
Extracting TLA+ Specifications Out of
a Program for a BEAM Virtual Machine

Andrius Maliuginas, Karolis Petrauskas

Vilnius University, Faculty of Mathematics and Informatics,
Institute of Informatics, Didlaukio g. 47, LT-08303, Vilnius
andrius.maliuginas@mif.stud.vu.lt, karolis.petrauskas@mif.vu.lt

Abstract. Formal specifications are mathematical descriptions of the desired
system functionality. Since they are usually written separately from the software
itself, it is important to ensure that the software implements what the specifi-
cation requires. A common approach to achieve this is to have a specification
detailed enough to generate source code but those are rarely written due to
expertise required. If code is not generated, then currently there is no straight-
forward way to reliably show that implementation conforms to initial formal
specification. This research attempts to define a way to extract formal TLA+ spe-
cification by translating Elixir source code and generating detailed specification
to give the system developer the ability to show that it refines the initial one.

Keywords: TLA+, Elixir, translation, specification refinement, distributed sys-
tems, message passing.

1 Introduction

Distributed systems are well known for their complexity [1]. As a result,
many methods have been developed to prevent mistakes during their
development, formal specifications being one of them. However, even
having a formal specification is not a guarantee of a correct system – there is
also a matter of ensuring that implementation conforms to the specification.
Since manual analysis is slow and error-prone, several automated methods
have been developed over the years to simplify the process, such as
generating implementation code from a rather detailed specification (e.g.
[2]). In this paper we attempt to go the other way – to develop a method
to extract a detailed TLA+ specification from Elixir source code. We do that
by defining the Elixir source code translation into TLA+ and generating the
detailed specification. Later, refinement mapping could be shown between
the generated specification and a more abstract one, thus demonstrating,
that implementation has the same properties as the abstract specification.

Copyright © Andrius Maliuginas, Karolis Petrauskas, 2024. Published by Vilnius University Press. This is an Open Access
article distributed under the terms of the Creative Commons Attribution License (CC BY), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.
DOI: https://doi.org/10.15388/LMITT.2024.14

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 99

This approach allows avoiding frequent manual changes to detailed
specification as the code changes, which results in development process
simplification and a decrease in developer expertise required.

We define translation for source code written in the Elixir programming
language [3]. It is a language for BEAM virtual machine, which, due to its
process model, makes it easy to develop a distributed system. Elixir also
has extensive abstract syntax tree manipulation capabilities [4], which helps
with source code analysis.

TLA+ [1] has been chosen as a target for our translation. It is a formal
specification language, developed to address the challenges posed by
specifications of distributed systems. It is a mathematical specifications
language, which makes it programming language agnostic and allows
specifying systems on a higher level than code.

There have been attempts to develop specification extraction in the past
for Erlang programming language, which is another language for BEAM
virtual machine, e.g. [5], which translates Erlang into µCRL specification
language. We base our work on previous work done for Elixir and TLA+ –
[6], which develops a way to translate and generate sequential code into
PlusCal and from there into TLA+. In this paper, the focus is on extracting
specification for interprocess communication – how messages are sent
between the processes. We base our translation on GenServer module usage
– it is an Elixir standard library module that simplifies the development of
processes that receive messages and keep state [4]. This allows us to look at
the system from a higher level and abstract details which are not important
for message passing between processes.

In this paper term “translation” refers to the process of turning one
language into another, in our case Elixir into TLA+. Term “generation” refers
to the automated creation of detailed specification files which contain the
translated source code.

2 Distributed systems model

We model a distributed system as a set of processes, which send messages
to and receive from a global set of inflight messages. Each process is
completely synchronous and independent from others. We consider the set
of messages in flight unordered; messages can be delivered to processes
in any order. We also assume that processes do not crash, they cannot be
created nor destroyed.

