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Abstract. This study uses a pointwise statistical approach to analyze Near-
Infrared Spectroscopy (NIRS) signals in preterm infants with and without Patent 
Ductus Arteriosus (PDA). Three oxygenation signals—SpO2, rSO2-1 (cerebral), 
and rSO2-2 (renal)—were analyzed across no-PDA, PDA, and hsPDA groups. 
Smoothed signals were tested using pointwise ANOVA and Tukey HSD to detect 
significant group differences. Results showed distinct patterns in rSO2-1 and 
rSO2-2, with the hsPDA group standing out in rSO2-1 and the no-PDA group in 
rSO2-2, demonstrating the value of this method in biomedical signal analysis.
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1 Introduction

Analyzing biomedical signals like Near-Infrared Spectroscopy (NIRS) is 
challenging due to their continuous nature, high dimensionality, and clinical 
noise. NIRS, a non-invasive method for monitoring tissue oxygenation [1], 
is particularly relevant in the context of Patent Ductus Arteriosus (PDA)—a 
condition where a fetal blood vessel fails to close after birth, potentially 
leading to serious complications [2]. Since PDA affects tissue oxygenation, 
NIRS data can offer valuable diagnostic insights.

However, most existing studies simplify NIRS signals to discrete averages, 
often missing time-based patterns essential for clinical interpretation. 
This study aims to address that gap by smoothing noisy NIRS signals and 
applying pointwise hypothesis testing to detect statistically significant 
differences in oxygenation patterns between preterm infants with different 
PDA statuses.
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2 Related Works

Previous studies on NIRS in neonatology have mainly compared average 
oxygenation values between PDA groups. Van der Laan et al. used non-
parametric tests and found no significant differences [3], while others, 
including Schwarz and Navikienė, applied ANOVA-based methods and 
identified some group-level differences, particularly involving the hsPDA 
group [4, 5]. However, these approaches often rely on summary statistics, 
missing time-specific patterns in the signals.

Functional Data Analysis (FDA) has been proposed as a more suitable 
framework for continuous biomedical data, with applications like functional 
PCA and canonical correlation offering richer temporal insights [6]. Still, its 
use in clinical research remains limited. This study builds on that gap by 
using pointwise testing on smoothed NIRS signals to capture interpretable, 
time-localized differences between groups.

3 Dataset and Methodology

Dataset

Study was carried out in the tertiary‐level neonatal intensive care unit of 
the Neonatology Center, Vilnius University Hospital Santaros Klinikos, 
from 2017 November to 2020 June. The study was approved by the Vilnius 
Regional Biomedical Research Ethics Committee (No.158200‐17‐940‐446, 
issued on 2017 September 12th). And registered at clinicaltrials.com 
(reg. No  NCT04295395). Informed parental consent was obtained before 
enrolment.

Infants included in the study were very-low-birth-weight (<1500 g), born 
at <32 weeks gestation, and at least 72 hours old. NIRS measurements 
were taken using the NONIN SenSmart X-100 system with neonatal 
sensors (8004CB‐NA, EQUANOX™). Sensors were placed on the forehead 
for cerebral and on the lower back for renal oxygenation. Recordings were 
continuous over 12 hours, with brief repositioning every 3 hours to prevent 
skin irritation.

Using NIRS technology, 3 signals had been measured:
• Cerebral oxygenation levels (rSO 2‐1);
• Renal oxygenation levels (rSO 2‐2);
• Blood oxygenation (SpO 2).



30  /   Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

Table 1. Newborn groups description

Group Description
Number of 

patients

no-PDA
Newborns with closed ductus arteriosus therefore without 
PDA

63

PDA
Newborns with heamodynamically insignificant patent 
ductus arteriosus thus without treatment

41

hsPDA
Newborns with heamodynamically significant patent 
ductus arteriosus thus with pharmacological treatment

20

Data Preparation

Firstly data had to be prepared. The dataset consisted of continuously 
collected medical data from preterm newborns, which inevitably included 
missing values (NAs) due to factors such as signal interruptions or technical 
issues. To address these missing values, a two-step approach was applied:

• signals with 30% or more NA values for a specific patient were 
excluded

• signals with less than 30% missing data were imputed using 
interpolation – for NAs within the signal linear interpolation was used, 
for NAs at the beginning of the signal the first observed value was 
carried backward to fill in missing values, for NAs at the end of the 
signal the last observed value was carried forward to fill in missing 
values.

Moreover, any oxygenation values lower than 20 were replaced with 20, 
ensuring that the data aligned with the physiological expectations.

Functional Data Representation and Smoothing

Since NIRS signals were collected every 1 minute over a 12-hour period, 
Functional Data Analysis (FDA) framework was adopted to transform these 
high-frequence, discrete observations into smooth, continuous functions. 
This approach enables more robust statistical analysis by preserving 
temporal dependencies and reducing noise. For this, B-spline basis 
functions were used to represent each discrete signal as continuous curve. 
B-spline basis functions are particularly suited for modeling non-periodic 
physiological data due to its flexibility and computational efficiency [7]. Each 
discrete signal is represented using B-spline basis functions:
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where ϕm(t)  are the B-spline basis functions, cm are the corresponding 
coefficients, and M is the number of basis functions. The choice of M  
controls the smoothness of the function: higher values provide flexibility, 
while lower enforce smoother trends. 
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 are the mean values of groups k1 and k2 at the 
time t, respectively.

