
calculated as a ratio of correctly predicted observations (both AF and 
non-AF) to the total observations in the proportion.

However, the performance of algorithms submitted to the CinC 
Challenge 2017 was measured using the F1 score [5], a metric that provides 
a balanced view of the model’s proficiency in accurately classifying both 
positive and negative instances. The F1 score is calculated as:

Table 1: Summary of AF detection studies with percentage evaluation scores.

Author Dataset Signal
length Features ML al-

gorithm
Eval.
metric Score

Andersen et al
(2017)[15] AFDB

60, 100,
and 300
beats

Time-domain, frequency-
domain features

Support
Vector
Machine

Se, Sp 96.81%,
96.20%

Zabihi et al
(2017)[24]

CinC Challenge
2017

5s seg-
ments
with 4s
overlap

Time-domain, frequency-
domain, nonlinear fea-
tures, meta-level features,
morphological features

Random
forest F1 84%

Hong et al
(2017)[22]

CinC Challenge
2017 20 s

Expert features, center-
wave features, and DNN
features

Decision
trees F1 85%

Kamaleswaran
et al
(2018)[21]

CinC Challenge
2017

9s to
61s

Raw ECG data at various
sampling frequencies CNN F1 82%

Kropf et al
(2018)[23]

CinC Challenge
2017

Not
speci-
fied

time-domain, frequency-
domain, and morphologi-
cal features

Gradient
boosted
tree

F1 84%

Plesinger et al
(2018)[17]

CinC Challenge
2017 6 s PQRS features or a 9-times

filtered ECG signal

Bagged
tree or
CNN

F1 82%

Andersen et al
(2017)[15] AFDB

60, 100,
and 300
beats

Time-domain, frequency-
domain features

Support
Vector
Machine

Se, Sp 96.81%,
96.20%

Mousavi et al
(2019)[19] AFDB 5 s Raw ECG data ECGNET Se, Sp,

Acc

99.53%,
99.26%,
99.40%

Laghari et al.
(2023) [25] CPSC2018 [27]

Not
speci-
fied

Residual dense CNN and
RNN features

Residual
dense
CNN and
RNN

Se, Sp,
Acc

93.09%,
98.71%,
97.72%

Kumar et al.
(2023) [26]

CACHET-
CADB [28],
AFDB, NSRDB,
MITDB

Interval
of 30
RR

Multi-layer CNN features CNN and
RNN

Se, Sp,
Acc

96.06%,
98.29%,
97.04%

• Sensitivity (Se), also known as true positive rate (TPR) or recall, measures the proportion
of signals correctly classified as AF versus the actual number of signals identified as AF.

• Specificity (Sp) measures the proportion of negative cases that are correctly classified as
not AF versus all signals identified as not AF in the observed set.

• Positive Predictivity Value (PPV), also known as precision, is the proportion of signals
correctly classified as AF versus the total number of AF in the set.

• Accuracy (Acc) measures the overall model’s performance and is calculated as a ratio of
correctly predicted observations (both AF and non-AF) to the total observations in the
proportion.

However, the performance of algorithms submitted to the CinC Challenge 2017 was measured
using the F1 score [5], a metric that provides a balanced view of the model’s proficiency in
accurately classifying both positive and negative instances. The F1 score is calculated as:

F1 = 2 × Precision × Recall
Precision + Recall

An empirical study on the performance evaluation of AF detection highlighted the F1 score’s
suitability as the premier metric for assessing AF detection algorithms [31]. This researchAn empirical study on the performance evaluation of AF detection 

highlighted the F1 score’s suitability as the premier metric for assessing AF 
detection algorithms [31]. This research confirms the effectiveness of the F1 
score through a comprehensive examination of various data sets, promoting 
the value of the F1 score in giving a detailed understanding of how well an 
algorithm can accurately detect true positives while effectively minimizing 
false positives and negatives. This robust methodological approach makes 
a strong case for using the F1 score to evaluate how well algorithms detect 
atrial fibrillation.

3 Conclusions

This paper systematically reviewed the application of ML algorithms in the 
detection of AF using ECG data. Through the examination of databases, 
signal lengths, preprocessing techniques, and ML algorithms, it has been 
shown that ML can significantly enhance the precision and efficiency of AF 
detection. The analysis revealed a preference for certain public datasets, 
such as those provided by PhysioNet, and highlighted the absence of 
a universal standard for optimal signal length in AF detection, which can 
vary based on the objectives of the study and the capabilities of the ML 
algorithm used.

Preprocessing techniques for ECG signal analysis have evolved, with 
recent trends showing a shift towards models that require minimal or 
no preprocessing, like CNNs and RNNs. These advancements suggest 
a move towards more direct analysis of raw ECG signals, simplifying the 
detection process. Furthermore, the exploration of various ML algorithms, 
including deep learning models like CNNs and LSTMs, demonstrated their 
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advancement over traditional machine learning models due to their ability 
to process complex patterns within ECG signals more effectively. However, 
it should be also highlighted that no single best method for AF detection has 
emerged due to variations in ML methodologies and datasets.

The evaluation of the algorithms using metrics such as sensitivity, 
specificity, and the F1 score is important for determining their applicability 
in clinical settings. The findings support the use of the F1 score as a 
balanced measure of an algorithm’s ability to accurately classify AF, which 
is vital for developing reliable diagnostic tools. However, even though the 
studies reviewed achieved high prediction scores, the results cannot be 
compared with each other because of the differences in the datasets and 
methodology used. Also, most of the studies evaluated the performance of 
ML algorithms using data from the same database used for training rather 
than unseen, real-life data. The research does not sufficiently clarify if the 
training and testing data consist of distinct patient groups. This distinction 
is critical because if a long ECG signal is segmented and portions of it are 
used for both training and testing, the algorithm’s performance may appear 
artificially inflated, as it could learn and thus anticipate the heart’s variability 
within an individual during training. It is imperative for future research to 
conduct cross-database testing, address data imbalance, and ensure that 
the training and testing datasets are truly independent to avoid inflated 
performance results.

The variance in signal lengths and preprocessing techniques, alongside 
the diverse array of machine learning algorithms, illustrates the complexity 
of achieving a standardized approach. Future studies should focus on 
refining ML models to improve their diagnostic accuracy on real-life data 
and establish benchmarks that enable the comparison of AF detection 
methods. Also, the next steps in ML for AF detection should strive for clinical 
validation. The ultimate goal is to integrate these ML algorithms seamlessly 
into clinical workflows, contributing to the early and precise detection of AF 
and improving patient outcomes. This endeavour requires a multi-faceted 
approach, combining the technical advancements in ML with rigorous clinical 
testing to establish the practical efficacy of these automated systems.
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