100 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

We base source code translation on GenServer Elixir module usage,
i.e. we consider only implementations that use functions from this module
to communicate between the processes. We consider such a decision
justified since the GenServer module is a part of the standard library and is
commonly used for such tasks.

3 Sequential code translation

Sequential code specification extraction is out of the scope of this
investigation. However, we partially define it to the degree that is necessary
to extract specification for message passing. Here we present a basic
outline of our translation method, albeit incomplete. It is based on an idea
developed in earlier work [6].

Since Elixir is a functional programming language, it is convenient to
translate sequential code in units of functions. Therefore, each function
is expected to be translated into a separate TLA+ module. In Elixir it is
possible to give several definitions for the same function, which would be
differentiated by passed arguments – during runtime, the first definition,
where arguments match parameter types, is executed. In general, it would
be more widely applicable to have such pattern matching done inside the
function module, however, for our purposes, it was sufficient to treat such
definitions as separate functions.

We treat Elixir functions as a series of expressions that are executed
one after another. We expect sequential code specification to reflect this
– generated specification should consist of a series of operators each of
which is a translation of an expression in Elixir. These expressions should be
deterministic, that is, given the current process state, they should produce
the next process state. For example, given the following Elixir function:

def send(n) do
 other_function(n + 1)

end

it could be translated as a set of TLA+ operators shown in Listing 1.

–

In this paper term “translation” ref
our case Elixir into TLA+. Term “generation” refers to the automated creation of detailed

2 Distributed systems model

3 Sequential code translation

–

–

def send(n) do
 other_function(n + 1)
end

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙1(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ≜
        𝑃𝑃! 𝑝𝑝𝑐𝑐𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, "other_function", ⟨𝑃𝑃! 𝑐𝑐𝑝𝑝𝑎𝑎(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 1) + 1⟩)
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ≜
        𝑃𝑃! 𝑝𝑝𝑙𝑙𝑟𝑟𝑟𝑟𝑝𝑝𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑃𝑃! 𝑝𝑝𝑙𝑙𝑟𝑟𝑟𝑟𝑝𝑝𝑙𝑙_𝑣𝑣𝑐𝑐𝑙𝑙𝑟𝑟𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝))

line1 line2

Listing 1. Example function expression translations.

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 101

In the example above, function body, consisting of a single expression
is translated as two separate expressions, line1 and line2. The first one
represents the function call together with incrementing its parameter by
one while the second one returns the result of the previous function call
to the caller. As is evident by this example, not all Elixir expressions are
represented as separate expressions in the translation (e.g. parameter
increment), nor each operator in translated specification is explicitly
reflected in the source code (e.g. function return).

We make use of our Process TLA+ module, which provides operators to
access and control the process state. They allow to abstract away the details
of common actions away from function modules, making them simpler to
translate automatically. Like function expression operators, they are also
completely deterministic. This module is included locally in each function
module with INSTANCE TLA+ command, as shown in Listing 2. INSTANCE
command applied as shown includes all the identifiers of the Process
module under the namespace P, with Process module constant Processes
replaced with Processes identifier from the current module [7].

P
Processes Processes

LOCAL 𝑃𝑃 ≜ INSTANCE 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 WITH 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

line_enabled line_action line_enabled

line_action

4 Specification generation for the entire program

procState sysState
messageQueue messageQueue

procState

procState
sysState

sysState

handle_cast handle_call

def handle_cast({:client, num}, state)
messageQueue

Listing 2. Process module inclusion in function modules.

Function expression operators are meant to be local to the function
module. The rest of the generated specification uses line_enabled and line_
action operators. line_enabled operator is meant to check if some process is
supposed to execute any expression in the current function module. Typically,
it should delegate to the Process module operator of the same name. Similarly,
the line_action operator is given the current process state and a line to execute
on that process state and delegates to a correct expression in the module.

Elixir GenServer module function calls are not translated as regular
function calls. Instead, we define TLA+ GenServer module, which operators
serve as direct equivalents.