Tukey HSD test calculates the critical value for pairwise comparisons 
using the studentized range distribution. This calculation incorporates the 
number of groups, the total number of observations, and the mean square 
within groups (obtained from the ANOVA calculation). The test identifies 
statistically significant differences between group pairs at each time point, 
providing a more granular view of group-level differences over time.

4 Results and Discussion

NIRS signals were smoothed using B-spline basis functions to reduce noise 
and prepare the data for statistical analysis. The optimal number of basis 
functions was selected for each signal and group using Generalized Cross-
Validation (GCV) and validated with the Elbow method.
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The number of basis functions varied depending on the signal 
complexity: hsPDA groups required fewer functions (12–16), while no-PDA 
groups showed more variability, requiring up to 57. This reflects differences 
in signal structure across groups.

Figures 1–3 show raw (colored) and smoothed (black) curves for each 
group and signal: SpO₂, rSO₂-2, and rSO₂-1. The smoothing clearly reduced 
measurement noise while preserving key physiological trends.

–

–
SpO₂, rSO₂ 2, and rSO₂

 
 
Fig. 1. Raw SpO₂ (

 
Fig. 2 ₂

Fig. 3. Raw rSO₂

Fig. 1. Raw SpO₂ (blue, green and orange) signals and smoothed curves (black) in 
newborn groups (PDA, hsPDA, no-PDA): X-axis represents time (hours), and Y-axis re-
presents blood oxygenation levels

–

–
SpO₂, rSO₂ 2, and rSO₂

 
 
Fig. 1. Raw SpO₂ (

 
Fig. 2 ₂

Fig. 3. Raw rSO₂

Fig. 2. Raw rSO₂-1 (blue, green and orange) signals and smoothed curves (black) in 
newborn groups (PDA, hsPDA, no-PDA): X-axis represents time (hours), and Y-axis re-
presents blood oxygenation levels

–

–
SpO₂, rSO₂ 2, and rSO₂

 
 
Fig. 1. Raw SpO₂ (

 
Fig. 2 ₂

Fig. 3. Raw rSO₂
Fig. 3. Raw rSO₂-2 (blue, green and orange) signals and smoothed curves (black) in 
newborn groups (PDA, hsPDA, no-PDA): X-axis represents time (hours), and Y-axis re-
presents blood oxygenation levels
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To identify statistically significant differences in oxygenation signals 
between newborn groups, pointwise ANOVA and Tukey HSD post hoc tests 
were applied to the smoothed signals.

As shown in Figure 4, pointwise ANOVA for SpO₂ (blood oxygenation) 
revealed mostly non-significant differences across groups, with p-values 
rarely falling below the 0.05 threshold. The Tukey HSD plots (Fig. 5) confirm 
this finding, with no sustained significant pairwise differences. This 
suggests that arterial oxygen saturation remains relatively stable across 
PDA statuses.

As shown in Figure 4, pointwise ANOVA for SpO₂ (blood oxygenation) revealed mostly non
p

Fig. 4 values for rSO₂ values for SpO₂ signals 

presents pointwise ANOVA results for rSO₂
time periods with significant differences compared to SpO₂ signal. The time period with the 

 p

 
Fig. 5 values for rSO₂ values for rSO₂

Fig. 4. Pointwise ANOVA p-values for rSO₂-1 and pointwise Tukey HSD p-values for SpO₂ 
signals across time

Figure 5 presents pointwise ANOVA results for rSO₂-1 (cerebral 
oxygenation), with more time periods with significant differences compared 
to SpO₂ signal. The time period with the most significant differences is 
between 2 and 6 hours, with additional peaks before 2 hour and more 
frequent peaks between 6 and 10 hours, while the only period without 
significant p-values is from 10 to 12 hours. The post-hoc test revealed that 
PDA and no-PDA groups show only a few isolated peaks with statistically 
significant differences, while hsPDA with no-PDA and hsPDA with PDA pairs 
show statistically significant differences for longer and continuous time 
periods (Fig. 5). It shows that the hsPDA group, when compared to the other 
two groups, has the most significant differences over time.
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Figure 6 shows that pointwise ANOVA identified extended time regions 
with significant group differences in rSO₂-2 (renal oxygenation), particularly 
between hours 1 and 3, around 6th hour and from 8 to 12 hours, with 
additional peaks at other times. The Tukey HSD post-hoc test shows that the 
PDA and no-PDA pair shows the most significant differences, the hsPDA and 
no-PDA group also exhibit many periods with significant differences, while 
in contrast, the hsPDA and PDA pair shows the fewest significant differences 
(Fig. 6). From Tukey HSD tests, it is evident that the no-PDA group differs the 
most from the other two groups, as it has continuous periods of significant 
differences with both PDA and hsPDA groups.

differences in rSO₂
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Fig. 6. Pointwise ANOVA p-values for rSO₂-2 and pointwise Tukey HSD p-values for rSO₂-
2 signals across time
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5 Conclusions

This study applied a pointwise statistical approach to smoothed NIRS signals 
to investigate group differences in oxygenation patterns among preterm 
infants with and without PDA. The results showed that while SpO₂ remained 
largely similar across groups, significant differences were observed in 
cerebral and renal oxygenation. The hsPDA group showed distinct patterns 
in rSO₂-1, while the no-PDA group stood out in rSO₂-2.

These findings demonstrate that pointwise analysis can reveal time-
specific physiological differences that are often missed by traditional 
summary-based methods. This approach offers a simple yet powerful 
framework for analyzing biomedical signals and may support more nuanced 
interpretations in clinical research.
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