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Abstract. The IOTA Extended UTXO (IOTA EUTXO) model extends the UTXO 
blockchain to include features like smart contracts and non-fungible tokens. In 
this work, we show that the IOTA EUTXO model maintains the base correctness 
properties of the UTXO model while extending it with extra functionality. We 
achieve this by specifying and verifying the essential concepts of the base UTXO 
model and the extensions proposed by IOTA using the Isabelle proof assistant. 
The specification is designed to be modular and extensible, meaning it can be 
used as a foundation for further research of the UTXO and IOTA EUTXO models.
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mal methods.

1 Introduction

A blockchain is a decentralized digital ledger that records transactions in a way 
that is transparent and immutable. It uses accounts and tokens to represent 
digital asset ownership or rights, allowing peer-to-peer transactions without a 
trusted third party. The ledger in a blockchain network is usually implemented 
in one of two ways: using the Unspent Transaction Output (UTXO) model or 
the Account model. In the UTXO model, used by blockchains like Bitcoin, the 
ledger is represented as a set of unspent transaction outputs, referred to 
as just outputs in short [1]. Transactions consume outputs from the ledger 
as inputs and generate new outputs. This makes it possible to verify and 
process transactions which use different outputs as inputs independently. 
Subsequently, the UTXO model is known for its ability to allow parallel 
transaction processing, which improves scalability [2]. In contrast, the Account 
model, adopted by blockchains such as Ethereum, simplifies the ledger to a 
set of account balances [3]. Transactions adjust these balances directly. While 
more straightforward, this model requires transactions for the same account 
to be processed sequentially, which limits scalability [4]. 
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In the UTXO model, digital assets (tokens), are represented using 
immutable outputs. The outputs are owned by actors, who can perform 
transactions, such as sending some amount of tokens to another actor. 
Crucially, each transaction irreversibly consumes its input outputs, 
generating new outputs to represent the transferred tokens. Every actor’s 
owned amount of tokens at a given time can be calculated by taking the 
sum of tokens in all of the outputs owned by the actor. In the UTXO model, 
the current state is a set of all of the unspent transaction outputs. In other 
words, the UTXOs form a directed acyclic graph, and the current state is the 
set of all of the leaves of this graph [2]. 

 

 

 

 

 

Figure 1. An illustration of a transaction in the UTXO model. In the UTXO model, the 
current state is a set of all of the unspent outputs.

Figure 1 illustrates a transaction in the UTXO model. In State n, we 
see three outputs: UTXO-0, UTXO-1, and UTXO-2, each associated with a 
certain number of tokens and an owning address (Address A or Address B). 
A transaction takes place where UTXO-1 is used as an input to create two 
new outputs: UTXO-3 and UTXO-4, which are then owned by Address B and 
Address A respectively. This transaction results in the subsequent State n+1, 
which now includes the two new outputs along with the unchanged UTXO-0 
and UTXO-2 from the previous state.

The UTXO model supports some basic validation rules for output 
spending conditions. One of the most common conditions is the verification 
of ownership by the inspection of the digital signature on the output. 
However, there is a need for more programmable blockchain logic [5]. To 
address this, the concept of a smart contract can be used.

In general terms, a smart contract is a protocol for verifying and enforcing 
contracts on a blockchain [6]. A smart contract is stored on the distributed 
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ledger, it inspects the state of the ledger, maintains and modifies its internal 
state, and performs actions such as creating new transactions. Smart 
contracts rely on more complex validation rules that are not supported by 
the base UTXO model. Due to the complexities of implementing a smart 
contract, the more straightforward account model is usually used instead 
[7].

One way to introduce expressive smart contracts while maintaining 
the semantic simplicity of the UTXO model is to implement the validation 
logic on the outputs. Subsequently, as the UTXO model is stateless, a smart 
contract’s transactions would be forced to include any state information in 
the outputs themselves, introducing complexity to the model [5]. 

IOTA is a blockchain based on the UTXO model that started out with the 
aim of powering high throughput applications with low-price transactions 
[8]. TIP-181 is a design document that describes extensions to the IOTA 
UTXO model to add support for features such as NFTs and smart contracts. 
We refer to this proposed model as IOTA Extended UTXO (IOTA EUTXO) 
model.