4	 Specification	generation	for	the	entire	program

The entire distributed system specification is generated from a template,
gaps in which are filled in with source code parts translated into TLA+.
This template defines a general execution model for the entire distributed
system and handles message deliveries between the processes.

102 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

The state of the entire system is split between three variables: procState,
sysState, and messageQueue. The last of these, messageQueue, is a set of all
messages which still have not been received while others store the state of
the system itself as it is known for each process. procState contains mostly
the values used in specification parts that describe the sequential code
execution, e.g. function modules. For example, the value of the procState
variable determines which function expression should be executed on any
given process. Meanwhile, sysState contains values required for distributed
system specification, e.g. what message is currently being processed.
sysState contains part of the internal GenServer Elixir module functions
state. Such separation increases the modularity of the whole method and
simplifies the model-checking of any part of sequential code separately
from the rest of the generated specification.

Communication between the processes is modelled by a combination
of actions, some of which are generated from source code, while others
are predefined. Message-receiving actions are generated from GenServer
module callback functions handle_cast and handle_call headers. Listing 3
shows how the following GenServer handler function header is translated:

def handle_cast({:client, num}, state)

The main purpose of the formula in Listing 3 is to match the message in
the messageQueue and call the respective message handling function with
the actual message and current process state as parameters. The actual
functionality of the message handler function is to be specified by the
function module, the same as for any other sequential code.

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎1 ≜
        ∃𝑚𝑚 ∈ 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎, 𝑡𝑡 ∈ 𝑃𝑃𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚
                 ∧ 𝑚𝑚. 𝑡𝑡𝑃𝑃 = 𝑡𝑡
                 ∧ 𝑚𝑚. 𝑚𝑚𝑚𝑚𝑚𝑚[1] = "CLIENT"
                 ∧ 𝑃𝑃! 𝑤𝑤𝑎𝑎𝑤𝑤𝑡𝑡𝑤𝑤𝑎𝑎𝑚𝑚(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑡𝑡])
                 ∧ 𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎′ = 𝑚𝑚𝑝𝑝𝑎𝑎_𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃_𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎(𝑡𝑡,
                        𝑃𝑃! 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎(
                                𝑃𝑃! 𝑡𝑡𝑃𝑃_𝑓𝑓𝑤𝑤𝑎𝑎𝑤𝑤𝑚𝑚ℎ𝑎𝑎𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑡𝑡]),
                                ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑃𝑃𝑎𝑎𝑚𝑚𝑡𝑡! 𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎,
                                ⟨𝑚𝑚. 𝑚𝑚𝑚𝑚𝑚𝑚,  𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑡𝑡]. 𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎⟩))
                 ∧ 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎′ = 𝑀𝑀! 𝑎𝑎𝑎𝑎𝑃𝑃𝑝𝑝(𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎, 𝑚𝑚)
                 ∧ 𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎′ = 𝑚𝑚𝑝𝑝𝑎𝑎_𝑚𝑚𝑠𝑠𝑚𝑚_𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎(𝑡𝑡, 𝑝𝑝! 𝑚𝑚𝑎𝑎𝑡𝑡_𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑠𝑠_𝑡𝑡𝑃𝑃(𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑡𝑡], 𝑚𝑚))
                 ∧ UNCHANGED 𝑎𝑎𝑎𝑎𝑛𝑛𝑡𝑡𝑀𝑀𝑚𝑚𝑚𝑚𝑛𝑛𝑎𝑎

handler_finished –

waiting_responses deliver_responses

function_lines

fn_line

∃𝑎𝑎 ∈ 𝑓𝑓𝑚𝑚𝑎𝑎𝑃𝑃𝑡𝑡𝑤𝑤𝑃𝑃𝑎𝑎! 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎𝑚𝑚:
 LET
 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎 ≜ 𝑓𝑓𝑚𝑚𝑎𝑎𝑃𝑃𝑡𝑡𝑤𝑤𝑃𝑃𝑎𝑎! 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑝𝑝], 𝑎𝑎)
 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡 ≜ 𝑓𝑓𝑚𝑚𝑎𝑎𝑃𝑃𝑡𝑡𝑤𝑤𝑃𝑃𝑎𝑎! 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑃𝑃𝑡𝑡𝑤𝑤𝑃𝑃𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑝𝑝], 𝑎𝑎)
 IN
 𝑓𝑓𝑎𝑎_𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎(𝑝𝑝, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡)

