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Abstract. In recent years, the application of generative AI in several areas has 
been increasing. Concurrently, quantum computing has been advancing at an 
accelerated pace, unlocking new possibilities across various fields. This article 
provides an overview of the integration of quantum computing with generative 
AI, focusing on diffusion model techniques. We explore use cases documented 
in recent literature, illustrating how quantum computing techniques, when 
combined with diffusion models, are being leveraged to drive innovation. 
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1 Introduction

Diffusion models have become key drivers of progress in generative 
Artificial Intelligence (AI) [1]. Their capabilities to produce diverse and high-
quality synthetic data have led to widespread adoption. Platforms such as 
Alphafold3 [2] and RFDiffusion [3] have achieved significant success using 
this technology in the field of generative biology. In generative imaging, 
DALL-E 2/3 from OpenAI [4], [5] and Stable Diffusion from Stability AI are 
good examples [6].

However, traditional diffusion models demand significant computational 
resources and encounter challenges in scalability and speed. These 
considerable resource demands present a major bottleneck in the broad 
deployment of diffusion models, as highlighted in recent research that 
outlines the high computational costs and the difficulties associated with 
efficiently training these models [7].
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Recent computational challenges have spurred a growing interest 
in integrating quantum computing with diffusion models. This surge is 
paralleled by the rapid development of quantum technologies, particularly 
the advent of Noisy Intermediate-Scale Quantum (NISQ) devices [8]. 
NISQ processors are built on various quantum physical systems, each 
leveraging unique strategies. A widely adopted approach in quantum 
computing relies on superconducting circuits, utilizing qubits designed to 
operate at cryogenic temperatures [9]. These systems harness Josephson 
junctions to enable quantum coherence and gate operations. Additionally, 
superconducting circuits can be employed within quantum annealers, where 
optimization problems are solved through energy minimization processes 
[10]. An alternative paradigm is based on photonic quantum computing, 
where quantum information is encoded within the properties of light, 
such as polarization and phase. They can operate at room temperature 
and enable high-speed data transmission [11]. Another class of quantum 
computing platforms operates by directly manipulating individual atomic 
systems. Trapped ion-based architectures utilize electromagnetic fields to 
confine charged atomic species, leveraging their internal states for qubit 
encoding and employing laser pulses for quantum gate implementation 
[12]. Similarly, neutral atom-based computing relies on optical tweezers 
to trap Rydberg atoms  [13].  Another type of quantum computing uses 
topologically protected Majorana-based qubits, and leverages particles 
called Majorana fermions to store and process quantum information [14].

The primary motivation for utilizing quantum computing lies in its ability 
to harness the unique properties of quantum mechanical systems, such as 
superposition, interference  and entanglement. These features have the 
potential to enable the execution of computational tasks that would either 
be impossible or significantly more challenging on a classical supercomputer 
[15]. To the best of our knowledge, there is currently no survey on Quantum 
Diffusion Models (QDMs). This paper aims to fill that gap by reviewing and 
analyzing recent advances in the field, with a focus on comparing various 
QDM variants and their underlying architectures. 

The remainder of this paper is organized as follows. Section 2 outlines 
the fundamental principles underlying diffusion models,  key quantum 
encoding techniques and parameterized quantum circuits. Section 3 
presents a review of QDMs, highlighting methodological innovations. 
Finally, Section 4 concludes the paper by summarizing the main findings.
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2 Background 

2.1 Diffusion Models  

This section introduces the core architecture of Diffusion Models (DMs) and 
two important techniques used in Quantum Machine Learning (QML) that 
are key to these models.

Diffusion models are a class of generative models gaining traction for 
their robust performance in data synthesis, particularly in image generation. 
They operate through a two-phase process rooted in statistical physics. As 
shown in Figure 1, a data sample undergoes a forward diffusion process, 
where noise is incrementally added over multiple steps, transforming it 
into a near-random state. This systematic degradation is intuitive: the data 
“spreads out” until its original structure is lost. A neural network is then 
trained to reverse this process, learning to denoise the sample step by step, 
reconstructing it from noise into a coherent output matching the target 
distribution [16].
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Fig. 1 Illustration of the forward diffusion (top arrow) and backward denoising (bottom 
arrow) processes in a diffusion model. Starting from the clean image x0 (left), noise is 
progressively added to obtain increasingly corrupted versions {x1, x2,..., xT} (right). Du-
ring sampling (reverse diffusion), the model iteratively denoises the noisy image xT back 
into a clean reconstruction x0.  

