
Decoding An Automobile’s Technical
Specification From Its Identification
Number

Mantas Mačiūnas, Viktor Skorniakov

Vilnius University Faculty of Mathematics and Informatics,
Naugarduko str. 24, Vilnius
mantas.maciunas@mif.stud.vu.lt, viktor.skorniakov@mif.vu.lt

Abstract. We propose a method for decoding technical vehicle‘s parameters
(make, model name, body type etc.) from its identification number. Classification
is done for the entire specification at once, thus utilising the underlying
dependencies between labels. To achieve the goal, several models were used –
nearest neighbours, decision tree, extra trees and random forest classifiers.

Keywords: vehicle identification number, multi-label classification, random fo-
rest classifier, decision tree classifier, extra trees classifier, k-nearest neighbours
classifier.

1. Introduction

In the 1980s, there was a serious attempt at standardising the identification
of any particular vehicle by introducing a 17-character vehicle identification
number (VIN). Despite the goal being standardisation, nowadays, several
VIN standards are in use. Furthermore, even if some manufacturers use the
same VIN structure, they are not obligated to encode the same information
and the same symbols may carry different information. Therefore, VIN
structure is very inconsistent among manufacturers, and there is no easy
way to decode it. Although there are plenty of free specification decoder
tools on the internet, they frequently are applicable to only one make or
a group of makes (for example, “Volkswagen“ model VINs are encoded
analogously to those of “Audi“ or “Seat“ because all of these manufacturers
belong to “Volkswagen Auto Group“). The most frequently used method
of decoding – a VIN lookup table. Using it one can decode certain
technical parameters [1]. Although this method can be very accurate, it is
tremendously inefficient in the long run since each new make comes with
a new VIN structure. Furthermore, every time a manufacturer updates one

Copyright © Mantas Mačiūnas, Viktor Skorniakov, 2025. Published by Vilnius University Press. This is an Open Access article
distributed under the terms of the Creative Commons Attribution License (CC BY), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are credited.
DOI: https://doi.org/10.15388/LMITT.2025.15

mailto:mantas.maciunas@mif.stud.vu.lt
mailto:viktor.skorniakov@mif.vu.lt
https://doi.org/10.15388/LMITT.2025.15

122 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

of its current models, the lookup table has to be updated as well. Moreover,
manufacturers are not inclined to freely share their VIN encoding schemas.
In most cases, owners of a particular make of vehicle collectively analyse
and figure out the meaning of the VIN symbols on their cars. Lastly, although
universal VIN decoder tools exist, most of them are closed-source, so it
is impossible to figure out how they work or suggest any improvements.
This research paper offers an alternative – VIN decoding using machine
learning methods. To achieve the goal, multi-label machine learning models
were used since they are capable of utilising the underlying correlations
and dependencies between the technical parameters, thus enabling the
model to make more accurate predictions and avoid impossible parameter
combinations. Conducting the literature analysis, we did not encounter
articles considering the decoding of VINs. Therefore, the research direction
pursued by us exhibits substantial novelty.

The rest of the paper is organized as follows: Section 2 describes the
data, Section 3 focuses on the methodology, Section 4 describes the results;
the concluding section is devoted to the summary.

2. Data

The VIN of an automobile is an international coding standard that appeared
in the 1980s. It is a collection of 17 letters and numbers, consisting of
three obligatory parts, in which the encoding of the manufacturer, model
and serial number is mandatory. The manufacturer is identified by the
first three VIN symbols, often referred to as WMI (world manufacturer
identifier). Symbols in positions 4-8 define the model and its specification.
However, this requirement is enforced very loosely: some manufacturers
only encode the model name, whereas others encode everything from the
model name to a specific engine. The standards of the European Union (and
the majority of the rest of the world) and North America differ as well. From
the 9th symbol onwards European manufacturers must encode the VIN in
such a manner that it becomes unique, i.e. encode a serial number and
(sometimes) encode more specific technical data. Meanwhile, the North
American VINs’ ninth symbol is used as a check symbol – ensuring the rest
of the VIN is entered correctly; symbols 10-11 contain the model year and
the plant in which the vehicle was manufactured; finally, from the 12th
symbol onwards follows the serial number of the vehicle.