𝑓𝑓𝑎𝑎_𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑚𝑚𝑚𝑚, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡) ≜
 LET
 𝑒𝑒𝑎𝑎𝑃𝑃𝑃𝑃𝑚𝑚𝑎𝑎𝑚𝑚_𝑒𝑒𝑎𝑎𝑃𝑃𝑃𝑃𝑏𝑏𝑎𝑎𝑎𝑎 ≜ 𝑃𝑃! 𝑒𝑒𝑎𝑎𝑃𝑃𝑃𝑃𝑏𝑏𝑎𝑎𝑎𝑎(𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡)
 𝑃𝑃𝑃𝑃𝑚𝑚𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎_𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 ≜ 𝑀𝑀! 𝑓𝑓𝑚𝑚𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡. 𝑚𝑚𝑎𝑎𝑎𝑎𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
 IN
 ∧ 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎
 ∧ 𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎′ = 𝑚𝑚𝑝𝑝𝑎𝑎_𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃_𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑚𝑚𝑚𝑚, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡)
 ∧ 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎′ = 𝑀𝑀! 𝑒𝑒𝑚𝑚𝑎𝑎𝑏𝑏_𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎(𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎, 𝑃𝑃𝑃𝑃𝑚𝑚𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎_𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚)

Listing 3. Message receiving action example.

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 103

Other actions related to message passing are there to ensure the system
state is updated as expected after the received message is handled and to
take care of synchronous communication. handler_finished action does both
jobs simultaneously – it updates the system state after the handler finishes
and sends out the response message, which may be returned by the handler
function. The other two actions, waiting_responses and deliver_responses are
there to correctly translate GenServer multicall function call which sends
the same message to several recipients and waits for their responses. We
do not provide definitions for these actions here due to space constraints;
definitions can be found in the code repository1.

Sequential code execution is specified by function_lines action. It is defined
as a disjunction of formulas of the structure shown in Listing 4. The entire
disjunction is also existentially quantified to select any process, which allows
to model-check different expression execution orderings for a group of pro-
cesses. fn_line operator is displayed in Listing 5. If some function expression can
be executed, it updates the process state, sends out all produced messages
and starts waiting for replies to the synchronous messages sent.

ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎1 ≜
        ∃𝑚𝑚 ∈ 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎, 𝑡𝑡 ∈ 𝑃𝑃𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚
                 ∧ 𝑚𝑚. 𝑡𝑡𝑃𝑃 = 𝑡𝑡
                 ∧ 𝑚𝑚. 𝑚𝑚𝑚𝑚𝑚𝑚[1] = "CLIENT"
                 ∧ 𝑃𝑃! 𝑤𝑤𝑎𝑎𝑤𝑤𝑡𝑡𝑤𝑤𝑎𝑎𝑚𝑚(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑡𝑡])
                 ∧ 𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎′ = 𝑚𝑚𝑝𝑝𝑎𝑎_𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃_𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎(𝑡𝑡,
                        𝑃𝑃! 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎(
                                𝑃𝑃! 𝑡𝑡𝑃𝑃_𝑓𝑓𝑤𝑤𝑎𝑎𝑤𝑤𝑚𝑚ℎ𝑎𝑎𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑡𝑡]),
                                ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑃𝑃𝑎𝑎𝑚𝑚𝑡𝑡! 𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎,
                                ⟨𝑚𝑚. 𝑚𝑚𝑚𝑚𝑚𝑚,  𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑡𝑡]. 𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎⟩))
                 ∧ 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎′ = 𝑀𝑀! 𝑎𝑎𝑎𝑎𝑃𝑃𝑝𝑝(𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎, 𝑚𝑚)
                 ∧ 𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎′ = 𝑚𝑚𝑝𝑝𝑎𝑎_𝑚𝑚𝑠𝑠𝑚𝑚_𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎(𝑡𝑡, 𝑝𝑝! 𝑚𝑚𝑎𝑎𝑡𝑡_𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑠𝑠_𝑡𝑡𝑃𝑃(𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑡𝑡], 𝑚𝑚))
                 ∧ UNCHANGED 𝑎𝑎𝑎𝑎𝑛𝑛𝑡𝑡𝑀𝑀𝑚𝑚𝑚𝑚𝑛𝑛𝑎𝑎