2.2 Types of Encoding 

In QMLs, classical data must be encoded into quantum states to enable 
quantum processing.  Various encoding methods have been developed for 
this purpose [17]. Here we review the ones that have been used in QDMs. 

Amplitude encoding, frequently used in QDMs, takes advantage of 
quantum superposition to efficiently represent high-dimensional data.  The 
corresponding quantum state for a classical data point x = (x1, x2,..., xN)  is 
given by: 
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where |ik〉 denotes the  computational basis state. A key benefit here is that 
an N-dimensional vector can be encoded using only log2N qubits, which is 
exponentially more efficient than the classical representation [18]. 

Another approach, known as quantum embedding, has been explored for 
QDM research [19]. Quantum embeddings leverage quantum computers 
to map classical data into a high-dimensional Hilbert space.  A quantum 
feature map, implemented as a quantum circuit Φ(x, θ), transforms an input 
x into a quantum state Φ(x, θ)|0…0〉 where θ are trainable parameters.  
These parameters are optimized—often using classical techniques like 
gradient descent—to maximize the separation between quantum states 
corresponding to different classes, measured via metrics such as the 
Hilbert-Schmidt distance [19].

Additionally, angle encoding embeds a classical N-dimensional vector x = 
(x1, x2,...,xN) into an N-qubit product state via the encoded state: 

〉 𝐾𝐾𝐾𝐾ℎ
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where R is typically a single qubit rotation (e.g., Ry). In practice, one first 
normalizes each feature xk to [0,1], then sets θk = 2 arcsin(√xk) and applies  
Ry(θk) to qubit k, so that measuring each qubit recovers statistics tied to the 
original data [18].

2.3 Parameterized Quantum Circuits

Parameterized Quantum Circuits (PQCs) are essential to hybrid quantum-
classical machine learning approaches [20]. They involve the following 
steps: (1) state preparation, typically initializing qubits in |0⟩⁽⊗ⁿ⁾; 
(2) application of parameterized unitary operations (e.g., variational circuits); 
(3) measurement of the quantum state; and (4) classical optimization, 
where measurement outcomes are used to update the circuit parameters 
iteratively. This framework allows exploring high-dimensional Hilbert 
spaces to learn complex data patterns. However, it faces challenges such 
as barren plateaus, NISQ noise, and trade-offs between expressibility and 
trainability [20].
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3	 Quantum	Generative	Diffusion	Models

This section examines various QDMs, with Table 1 summarizing the typical 
variants and their characteristics.

In the study [21], the authors propose a quantum adaptation of generative 
diffusion models, replacing traditional neural networks with PQCs. Two key 
variations were explored: a latent model and a conditioned model. The 
latent model employs a classical autoencoder to encode data into a lower-
dimensional space before quantum processing, enabling the use of smaller 
PQCs and improving sample quality. Furthermore, the QDM was adapted 
into a conditioned version by increasing the Hilbert space dimension with 
additional qubits to encode labels, allowing for the generation of samples 
based on specific input conditions. According to the authors, increasing 
the number of measurements initially improves the quality of generated 
samples by introducing nonlinearity. One drawback they mention is that 
beyond a certain threshold, increasing measurements worsens performance 
by reducing sample variability. Excessive measurements reset qubits to a 
fixed state, erasing the initial noise information.

The work [22] collects measurement samples from multi-qubit states 
and then trains a variational diffusion model that progressively corrupts 
those samples with noise and employs a denoising network of residual and 
attention blocks to reverse the process. A key highlight of the approach is 
that it achieves high fidelity while using significantly less memory than RNNs 
and transformers—for learning the distribution of a 2-qubit quantum state. 
One limitation, however, is that all experiments are restricted to W and 
GHZ-type distributions.

