
Unit Test Generation Using Large
Language Models: A Systematic
Literature Review

Dovydas Marius Zapkus, Asta Slotkienė

Vilnius University, Universiteto g. 3, Vilnius
marius.zapkus@mif.stud.vu.lt, asta.slotkiene@mif.vu.lt

Abstract. Unit testing is a fundamental aspect of software development, ensuring
the correctness and robustness of code implementations. Traditionally, unit
tests are manually crafted by developers based on their understanding of the
code and its requirements. However, this process can be time-consuming, error-
prone, and may overlook certain edge cases. In recent years, there has been
growing interest in leveraging large language models (LLMs) for automating the
generation of unit tests. LLMs, such as GPT (Generative Pre-trained Transformer),
CodeT5, StarCoder, LLaMA, have demonstrated remarkable capabilities in
natural language understanding and code generation tasks. By using LLMs,
researchers aim to develop techniques that automatically generate unit tests
from code snippets or specifications, thus optimizing the software testing
process. This paper presents a literature review of articles that use LLMs for unit
test generation tasks. It also discusses the history of the most commonly used
large language models and their parameters, including the first time they have
been used for code generation tasks. The result of this study presents the large
language models for code and unit test generation tasks and their increasing
popularity in code generation domain, indicating a great promise for the future
of unit test generation using LLMs.

Keywords: unit test generation, large language model

1	 Introduction

Software testing is one of the most important software development
processes, which increases the overall quality and reliability of the final
product [1].

Unit testing is an essential part of software testing methods. Successful
implementation of unit tests can decrease the number of errors in the
final product and increase the efficiency of the developer, thus making

Copyright © Dovydas Marius Zapkus, Asta Slotkienė, 2024. Published by Vilnius University Press. This is an Open Access
article distributed under the terms of the Creative Commons Attribution License (CC BY), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.
DOI: https://doi.org/10.15388/LMITT.2024.20

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 137

the software more reliable [2, 9]. Unit tests are used to test units of code,
ranging from functions, methods, procedures, etc. [3]

To optimize the testing of information systems, automated testing tools
are applied, which help developers save resources and time [2]. Currently,
solutions such as Search-Based Software Testing [4] and random test
generation [5, 14] are used for software testing. These solutions are capable
of generating component tests, but often the generated tests are impractical
and difficult to understand [4-6]. Therefore, it has been suggested to use
large language models, which would not only effectively cover system
functionality but also be clear and easily interpretable. Currently, programs
utilizing large language models, such as Github Copilot, can successfully
generate code from code comments or complete the remaining part of a
started code segment [7, 12]. Consequently, it is believed that large language
models can also be employed in unit or component testing.

Upon analyzing scientific research [14, 16] on large language models
and their generated component tests, it is observed that models such
as OpenAI GPT-3 and Codex are the most commonly used LLMs for unit
test code generation tasks. These models are already being used in other
domains, and their potential and effectiveness in the context of test case
generation have not been thoroughly explored.

This paper aims to perform a literature review on studies that analyze
LLMs for unit test generation tasks, to identify which large language models
are used for these tasks and what are the new relationships between large
language models and unit test domains since 2019.

The rest of this paper is structured as follows. Section 2 presents the
review methodology. Section 3 discusses the results obtained in the paper.
Finally, Section 4 concludes the paper.

2	 Research methodology

The review methodology was developed and executed according to the
guidelines provided by Kitchenham and Brereton [17, 18]. The structure
of the methodology consists of five steps: (1) preparing of review, (2)
identification, (3) screening, (4) eligibitation (5) developing mapping and
analysis (Figure 1).

138 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

 Figure 1. The fl ow diagram of the systematic literature review

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 139

In the fi rst step, we raised two research questions, which covered the
main research question: What is covered for unit test generation using large
language models?

RQ1: What is the historical evolution of code (unit test) generation using
large language models?

RQ1.1 What kind of large language models are used for code generation?
RQ1.2 Which large language models are used for unit test generation
tasks?