handler_finished –

waiting_responses deliver_responses

function_lines

fn_line

∃𝑎𝑎 ∈ 𝑓𝑓𝑚𝑚𝑎𝑎𝑃𝑃𝑡𝑡𝑤𝑤𝑃𝑃𝑎𝑎! 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎𝑚𝑚:
 LET
 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎 ≜ 𝑓𝑓𝑚𝑚𝑎𝑎𝑃𝑃𝑡𝑡𝑤𝑤𝑃𝑃𝑎𝑎! 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑝𝑝], 𝑎𝑎)
 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡 ≜ 𝑓𝑓𝑚𝑚𝑎𝑎𝑃𝑃𝑡𝑡𝑤𝑤𝑃𝑃𝑎𝑎! 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑃𝑃𝑡𝑡𝑤𝑤𝑃𝑃𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎[𝑝𝑝], 𝑎𝑎)
 IN
 𝑓𝑓𝑎𝑎_𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎(𝑝𝑝, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡)

𝑓𝑓𝑎𝑎_𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑚𝑚𝑚𝑚, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡) ≜
 LET
 𝑒𝑒𝑎𝑎𝑃𝑃𝑃𝑃𝑚𝑚𝑎𝑎𝑚𝑚_𝑒𝑒𝑎𝑎𝑃𝑃𝑃𝑃𝑏𝑏𝑎𝑎𝑎𝑎 ≜ 𝑃𝑃! 𝑒𝑒𝑎𝑎𝑃𝑃𝑃𝑃𝑏𝑏𝑎𝑎𝑎𝑎(𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡)
 𝑃𝑃𝑃𝑃𝑚𝑚𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎_𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 ≜ 𝑀𝑀! 𝑓𝑓𝑚𝑚𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡. 𝑚𝑚𝑎𝑎𝑎𝑎𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
 IN
 ∧ 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎
 ∧ 𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎′ = 𝑚𝑚𝑝𝑝𝑎𝑎_𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃_𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎(𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑚𝑚𝑚𝑚, 𝑎𝑎𝑤𝑤𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑡𝑡)
 ∧ 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎′ = 𝑀𝑀! 𝑒𝑒𝑚𝑚𝑎𝑎𝑏𝑏_𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎(𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎, 𝑃𝑃𝑃𝑃𝑚𝑚𝑝𝑝𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎_𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚)

Listing 4. Structure of function module expression execution block.

∃𝑙𝑙 ∈ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓! 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙:
 LET
 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑙𝑙𝑓𝑓𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒 ≜ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓! 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑙𝑙𝑓𝑓𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒(𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑒𝑒𝑓𝑓𝑙𝑙[𝑝𝑝], 𝑙𝑙)
 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙𝑓𝑓 ≜ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓! 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑒𝑒𝑓𝑓𝑙𝑙[𝑝𝑝], 𝑙𝑙)
 IN
 𝑓𝑓𝑓𝑓_𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙(𝑝𝑝, 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑙𝑙𝑓𝑓𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒, 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙𝑓𝑓)