The study [23] introduces a novel quantum generative model. This model 
transforms a target quantum state into a completely mixed state—a state 
where all possible quantum states are equally probable—through a non-
unitary forward process, which increases entropy by not preserving state 
purity. This transformation is driven by a depolarization channel, a noise 
model that probabilistically replaces the state with the completely mixed 
state to simulate realistic quantum noise. The trainable backward process 
efficiently reconstructs the original state using parameter sharing, which 
reduces the number of parameters by reusing them across the model, and 
partial trace operations, which trace out auxiliary subsystems to maintain 
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non-unitarity while simplifying computations. Timestep embedding 
enhances this process by integrating information about the diffusion stage 
into the quantum state, guiding denoising. A pro of the work is its timestep 
embedding technique, which boosts performance by adaptively distributing 
quantum states on the Bloch sphere, enhancing temporal information 
learning over traditional qubit encoding. On the other hand, a con is the 
high gate complexity, O(N²), of the denoising circuit.

One notable work is the proposal [24], which introduces three distinct 
quantum approaches that leverage noise as a beneficial resource in 
generative modeling. In the first approach, the Classical-Quantum 
Generative Diffusion Model (CQGDM), the forward diffusion is executed 
using classical methods. However, the denoising phase is achieved by a 
Quantum Neural Network (QNN) that can be realized as a fully PQC or as 
a hybrid quantum-classical network. In the second approach, known as 
the Quantum-Classical Generative Diffusion Model (QCGDM), the diffusion 
process itself is performed in a quantum framework by subjecting quantum 
data to noise via quantum channels—such as depolarizing channels or 
dynamics modeled by Stochastic Schrödinger Equations—which gradually 
transform an initial quantum state into a maximally mixed state. The 
backward denoising is then handled by classical neural networks. The third 
approach, the Quantum-Quantum Generative Diffusion Model (QQGDM), 
fully embeds both the diffusion and denoising phases within a quantum 
domain. The forward process employs quantum noise channels to degrade 
an initial quantum state into a completely mixed state. The reverse process 
is carried out using PQCs that incorporate interactions with ancillary qubit 
systems that act as an environment and are then traced out. This fully 
quantum implementation enables the exploration and manipulation of 
complex quantum probability distributions. A highlight  is that QQGDM 
generates non-classical probability distributions, achieving a high average 
quantum fidelity of 0.997 ± 0.013 in simulations for reconstructing one-
qubit states. However, a drawback of their methodology is that its reliance 
on timestep-specific PQCs without time embedding complicates training, 
and the use of depolarizing channels limits noise diversity, risking barren 
plateaus and reduced scalability for broader quantum data distributions.

A thesis [25] explores the foundational principles of QDM using PQCs, 
highlighting key advancements in the field. This research introduces four 
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model variants: a base model defining the core architecture, a temporal 
model incorporating timestep embedding to encode temporal information, 
a conditional model enabling targeted image generation via label 
embedding and a hybrid model combining both embedding techniques. 
Additionally, this thesis presents a model capable of generating full-color 
images—an achievement that, to the best of our knowledge, is the first of 
its kind. A constraint is the reliance on single-qubit embedding for timestep 
and label information, which restricts the model’s ability to scale to tasks 
requiring diverse or numerous labels, as the limited angular range reduces 
label distinguishability.

The authors of the work [26] proposed two quantum hybrid diffusion 
models for image synthesis by integrating variational quantum circuits 
(VQCs) into classical U-Net architectures. The first model, Quantum Vertex 
U-Net (QVU-Net), replaces ResNet convolutional layers at the U-Net’s vertex 
with quantum layers. The second model, Quanvolutional U-Net (QuanvU-
Net), incorporates quantum layers in the encoder for feature extraction. 
The PQCs are strategically integrated into the U-Net architecture at points 
where image dimensions are reduced, such as the vertex or second 
encoder level. This approach minimizes qubit requirements. However, as 
the authors themselves acknowledge, increasing the number of quantum 
circuits significantly raises computational demands, which slows training 
and inference times and creates scalability challenges for larger datasets or 
more complex models.