The IOTA EUTXO model extends the traditional UTXO model. The goal 
of the IOTA EUTXO is to add the functionality of smart contracts while 
maintaining the base UTXO model’s advantages. This is achieved by 
appending additional data fields and extending the validation logic in the 
outputs. Thus, the EUTXO model allows for more complex transactions and 
behaviors without limiting the model’s scalability [9]. 

Correctness is crucial to blockchain technologies as every processed 
transaction, whether correct or not, is permanent. This means that any 
oversight or vulnerability in the transaction processing logic can be 
impossible to revert [10]. Subsequently, the complexity of the changes 
proposed in the IOTA EUTXO design document raises the question of IOTA 
EUTXO model’s correctness. 

Formal methods are a set of techniques to accurately specify and verify 
software systems [11]. By applying formal methods to the verification of 
blockchain protocols and smart contracts, we can identify any incorrect 
behavior of the system at an early stage [12]. In the case of IOTA EUTXO 
model, formal methods can be used to prove the correctness of the 
proposed model [13].

1  https://github.com/lzpap/tips/blob/master/tips/TIP-0018/tip-0018.md
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The formal verification of blockchain models or their smart contracts 
often involves using a proof assistant [14]. Isabelle is a collection of tools 
that allow formally verifying specifications using higher-order logic [15]. It 
is currently one of the more popular formal verification tools in academia 
due to its intuitive development environment and use of powerful provers. 
As such, Isabelle is a solid choice for specifying and verifying both the base 
UTXO model and IOTA’s EUTXO model.

While there have already been attempts to formalize the UTXO model, 
some of them using Isabelle, the results of these attempts are difficult to 
reuse for formalizing the IOTA EUTXO. Many of the formalizations, such 
as the Cardano UTXO specification2, are missing an accompanying paper, 
which complicates further analysis of the specification, and do not explicitly 
consider the possibilities of extending the model. Other specifications, 
such as the mathematical specification of the UTXO model by Gabbay et 
al., use manual proofs [16]. Furthermore, the abstract nature of the models 
does not address the concern of their real-life applicability. Thus, a new 
formalization of the UTXO and IOTA EUTXO is required.

In this paper, we formalize the IOTA EUTXO model using Isabelle. We 
demonstrate a way to represent the essential entities and properties of the 
UTXO model in a modular way using Isabelle’s syntax, including the locale 
construct. We then build on the UTXO model by formalizing a subset of the 
IOTA EUTXO’s functionality. We show that the IOTA EUTXO model maintains 
the base UTXO model’s properties while allowing for more complex 
workflows. By splitting the specification into implementation and abstract 
parts, we ensure that it is both theoretically sound and practically feasible. 
Our work provides a solid foundation for future UTXO and IOTA EUTXO 
model research by creating reusable components in Isabelle.

2 Formalizing the UTXO Model in Isabelle

Our formalization of the UTXO model in Isabelle uses a two-layered 
approach, differentiating an abstract and a implementation specification. 
The abstract layer represents the core properties and operations of outputs, 
transactions, and the ledger without tying them to specific data types – 
relationships and properties are represented using generic predicates 

2 https://github.com/input-output-hk/cardano-ledger-high-assurance/blob/master/Isabelle/
UTxO/UTxO.thy
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instead. This allows for the verification of the UTXO model’s properties in 
a generic manner, ensuring any valid concrete implementation will inherit 
these properties. 

When reasoning about the abstract model, we found the Isabelle 
locale construct to be very useful in ensuring a modular and extendable 
specification. A locale in Isabelle is a collection of parameters and assumptions 
that provide a context for proving theorems. To be more precise, locales are 
a way to define abstract contexts and structures, which can be instantiated 
later with specific types, functions, or relations. They provide a mechanism 
to reason about abstract properties and assumptions, prove theorems in a 
generic context and reuse the results in specific instances.

∀x1, … , xn.[(A1; … ; Am ) ⇒ C] (1) 

In Eq. 1 parameters x1 to xn are fixed, assumptions A1 to Am are made, 
and the conclusions C are implied. When writing Isabelle code, C would 
correspond to the proofs for lemmas and theorems that can be proven inside 
the context of the locale. A locale can then be instantiated by satisfying its 
parameters and assumptions using a specific type by using the interpretation 
mechanism, which allows us to reuse the proven properties of the locale. 