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 123

Data from various European national automotive registries containing
the VINs and technical specifications of automobiles was used in this
research paper. The manufacturers‘ list included “Toyota”, “Lexus”, “Seat”,
“Cupra”, “Mercedes-Benz” and “BMW”. The technical parameters chosen
for classification training were the ones that were present in all datasets:
make, model name, model generation code, body type, fuel type, engine
displacement and engine power. Some labels, especially those of model
names and generation codes, were tremendously rare. The direct cause
of this was an inherent data disbalance in the dataset. The usual methods
of solving this issue (for example, data augmentation) were inapplicable,
because the data contained many cases where insignificant differences
between VIN symbols (for example, different serial numbers) resulted in
different label sets. Therefore, the best way to resolve the data disbalance
was to create models that are insensitive to outliers and are able to
accurately classify even rare data values.

One unit of measurement was picked for each measurable technical
parameter. For example, the engine displacement values in some sources
were in cubic centimetres, whereas in others – in litres. Because cubic
centimetres are a more accurate unit of measurement, they were chosen as
the unit for engine displacement. Records having displacement in litres were
converted into cubic centimetres. In case of unsuccessful conversion, the
data row was dropped. Kilowatts were selected as the unit of measurement
for engine power.

Finally, we had to decide how to cope with the rare data instances. As
mentioned before, data synthesis was too risky because this method might
mislabel generated VINs, thus confusing the models that will be trained on
the data. Another frequently utilised method – dataset size reduction to
the least popular label – was also inapplicable. This method reduces the
dataset by finding the least common label and removing values of all other
labels until their frequency is the same as of this label. However, because
this problem involves thousands of possible label vector values, leaving
just a few of each value would very likely result in underfitted models.
Furthermore, these rare VIN values reflect an essential characteristic of
the population. Namely, these are either low-production models or very
old (at least 30 years old) automobiles. Low-production model VINs are
tremendously difficult to find, because any single one of the data sources
used in this research (mainly European national automobile registries)

124 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

could contain a handful of these VINs at best, and there was insufficient
time to expand the dataset to include more sources. Old cars, meanwhile,
provide a similar challenge – 30 years after rolling out of the factory very
few cars still drive on the road. According to the European Automobile
Manufacturers‘ Association, the mean age of a car registered in Europe was
only 12 years old in 2023. Thus, it is entirely likely that vehicles that are 30
or more years old constitute the absolute minority of all vehicles on the
road. These challenges left only one solution for the data disbalance – the
removal of rare values from the dataset. The rarity threshold was set to 10.
After removing these values, the dataset contained 2,611,885 entries.

3. Methodology

3.1. Classifiers

These multi-label classifiers were used for modelling: random forest
classifier (RFC), decision tree classifier (DTC), extra trees classifier (ETC) and
k-nearest neighbours classifier (MLkNN).

Multi-label random forest classifer differs from its single-label sibling
in two ways: 1) different metrics that are used for node splitting during
training; 2) predictions are made differently [2]. When splitting a node, this
classifier calculates the value of the splitting criterion for each label vector
coordinate separately and uses the mean of these values to determine
splits. This manner of splitting ensures that the tree is optimised to best
predict label vectors rather than separate label vector coordinates [3].
Because the leaves are vectors, the prediction of a single tree is a full
technical specification vector. Whenever the forest is supplied a VIN it has
never seen before, the prognosis is produced by the process of voting [4].

A decision tree is a special case of a random forest classifier where the
forest consists of only one tree. The main difference is that the random
forest trees are fitted by using a randomly sampled dataset, thus creating a
decorrelated tree ensemble, whereas a decision tree is fitted with the entire
training dataset.

Extra trees classifiers work analogously to random forest classifiers, but
they use an additional randomisation that is much stronger than those of
the previously described classifiers [5].

The multi-label case of the k-nearest neighbours classifier is the same as
the single-label one. This research paper utilises two search algorithms for
the MLkNN model – K-D tree and ball tree [6], [7], [8].