The work [27] introduces three novel quantum diffusion based 
algorithms,  Label Guided Generation Inference (LGGI), Label Guided 
Denoising Inference (LGDI)  and Label Guided Noise Addition Inference 
(LGNAI) to address few-shot learning challenges.  The authors leverage 
QDMs to enhance data generation and inference under limited training 
samples.  LGGI generates synthetic data to augment training for quantum 
neural networks (QNNs), while LGNAI and LGDI guide noise addition and 
removal during diffusion/denoising stages using label information. They 
strategically perform amplitude encoding on classical features and angle 
encoding on labels during training. They point out that if too many diffusion 
steps are applied, the original information may degrade excessively into 
noise, causing the denoising process to overemphasize the label and 
reconstruct a generic class prototype.



116  /   Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

Table	1.	Quantum Diffusion Model Studies and Their Contributions

Study Contribution
Platform	 

(qubits used) Dataset
Cacioppo et 
al.(2023)

Proposes QDM with 
PQCs, introducing latent 
and conditioned variants 
for improved sample 
quality and conditional 
generation.

PennyLane, 27q - 
IBM Hanoi (8q full 
model, 3q latent, 
7q conditioned)

Quantum Simulator: 
MNIST digits {0,1} 
(16×16), Latent MNIST 
digits 0–9 (28×28). 
Quantum Hardware: 
Reduced latent MNIST 
digits {0,1} (dimension 4).

Wang et al.,  
(2023)

Uses forward noise-
corruption and a parallel 
reverse denoising 
network of residual and 
attention blocks.

Classical system Measurement 
outcomes from 
multi-qubit quantum 
states.

Chen and 
Zhao (2024)

Non-unitary forward 
process (depolarization 
channel) with parameter-
shared, timestep-
embedded backward 
reconstruction.

Tensorcircuit 
framework (1–8q)

Random quantum 
states

Parigi et al. 
(2024) 

Classical-Quantum, 
Quantum-Classical, and 
Quantum-Quantum 
Generative DMs using 
quantum noise, PQCs, 
and classical NNs.

PennyLane; 
CQGDM: 4q, 
QCGDM: 1q, 
QQGDM: 2q

CQGDM: 1,000 points 
uniformly in [-1,1]. 
QCGDM/QQGDM: 
Random 1-qubit pure 
states.

Kivijervi 
(2024)

Explores foundational 
QDM variants (base, 
temporal, conditional, 
hybrid) achieving full-
color image generation.

PennyLane 
(6q base, 7q 
temporal/
conditional, 8q 
hybrid)

MNIST: 1,024 images 
resized to 16×16

De Falco et 
al. (2024)

Improved image quality, 
faster convergence, fewer 
parameters via transfer 
learning.

PennyLane/Flax 
(12q for VQC, 4q 
final channel)

MNIST and Fashion 
MNIST (28×28, 60,000 
images)

Wang et al 
(2024)

Few-shot quantum 
diffusion algorithms: 
LGGI, LGNAI, LGDI.

IBM Almaden MNIST (28×28), Digits 
MNIST (8×8), Fashion 
MNIST (28×28)

Shah and 
Vatsa 
(2025)

Pairwise Bell-state 
entangling to reduce 
qubits required.

PennyLane 
(6q/8q/10q for 
8×8/16×16/32×32 
images)

MNIST (28×28, 70,000 
images); CIFAR-10 
(32×32, 60,000 images). 
Tested at 8×8, 16×16, 
32×32.

Wang et al. 
(2025)

Adapts DPM ODEs with 
Carleman linearization for 
quantum implementation.

Classical system ImageNet-100 
(128×128, 256×256, 
512×512) in latent 
spaces (16×16×4, 
32×32×4, 64×64×4)

Han and 
Patel (2025)

Quantum noise in 
generative diffusion 
models enhancing 
randomness.

127q - IBM Naxca MNIST: 5,000 images
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The study [28] presents an advancement over earlier methods, enabling 
the processing of higher-dimensional images with intricate pixel structures, 
even on platforms with limited qubits. They first flatten the 2D image data into 
a 1D vector, normalize it, and then apply amplitude encoding. Following this, 
the quantum circuit implements pairwise Bell-state preparation: Hadamard 
gates are applied to the first half of the qubits (excluding any ancilla qubits) to 
create superposition, and CNOT gates are used to entangle each qubit from 
the first half (control qubits from 0 to n/2 - 1) with a corresponding qubit in 
the second half (indices n/2 to n - 1).  This entanglement establishes strong 
correlations, and this allows the subsequent PQC to operate on a reduced 
set of qubits while still accessing information from the entire input state. A 
highlight is that unlike hybrid models, which rely on classical autoencoders, 
their work reduces parameter count directly within the quantum circuit. A 
limitation, however, is their work’s high computational time compared to 
classical models; the paper notes an exponential increase during classical 
simulations of the quantum circuits.