RQ2: What are the new relationships between large language models and
unit test domains in the analyzed period?

To increase the research accuracy we determined the inclusion and ex-
clusion criteria (Table 1):

 Studies Inclusion Criteria (IC) Studies Exclusion Criteria (EC)

IC1. Studies were published after 2021
IC2. The publication must be written in
English
IC3. The publication is a primary study
IC4. Studies that compare large language
models for unit test generation tasks.
IC5. Studies are in the fi eld of software
engineering or computer science
IC6. Studies which have an empirical
background

EC1. Studies that are duplicates of other
studies of the same authors
EC2. The reported research does not
relate to LLM and unit tests, or the
research is not discussed in the context
of LLM unit test generation
EC3. The publication was not written in
English
EC4. Studies not accessible in full-text

Table 1. Inclusion/Exclusion criteria

The search strategy includes two main terms, which help to defi ne the
search queries: The fi nal search query is developed based on WoS, Scopus,
and Google Scholar databases search requirements as follows:
1. The SQ1 was created and applied as follows: specify the primary search

keywords based on the main research question; fi nd substitute alternatives
for the large language models (LLMAlternatives) such as GTP-4, Codex, etc.

SQ1: LLMAlternatives AND code AND (generation OR automation)

2. Search query (SQ2) decides RQ1.2 and RQ2 and covers terms related
to unit tests: unit test and component test and terms related to large
language models: large language model and LLM.

SQ2: (“unit test*” OR “component test*”) AND (“large language model*” OR
LLM OR LLM’s)

140 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

The identification step was performed the search using the defined
search query in three scientific databases such as WoS and Scopus, and
Google Scholar (databases set of scientific papers), using these limitations:
articles written in only English language (IC2), the document type was only
articles, the article should be covered only subject area Computer Science.
After searching by selected search query were obtained 37 articles from
2019 to 2023. Because the same search query was performed in three
different databases, in the screening step, was removed duplicated studies
(11 studies removed) and records were verified by inclusion/exclusion
criteria (4 studies excluded). A deeper analysis of the found articles allowed
us to notice that some articles we knew about weren’t included in the search
results. That way, we used snowball sampling and added several scientific
articles (4 studies), which included the mentioned terms and the main
scientific question. An interim analysis of the keyword map from 9 articles
indicated the need to apply a relevancy analysis of full-text articles (eligibility
step). The full text of each study is assessed for eligibility (15 excluded) and
each study is validated based on whether it performs research on unit test
generation using large language models (2 excluded).

3	 Results of systematic literature review

In the emerging application of using Large Language Models for generating
unit tests and the limited research in this domain, this study instead aims
to examine the increasing adoption of LLMs in code generation tasks. By
performing a literature review in Section 2 it was observed, that only 9
studies were retrieved. This result wouldn’t yield sufficient data to analyze
the popularity of LLM‘s. A more abstract term „code generation“ was selected
to retrieve a larger number of studies (SQ1), improving the overall accuracy
of the chronological distribution of the papers diagram in Figure 2. „Unit
test generation“ is a subtopic of „code generation tasks“ [7], thus we can
assume, that LLM‘s ability to generate code makes it able to generate unit
tests. The chronological distribution of papers on LLM for code generation
tasks is shown in Figure 2. The papers selected were published from 2019
till the end of 2024 (RQ1).

From Figure 2 we can notice, that the highest number of studies related
to LLM and code generation tasks is observed in the year 2023 with a total
of 135 studies, contributing to 54.87% of the overall number of studies
since the year 2019 (RQ1.1). This indicates that research on LLMs and code

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 141

generation tasks has been growing in popularity over the years with an
average of 56.82% annually. The number of publications for each LLM in
Figure 2 indicates, that these models can be used for code generation tasks
(RQ1.1). Codex, released in 2021, is the highest-researched LLM for code
generation tasks included in 21.9% of all the studies analyzed in Figure 2.
Another popular LLM is GPT-2 having an equal number of research papers
as Codex, but was released in 2019 and indicates a stagnation or decrease
in the number of papers since 2022. Another highly researched LLM is GPT-
3, having 50 studies since 2020 and gaining popularity annually. The highest
number of LLMs with the ability to generate code was released in 2023.