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 125

3.2. Utilised software tools

The code used for this research paper was written using the “Python“
programming language, version 3.10.16. All machine-learning methods
were coded using the “scikit-learn“ library.

3.3. Model accuracy metrics

The classification accuracy metrics for multi-label models differ significantly
from those meant for single-label models. We utilised 6 accuracy metrics
for models’ evaluation and choice. Two of these metrics are meant for
separate labels’ vector coordinate scoring accuracy evaluation, whereas
the remaining four are meant to evaluate the accuracy when classifiying
the entire label vector. First, the base formulae that are used for all the
aforementioned accuracy metrics need to be defined. The indicator function
is given by equation

3. Methodology
3.1. Classifiers

These multi-label classifiers were used for modelling: random forest classifier (RFC), decision tree
classifier (DTC), extra trees classifier (ETC) and k-nearest neighbours classifier (MLkNN).

Multi-label random forest classifer differs from its single-label sibling in two ways: 1) different
metrics that are used for node splitting during training; 2) predictions are made differently [2]. When
splitting a node, this classifier calculates the value of the splitting criterion for each label vector
coordinate separately and uses the mean of these values to determine splits. This manner of splitting
ensures that the tree is optimised to best predict label vectors rather than separate label vector
coordinates [3]. Because the leaves are vectors, the prediction of a single tree is a full technical
specification vector. Whenever the forest is supplied a VIN it has never seen before, the prognosis is
produced by the process of voting [4].

A decision tree is a special case of a random forest classifier where the forest consists of only
one tree. The main difference is that the random forest trees are fitted by using a randomly sampled
dataset, thus creating a decorrelated tree ensemble, whereas a decision tree is fitted with the entire
training dataset.

Extra trees classifiers work analogously to random forest classifiers, but they use an additional
randomisation that is much stronger than those of the previously described classifiers [5].

The multi-label case of the k-nearest neighbours classifier is the same as the single-label one.
This research paper utilises two search algorithms for the MLkNN model – K-D tree and ball tree [6],
[7], [8].

3.2. Utilised software tools
The code used for this research paper was written using the “Python“ programming language,

version 3.10.16. All machine-learning methods were coded using the “scikit-learn“ library.
3.3. Model accuracy metrics

The classification accuracy metrics for multi-label models differ significantly from those meant
for single-label models. We utilised 6 accuracy metrics for models’ evaluation and choice. Two of these
metrics are meant for separate labels’ vector coordinate scoring accuracy evaluation, whereas the
remaining four are meant to evaluate the accuracy when classifiying the entire label vector. First, the
base formulae that are used for all the aforementioned accuracy metrics need to be defined. The
indicator function is given by equation

1𝑎𝑎=𝑏𝑏 = {1, 𝑖𝑖𝑖𝑖 𝑎𝑎 = 𝑏𝑏
0, 𝑖𝑖𝑖𝑖 𝑎𝑎 ≠ 𝑏𝑏.

Fractions of true positive predictions (TP), false positive predictions (FP) and false negative
predictions (FN) are defined by equations

𝑇𝑇𝑃𝑃𝐶𝐶 = 1
|𝐶𝐶| ∑ 1�̂�𝑦(𝑐𝑐)=𝐶𝐶′

𝑐𝑐∈𝐶𝐶
,

𝐹𝐹𝑃𝑃𝐶𝐶 = 1
|𝑁𝑁\𝐶𝐶| ∑ 1�̂�𝑦(𝑐𝑐)=𝐶𝐶′

𝑐𝑐∈𝑁𝑁\𝐶𝐶
,

𝐹𝐹𝑁𝑁𝐶𝐶 = 1
|𝐶𝐶| ∑ 1�̂�𝑦(𝑐𝑐)≠𝐶𝐶′

𝑐𝑐∈𝐶𝐶
,

where C is one class of the classified coordinate, N is the union of all classes that are present in
the dataset, and C‘ is a label denoting that the given data entry belongs to the class C.