Recent research [29] has transformed the mathematical equations 
underlying Denoising Diffusion Probabilistic Models (DPMs), particularly the 
ordinary differential equations (ODEs), into a form suitable for processing 
by quantum computers through a technique known as “Carleman 
linearization”. This work focuses on two key approaches: DPM-solver-k, 
which utilizes precise mathematical derivatives to approximate the model’s 
behavior, and UniPC, which employs measurements at various points to 
estimate the model’s evolution. The authors provide theoretical proof that 
their quantum algorithms would perform efficiently on future fault-tolerant 
quantum computers. Therefore, the authors take explicit ‘out-of-the-box 
steps’ to establish a new avenue for demonstrating quantum computing’s 
utility in machine learning tasks. A critical downside, however, is that the 
truncation used in their method introduces approximation errors.

A recent work [30] introduces an approach involving three main steps. 
First, they encode each image into a quantum circuit by applying PCA 
followed by an angle embedding, transforming the image data into a format 
suitable for quantum processing. Next, they introduce noise using quantum 
gates: each qubit receives a rotation via an Rx gate to add noise, and then 
additional paired rotations that cancel out net movement but compound 
the noise effect. Finally, after running the circuit on quantum hardware, 
they measure the qubits to obtain marginal probability distributions, 
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reverse the angle embedding, and apply an inverse PCA to reconstruct the 
noisy image for training the diffusion model. Ingeniously, they repurposed 
quantum decoherence as a source of true physics-driven noise, bypassing 
classical pseudo-randomness. A downside of their method is that PCA and 
angle embedding discard spatial details during encoding, which degrades 
reconstruction fidelity.

Overall, the works on QDMs reviewed here operate within a modest 
qubit range of 1 to 16. A central trend across these studies is the optimization 
of qubit usage to overcome the limitations of current quantum hardware.  
This is achieved through techniques such as encoding data into lower-
dimensional latent spaces prior to quantum processing [21], employing 
pairwise Bell-state preparation to exploit entanglement for efficient 
information access with fewer qubits [28], and resizing images to conserve 
computational resources [25]. 

Another prominent trend is the strategic use of quantum noise, 
stemming from inherent quantum fluctuations. Studies like [24] and [30] 
highlight how noise, introduced via quantum channels (e.g., depolarization 
channels) or gate-based rotations, facilitates the creation of complex, 
entanglement-driven probability distributions that are computationally 
infeasible to replicate classically. Predominantly, PQCs are employed to 
reverse the diffusion process [21], [24], [25], [28]. Additionally, there is a 
clear trajectory toward integrating temporal and conditional information 
into QDMs, with timestep embedding [23], [25] and label-based conditioning 
[21], [25] enabling more precise control over the generative process. These 
trends suggest a field moving toward resource-efficient, noise-augmented, 
and hybrid models capable of tackling increasingly sophisticated generative 
tasks.

4	 Conclusions

Quantum generative diffusion models draw inspiration from classical 
diffusion models, which have recently demonstrated state-of-the-art 
performance in a variety of generative tasks. In this work, we have reviewed 
recent advances in quantum diffusion models, focusing on aspects such as 
model architectures. As highlighted in the introduction, diffusion models 
are pivotal across diverse domains, making their enhancement through 
quantum computing crucial to overcoming classical limitations in scalability 
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and efficiency. This review, the first survey in the field of QDMs up to this 
date, consolidates advancements and provides foundational insights to 
propel the discipline forward. 

Future research should prioritize rigorous evaluations of QDM 
architectures and methodologies. One suggested avenue for exploration 
involves leveraging quantum diffusion models in the context of graph-
structured data. Such data, with their inherent relational complexity, could 
rigorously evaluate QDMs’ ability to model interconnected systems.
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