Figure 2. Chronological distribution of papers by large language models used for code
generation tasks.

In addition to RQ1.2. From gathered papers [8-16] using the literature
review in Figure 1, it was noticed that for unit test generation tasks, models
such as Codex, GPT-3, StarCoder, and GPT-4 were used. Figure 2 indicates
the rising popularity of LLM‘s ability to generate code. These results indicate
that with the rising popularity of LLM, more distinct topics are selected for
research of this model, such as unit test generation, while less researched
models are excluded from such topics.

For the second research question (RQ2), it was decided to perform a
keyword map from articles gathered in Figure 1. The creation of a keyword

142 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

map was selected for its ability to distinguish associations between different
keywords and group these keywords into clusters, thus improving the
analysis process. The keyword map was developed by using the VOSviewer
tool. The original result contained 49 unique keywords. It was noticed that
some of the keywords didn‘t indicate the contextual relationship between
LLM and unit tests, these keywords include research type („review“, „literature
survey“, „literature review“), abstract keywords („agenda“, „group“, „focus“,
„codes“). After removing these keywords, 31 items remained and a keyword
map was developed using VOSviewer in Figure 3.

Figure 3. LLM and unit test keywords map

Generated keyword map in Figure 3, aims to answer RQ2. We can see
that the 6 clusters were formed. The most frequent keywords were “test
generation” and „software testing“. Most associations to other clusters were
made through “software testing” keyword. “Test generation” keyword is
connected with „gpt-4“, „large language models“, „code models“ keywords,
which indicates the type of tools/models that were used for test generation

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 143

tasks in the studies. “Test generation” keyword also associated with type of
unit test quality testing, which is in a color purple cluster. „Software testing“
is associated with “llm” keyword that indicates, that studies were mostly
using large language models for testing software.

Summing up, according to the historical overview, the analyzed topic
of the unit test generation using large language models is quite new based
on the scarcity of articles surrounding it, but it is becoming more and more
frequent and since 2023, it has had the highest increase in its relevance.
Most studies in recent years have performed research with Codex and GPT-
3 large language models.

4	 Conclusion and Future Work

This study is a systematic literature review of studies researching large
language models and their capability to generate unit tests. It was noticed
that LLM and unit test generation topics are new, and related research on
these topics is relatively tiny. LLM and code generation tasks have been
gaining popularity since 2019, with an average increase of 56.82% annually.
From deeper analysis, we can indicate that models such as Codex, GPT-
3, StarCoder, and GPT-4 were used for unit test generation tasks. From
generating the keywords map, it was noticed that unit test generation
has relationships not only with various AI artifacts but also relevant to the
quality aspects of the test generation process and test quality.

The results of this study indicate future works in the analyzed area. First,
the quality criteria are determined, which helps to evaluate the quality of
generated unit tests. The second challenge is research, which shows the
activity chain for the test development process using LLMs.

Literature

[1]	 Nagabushanam, Durga & Dharinya, Sree & Vijayasree, Dasari & Sai Roopa, Nadendla &
Arun, Anugu. (2022). A Review on the Process of Automated Software Testing. 10.48550/
arXiv.2209.03069.

[2]	 Job, Minimol. (2021). Automating and Optimizing Software Testing using Artificial Intel-
ligence Techniques. International Journal of Advanced Computer Science and Applica-
tions. 12. 10.14569/IJACSA.2021.0120571.

[3]	 Nikolaeva Zheleva, Dimitrichka. (2021). The role of unit testing in training. In: Develop-
ment Through Research and Innovation - 2021 [online]: The 2nd International Scientific
Conference: Online Conference for Researchers, PhD and Post-Doctoral Students, Au-

144 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

gust 27th, 2021, Chişinău: Conference Proceedings. Chişinău, ASEM, 2021, pp. 42-49.
ISBN 978-9975-155-54-0.