Accuracy and F1macro for evaluating the single labels’ vector coordinate classification, are defined
as follows:

Fractions of true positive predictions (TP), false positive predictions (FP)
and false negative predictions (FN) are defined by equations

3. Methodology
3.1. Classifiers

These multi-label classifiers were used for modelling: random forest classifier (RFC), decision tree
classifier (DTC), extra trees classifier (ETC) and k-nearest neighbours classifier (MLkNN).

Multi-label random forest classifer differs from its single-label sibling in two ways: 1) different
metrics that are used for node splitting during training; 2) predictions are made differently [2]. When
splitting a node, this classifier calculates the value of the splitting criterion for each label vector
coordinate separately and uses the mean of these values to determine splits. This manner of splitting
ensures that the tree is optimised to best predict label vectors rather than separate label vector
coordinates [3]. Because the leaves are vectors, the prediction of a single tree is a full technical
specification vector. Whenever the forest is supplied a VIN it has never seen before, the prognosis is
produced by the process of voting [4].

A decision tree is a special case of a random forest classifier where the forest consists of only
one tree. The main difference is that the random forest trees are fitted by using a randomly sampled
dataset, thus creating a decorrelated tree ensemble, whereas a decision tree is fitted with the entire
training dataset.

Extra trees classifiers work analogously to random forest classifiers, but they use an additional
randomisation that is much stronger than those of the previously described classifiers [5].

The multi-label case of the k-nearest neighbours classifier is the same as the single-label one.
This research paper utilises two search algorithms for the MLkNN model – K-D tree and ball tree [6],
[7], [8].

3.2. Utilised software tools
The code used for this research paper was written using the “Python“ programming language,

version 3.10.16. All machine-learning methods were coded using the “scikit-learn“ library.
3.3. Model accuracy metrics

The classification accuracy metrics for multi-label models differ significantly from those meant
for single-label models. We utilised 6 accuracy metrics for models’ evaluation and choice. Two of these
metrics are meant for separate labels’ vector coordinate scoring accuracy evaluation, whereas the
remaining four are meant to evaluate the accuracy when classifiying the entire label vector. First, the
base formulae that are used for all the aforementioned accuracy metrics need to be defined. The
indicator function is given by equation

1𝑎𝑎=𝑏𝑏 = {1, 𝑖𝑖𝑖𝑖 𝑎𝑎 = 𝑏𝑏
0, 𝑖𝑖𝑖𝑖 𝑎𝑎 ≠ 𝑏𝑏.

Fractions of true positive predictions (TP), false positive predictions (FP) and false negative
predictions (FN) are defined by equations

𝑇𝑇𝑃𝑃𝐶𝐶 = 1
|𝐶𝐶| ∑ 1�̂�𝑦(𝑐𝑐)=𝐶𝐶′

𝑐𝑐∈𝐶𝐶
,

𝐹𝐹𝑃𝑃𝐶𝐶 = 1
|𝑁𝑁\𝐶𝐶| ∑ 1�̂�𝑦(𝑐𝑐)=𝐶𝐶′

𝑐𝑐∈𝑁𝑁\𝐶𝐶
,

𝐹𝐹𝑁𝑁𝐶𝐶 = 1
|𝐶𝐶| ∑ 1�̂�𝑦(𝑐𝑐)≠𝐶𝐶′

𝑐𝑐∈𝐶𝐶
,

where C is one class of the classified coordinate, N is the union of all classes that are present in
the dataset, and C‘ is a label denoting that the given data entry belongs to the class C.

Accuracy and F1macro for evaluating the single labels’ vector coordinate classification, are defined
as follows:

3. Methodology
3.1. Classifiers

These multi-label classifiers were used for modelling: random forest classifier (RFC), decision tree
classifier (DTC), extra trees classifier (ETC) and k-nearest neighbours classifier (MLkNN).

Multi-label random forest classifer differs from its single-label sibling in two ways: 1) different
metrics that are used for node splitting during training; 2) predictions are made differently [2]. When
splitting a node, this classifier calculates the value of the splitting criterion for each label vector
coordinate separately and uses the mean of these values to determine splits. This manner of splitting
ensures that the tree is optimised to best predict label vectors rather than separate label vector
coordinates [3]. Because the leaves are vectors, the prediction of a single tree is a full technical
specification vector. Whenever the forest is supplied a VIN it has never seen before, the prognosis is
produced by the process of voting [4].