The abstract model focuses on the UTXO model’s essential entities and 
properties. Using Isabelle locales, we model basic entities like outputs, 
transactions, and the ledger, each with its own essential properties and 
operations. For instance, the basic_output locale guarantees that each 
output possesses a non-zero amount, while the basic transaction locale 
ensures the conservation of total token amount in a transaction. 

 

 

 

 

 

Figure 2. The locale structure in the abstract UTXO model. Six distinct locales are re-
presented as nodes, the relationships between them are depicted with directed edges.

Figure 2 depicts the hierarchical structure of locales in the abstract 
UTXO model as used in formal verification within the Isabelle proof assis-
tant framework. It illustrates how six distinct locales interconnect to model 
the UTXO model, with each node representing a locale and the edges indi-
cating the dependency and extension relationships between them. The fun-
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damental locale is basic_output, which defines individual UTXOs. It is used 
by basic_output_set, representing a collection of UTXOs. This, in turn, is refer-
enced by the basic_transaction_locale, which models the transaction mecha-
nism. The basic_UTXO_ledger locale relies on basic_UTXO_DB, which itself ref-
erences basic_output_set. Both basic_transaction and basic_UTXO_ledger are 
used by the basic_UTXO_ledger_and_transaction locale, which encapsulates 
the ledger’s state and a valid transaction, allowing us to reason in terms of 
the current and the subsequent ledger’s state. 

In contrast, the implementation layer offers a concrete example im-
plementation of the UTXO ledger, defining specific data types for outputs, 
transactions, and other essential entities, as well as functions and predi-
cates to model ledger updates and transaction validity. By mapping these 
concrete types to their abstract counterparts and verifying that the abstract 
model’s assumptions still hold, we demonstrate that the implementation 
adheres to the desired properties of the UTXO model.

By using Isabelle’s interpretation mechanism, we link the implementa-
tion model’s concrete entities to the abstract model’s locales and assump-
tions. This validates the implementation against the abstract specification 
and ensures the inheritance of all proven properties from the abstract mod-
el. Thus, we establish the correctness of our UTXO model implementation, 
by ensuring it is both theoretically sound and practically viable.

3 Formalizing the IOTA Extended UTXO Model in Isabelle

The IOTA EUTXO design document describes several new output types such 
as alias output and foundry output. An alias output is an output representing 
smart contract invocation chain accounts that can process requests and 
transfer funds. A foundry output is an output that contains the state of and 
manages user-defined native tokens [17]. To support these new output 
types, the ledger has to have some characteristics of a state machine.

For an output to function as a state machine, the state of the output 
must be moved forward when it is consumed as an input. In the UTXO 
model, the input outputs are essentially burned and only the value amount 
is distributed among the outgoing outputs. Subsequently, IOTA proposes 
an extension to the validator called a chain constraint. The chain constraint 
allows the transfer of the output state machine state encoded in the new 
additional fields on the output across transactions. The alias output and 
foundry output utilize this chain constraint to transfer the states of the alias 
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state machine and foundry state machine respectively. The chain constraint 
describes validation rules that ensure that the state is created, modified, 
and deleted in a correct manner. For example, the chain constraint ensures 
that once an alias is created, it has a continuous existence across the ledger 
until explicitly deleted and removed from the ledger.

 

 

 

 

 Figure 3. A path of consumed outputs with the same chain constraint forms a chain. 
Arrows indicate the creation of an output and the circles are the transactions; gray 
circles are transactions that contain a chain constraint. 

Figure 3 visualizes the concept of a transaction chain that uses the chain 
constraint. In this representation, each circle symbolizes a transaction, with 
the gray circles representing transactions that include an output with a chain 
constraint. The arrows between the circles represent the use of an output 
from one transaction in the next. A path made up of outputs linked by the 
same chain constraint is highlighted. This chain begins with the creation of 
an output with a chain constraint and terminates when the output containing 
this constraint is spent without creating a new one, which ends the sequence.

Our formalization of the UTXO model in Isabelle uses the same two-
layered approach used for the base UTXO model, with an abstract and a 
implementation specification. The IOTA EUTXO formalization builds upon 
the locales of the basic UTXO model.

In the abstract model, the details of the alias and foundry outputs are 
added. Notably, the base output and the additional state fields in an alias 
or foundry output are independent in terms of the operations and the 
properties of the UTXO model. Properties and operations from the base 
model only reference fields of the base model. Analogously for alias and 
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foundry outputs. Thus, we have modeled them as separate ledgers. For 
example, an alias ledger is an image of the blockchain ledger containing only 
the alias parts of the outputs; an alias ledger contains details of only the alias 
outputs and validates logic related only to alias output functionality. This 
approach ensures that our specification remains modular and reusable.