𝑓𝑓𝑓𝑓_𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙(𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑙𝑙𝑓𝑓𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒, 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙𝑓𝑓) ≜
 LET
 𝑒𝑒𝑙𝑙𝑓𝑓𝑓𝑓𝑏𝑏𝑙𝑙𝑙𝑙_𝑒𝑒𝑙𝑙𝑓𝑓𝑓𝑓𝑏𝑏𝑙𝑙𝑒𝑒 ≜ 𝑃𝑃! 𝑒𝑒𝑙𝑙𝑓𝑓𝑓𝑓𝑏𝑏𝑙𝑙𝑒𝑒(𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙𝑓𝑓)
 𝑓𝑓𝑓𝑓𝑏𝑏𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙_𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑙𝑙 ≜ 𝑀𝑀! 𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙_𝑏𝑏𝑙𝑙𝑚𝑚𝑙𝑙(𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙𝑓𝑓. 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓_𝑏𝑏𝑙𝑙𝑚𝑚𝑙𝑙)
 IN
 ∧ 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑙𝑙𝑓𝑓𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒
 ∧ 𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑒𝑒𝑓𝑓𝑙𝑙′ = 𝑓𝑓𝑝𝑝𝑒𝑒_𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓_𝑙𝑙𝑓𝑓𝑒𝑒𝑓𝑓𝑙𝑙(𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑓𝑓𝑓𝑓𝑙𝑙_𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙𝑓𝑓)
 ∧ 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑚𝑚𝑓𝑓𝑙𝑙𝑓𝑓𝑙𝑙′ = 𝑀𝑀! 𝑒𝑒𝑓𝑓𝑙𝑙𝑏𝑏_𝑙𝑙𝑙𝑙𝑓𝑓𝑒𝑒(𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑚𝑚𝑓𝑓𝑙𝑙𝑓𝑓𝑙𝑙, 𝑓𝑓𝑓𝑓𝑏𝑏𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙_𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑙𝑙)
 ∧ 𝑓𝑓𝑙𝑙𝑛𝑛𝑓𝑓𝑀𝑀𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒′ = 𝑓𝑓𝑙𝑙𝑛𝑛𝑓𝑓𝑀𝑀𝑙𝑙𝑚𝑚𝑛𝑛𝑒𝑒 + 𝐶𝐶𝑒𝑒𝑝𝑝𝑒𝑒𝑓𝑓𝑓𝑓𝑒𝑒𝑙𝑙𝑓𝑓𝑓𝑓𝐶𝐶(𝑓𝑓𝑓𝑓𝑏𝑏𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙_𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑙𝑙)
 ∧ IF 𝑒𝑒𝑙𝑙𝑓𝑓𝑓𝑓𝑏𝑏𝑙𝑙𝑙𝑙_𝑒𝑒𝑙𝑙𝑓𝑓𝑓𝑓𝑏𝑏𝑙𝑙𝑒𝑒 THEN
 𝑙𝑙𝐶𝐶𝑙𝑙𝑝𝑝𝑓𝑓𝑒𝑒𝑓𝑓𝑙𝑙′ = 𝑙𝑙𝑙𝑙𝑓𝑓_𝑤𝑤𝑒𝑒𝑓𝑓𝑓𝑓_𝑝𝑝𝑙𝑙𝑝𝑝𝑙𝑙𝑓𝑓𝑙𝑙𝑙𝑙_𝑓𝑓𝑓𝑓𝑝𝑝(𝑝𝑝𝑝𝑝𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙, 𝑓𝑓𝑓𝑓𝑏𝑏𝑝𝑝𝑙𝑙𝑙𝑙𝑓𝑓𝑙𝑙_𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑚𝑚𝑙𝑙𝑙𝑙)
 ELSE
 UNCHANGED 𝑙𝑙𝐶𝐶𝑙𝑙𝑝𝑝𝑓𝑓𝑒𝑒𝑓𝑓𝑙𝑙

fn_line

M S

–

–

5 Work in progress

Listing 5. fn_line operator definition.