[4]	 Fontes, A., & Gay, G. (2023). The integration of machine learning into automated test
generation: A systematic mapping study. Software Testing, Verification and Reliability,
33(4), e1845, 10.48550/arXiv.2206.10210.

[5]	 Hashtroudi, Sepehr & Shin, Jiho & Hemmati, Hadi. (2023). Automated Test Case Genera-
tion Using Code Models and Domain Adaptation.

[6]	 Grano, Giovanni & Palomba, Fabio & Nucci, Dario & Lucia, Andrea & Gall, Harald. (2019).
Scented Since the Beginning: On the Diffuseness of Test Smells in Automatically Gener-
ated Test Code. Journal of Systems and Software. 156. 10.1016/j.jss.2019.07.016.

[7]	 Bareiß, Patrick & Souza, Beatriz & d’Amorim, Marcelo & Pradel, Michael. (2022). Code
Generation Tools (Almost) for Free? A Study of Few-Shot, Pre-Trained Language Models
on Code. 10.48550/arXiv.2206.01335.

[8]	 Siddiq, M. L., Santos, J., Hasan Tanvir, R., Ulfat, N., Al Rifat, F., & Carvalho Lopes, V. (2023).
Exploring the effectiveness of large language models in generating unit tests. arXiv e-
prints, arXiv-2305.

[9]	 Alagarsamy, S., Tantithamthavorn, C., & Aleti, A. (2023). A3test: Assertion-augmented au-
tomated test case generation. arXiv preprint arXiv:2302.10352.

[10]	 Le, H., Wang, Y., Gotmare, A. D., Savarese, S., & Hoi, S. C. H. (2022). Coderl: Mastering code
generation through pre-trained models and deep reinforcement learning. Advances in
Neural Information Processing Systems, 35, 21314-21328.

[11]	 Bayrı, V., & Demirel, E. (2023, December). AI-Powered Software Testing: The Impact of
Large Language Models on Testing Methodologies. In 2023 4th International Informatics
and Software Engineering Conference (IISEC) (pp. 1-4). IEEE.

[12]	 Huang, Y., Chen, Y., Chen, X., Chen, J., Peng, R., Tang, Z., Huang, J., Xu F. & Zheng, Z. (2024).
Generative Software Engineering. arXiv preprint arXiv:2403.02583.

[13]	 Nguyen-Duc, A., Cabrero-Daniel, B., Przybylek, A., Arora, C., Khanna, D., Herda, T., ... &
Abrahamsson, P. (2023). Generative Artificial Intelligence for Software Engineering--A Re-
search Agenda. arXiv preprint arXiv:2310.18648.

[14]	 Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., & Wang, Q. (2024). Software testing with
large language models: Survey, landscape, and vision. IEEE Transactions on Software En-
gineering.

[15]	 Guilherme, V., & Vincenzi, A. (2023, September). An initial investigation of ChatGPT unit
test generation capability. In Proceedings of the 8th Brazilian Symposium on Systematic
and Automated Software Testing (pp. 15-24).

[16]	 Schäfer, M., Nadi, S., Eghbali, A., & Tip, F. (2023). An empirical evaluation of using large
language models for automated unit test generation. IEEE Transactions on Software En-
gineering.

[17]	 Kitchenham, Barbara & Brereton, Pearl & Budgen, David & Turner, Mark & Bailey, John
& Linkman, Stephen. (2009). Systematic literature reviews in software engineering-A sys-
tematic literature review. Information and Software Technology. 51. 7-15. 10.1016/j.inf-
sof.2008.09.009.

[18]	 Kitchenham, B. and Brereton, P. (2013) A Systematic Review of Systematic Review Pro-
cess Research in Software Engineering. Information and Software Technology, 55, 2049-
2075.

	1 Introduction
	2 Research methodology
	3 Results of systematic literature review
	4 Conclusion and Future Work
	Literature