In the implementation model, we have opted to use a single ledger 
to represent all of the output types, which better mimics a possible real-
world implementation. Instead, we define the ledger as a set of a sum type 
with three possible constructors: basic output, alias output and foundry 
output. The basic output contains only the base output fields, while alias 
and foundry contain both the basic output fields and the alias and foundry 
fields respectively. This allows us to map the implementation to the abstract 
specification – an alias ledger is just the image of the implementation ledger 
which takes all of the alias field parts of the outputs in the ledger. 

Using the Isabelle locale interpretation feature, we link the IOTA EUTXO 
implementation model’s concrete entities to both the base output and the 
IOTA EUTXO abstract model’s locales and assumptions. Subsequently, we 
establish the correctness of the implementation model in the context of 
both the base UTXO and the IOTA EUTXO models’ invariants and properties.

4 Formalization Results

In our work, we not only formalized the models, but also verified some of 
their properties using Isabelle automated provers. 

The UTXO model has several essential properties that we have verified: 
• Constant Supply: the sum of unspent outputs in the ledger must be 

constant. 
• Unspent Output Consumption: an output can be consumed only if it is 

a part of the current ledger state and this output will not be present in 
the subsequent ledger state. 

• No Double Spending: an output can only be consumed by a single 
transaction. 

In the IOTA EUTXO model, we have verified all of the base UTXO model’s 
properties in addition to the chain constraint for the alias output: 

• Continuity of Alias (Chain Constraint): once an alias is created, it has 
a continuous existence across the ledger until explicitly deleted and 
removed from the ledger. 
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The proof process for verifying these properties in Isabelle involved 
several steps. For each property we aimed to verify, we started by formulating 
a theorem definition for it using Isabelle. This required translating informal 
descriptions of UTXO model’s behavior into precise, logical statements using 
Isabelle’s syntax. We then used Isabelle’s automated proof search tools and 
manual proof strategies to construct a proof for each theorem. Finally, we 
used Isabelle’s automated provers to ensure that the proof was sound.

To demonstrate the verification of one specific property in more detail, 
let’s consider the constant supply property of the UTXO model. This property 
ensures that the total sum of tokens across all unspent outputs remains 
unchanged by the application of transactions, assuming no new tokens are 
minted or existing tokens are destroyed outside of transactions. 

We first formally defined the sum_amount function in Isabelle, which 
calculates the total sum of tokens in a given set of outputs. The constant_
supply theorem was then stated as:

sum_amount DB = sum_amount (apply_transaction DB tx) (2)

In Eq. 2 we assume that tx is a valid transaction in the ledger DB.
We then constructed a proof by interacting with Isabelle’s automatic 

proof search functionality. The proof uses the subproofs for the facts that 
the amount of tokens in the inputs and outputs of a valid transaction is the 
same, and that, in terms of tokens, applying a transaction is equivalent to 
subtracting the amount of tokens in the inputs and adding the amount of 
tokens in the outputs. Finally, the Isabelle automated provers verified our 
proof to demonstrate its soundness.

5 Conclusions

We aimed to formalize the IOTA EUTXO model by utilizing the Isabelle 
formal verification tool and verify it using Isabelle’s automated prover. 
Our formalization showed that the IOTA EUTXO model not only retains 
the base correctness properties of the base UTXO model including no 
double spending, constant supply, and unspent output consumption, but 
also supports additional properties which are specified in the IOTA EUTXO 
design document, such as the chain constraint.

We have used a two-layered approach in our formalization to ensure 
that our model is both theoretically robust and practically applicable. The 
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abstract layer allowed us to verify the UTXO model’s core properties in a 
generic way, while the implementation layer provided a concrete example 
that adheres to the verified properties, demonstrating the practical viability 
of our formalization.

We have presented a model that is not only modular but also extensible. 
Our approach to formalization, which uses Isabelle locales, provides 
flexibility in specifying the model by allowing easier future extensions or 
modifications. This is crucial for keeping the model relevant as distributed 
ledger technologies continue to evolve. We believe that this approach offers 
a good foundation for further research and developments in the field of 
UTXO blockchain technologies.
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