1 https://github.com/mr-frying-pan/master

104 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

In all listings provided in this section, we use operators from modules
referred to as M and S. These names stand for Messaging and System
TLA+ modules, respectively. Similarly to the Process module described in
Section 3 these modules provide operators for their respective areas –
message passing and system state modifications. They are included in the
specification in the same way as the Process module – using INSTANCE
command.

5 Work in progress

Experiment to verify the applicability of the developed method to a realistic
algorithm is currently in progress. We have generated a specification for our
implementation of Bracha reliable broadcast [8]. We attempt to show that
the generated specification is a refinement of an abstract Bracha reliable
broadcast specification. Abstract specification of Bracha reliable broadcast,
our Elixir implementation and generated specification for it are available in
the source code repository2.

Message-passing part of the specification was generated according
to the proposed method. To perform model-checking, sequential code
specification is also needed. Since sequential code generation is outside the
scope of this investigation, it was written manually. Despite that, manually
written function modules retain the required operators so that they can be
used in generated specification with minimal changes to it.

We try to show the refinement with model-checking, by showing that
abstract specification holds as a property when model-checking generated
specification. So far, an initial refinement mapping has been defined;
however, the correctness of the mapping is yet to be shown, and we
continue tuning the refinement.

6 Conclusions

The developed translation method is modular, different modules
encapsulate their respective areas well. If necessary, it is possible to prove
properties for any module separately, for both predefined modules and

2 Repository can be found in https://github.com/mr-frying-pan/master.
	 Abstract	specification	is	in	gen_spec/tla/BrachaRBC.tla.
	 Our	Elixir	implementation	is	in	bracha/lib/bracha.ex.
	 Main	generated	specification	file	is	gen_spec/tla/bracha.tla.

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 105

sequential code modules. We attempt to limit the state explosion by having
completely deterministic operators where it is possible to have them,
making the number of states dependent on initial inputs.

Future work in the area is needed to further limit state explosion since
currently there are a lot of orderings sequential expressions could be
executed in, in addition to the message delivery orderings.

Also, more work is needed to obtain a fully functional specification
generator. Currently, we generate only overall specification, without the
function modules while the bulk of functionality for some algorithm often
would be implemented as sequential operations. The sequential code
generator is currently being developed and will have to be incorporated
into the existing one once it is finished.

Synchronous communication between processes also requires future
work, especially the specification of timeouts. It is possible to add timeouts
into our specification, but it would require handling process failures and
errors.

References

[1] L. Lamport, J. Matthews, M. Tuttle and Y. Yu, “Specifying and verifying systems with TLA+,”
in Proceedings of the 10th workshop on ACM SIGOPS European workshop, 2002.

[2] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst and T. Anderson, “Verdi:
A Framework for Implementing and formally verifying distributed systems,” in Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation,
2015.

[3] S. Juric, Elixir in Action, Manning, 2019.
[4] D. Thomas, Programming Elixir ≥ 1.6: Functional |> Concurrent |> Pragmatic |> Fun,

Pragmatic Bookshelf,, 2018.
[5] T. Arts, C. B. Earle and J. J. S. Penas, “Translating Erlang to μCRL,” in Proceedings. Fourth

International Conference on Application of Concurrency to System Design, 2004. ACSD 2004,
2004.

[6] D. Bražėnas, Extracting TLA+ Specifications out of Elixir Programs, Vilnius: Vilnius University,
2023.

[7] L. Lamport, Specifying systems: the TLA+ language and tools for hardware and software
engineers, Addison-Wesley, 2002.

[8] G. Bracha, “Asynchronous Byzantine agreement protocols,” Information and Computation,
vol. 2, no. 75, p. 130–143, 1987.

	1 Introduction
	2 Distributed systems model
	3 Sequential code translation
	4 Specification generation for the entire program
	5 Work in progress
	6 Conclusions
	References