A decision tree is a special case of a random forest classifier where the forest consists of only
one tree. The main difference is that the random forest trees are fitted by using a randomly sampled
dataset, thus creating a decorrelated tree ensemble, whereas a decision tree is fitted with the entire
training dataset.

Extra trees classifiers work analogously to random forest classifiers, but they use an additional
randomisation that is much stronger than those of the previously described classifiers [5].

The multi-label case of the k-nearest neighbours classifier is the same as the single-label one.
This research paper utilises two search algorithms for the MLkNN model – K-D tree and ball tree [6],
[7], [8].

3.2. Utilised software tools
The code used for this research paper was written using the “Python“ programming language,

version 3.10.16. All machine-learning methods were coded using the “scikit-learn“ library.
3.3. Model accuracy metrics

The classification accuracy metrics for multi-label models differ significantly from those meant
for single-label models. We utilised 6 accuracy metrics for models’ evaluation and choice. Two of these
metrics are meant for separate labels’ vector coordinate scoring accuracy evaluation, whereas the
remaining four are meant to evaluate the accuracy when classifiying the entire label vector. First, the
base formulae that are used for all the aforementioned accuracy metrics need to be defined. The
indicator function is given by equation

1𝑎𝑎=𝑏𝑏 = {1, 𝑖𝑖𝑖𝑖 𝑎𝑎 = 𝑏𝑏
0, 𝑖𝑖𝑖𝑖 𝑎𝑎 ≠ 𝑏𝑏.

Fractions of true positive predictions (TP), false positive predictions (FP) and false negative
predictions (FN) are defined by equations

𝑇𝑇𝑃𝑃𝐶𝐶 = 1
|𝐶𝐶| ∑ 1�̂�𝑦(𝑐𝑐)=𝐶𝐶′

𝑐𝑐∈𝐶𝐶
,

𝐹𝐹𝑃𝑃𝐶𝐶 = 1
|𝑁𝑁\𝐶𝐶| ∑ 1�̂�𝑦(𝑐𝑐)=𝐶𝐶′

𝑐𝑐∈𝑁𝑁\𝐶𝐶
,

𝐹𝐹𝑁𝑁𝐶𝐶 = 1
|𝐶𝐶| ∑ 1�̂�𝑦(𝑐𝑐)≠𝐶𝐶′

𝑐𝑐∈𝐶𝐶
,

where C is one class of the classified coordinate, N is the union of all classes that are present in
the dataset, and C‘ is a label denoting that the given data entry belongs to the class C.

Accuracy and F1macro for evaluating the single labels’ vector coordinate classification, are defined
as follows:

3. Methodology
3.1. Classifiers

These multi-label classifiers were used for modelling: random forest classifier (RFC), decision tree
classifier (DTC), extra trees classifier (ETC) and k-nearest neighbours classifier (MLkNN).

Multi-label random forest classifer differs from its single-label sibling in two ways: 1) different
metrics that are used for node splitting during training; 2) predictions are made differently [2]. When
splitting a node, this classifier calculates the value of the splitting criterion for each label vector
coordinate separately and uses the mean of these values to determine splits. This manner of splitting
ensures that the tree is optimised to best predict label vectors rather than separate label vector
coordinates [3]. Because the leaves are vectors, the prediction of a single tree is a full technical
specification vector. Whenever the forest is supplied a VIN it has never seen before, the prognosis is
produced by the process of voting [4].

A decision tree is a special case of a random forest classifier where the forest consists of only
one tree. The main difference is that the random forest trees are fitted by using a randomly sampled
dataset, thus creating a decorrelated tree ensemble, whereas a decision tree is fitted with the entire
training dataset.

Extra trees classifiers work analogously to random forest classifiers, but they use an additional
randomisation that is much stronger than those of the previously described classifiers [5].

The multi-label case of the k-nearest neighbours classifier is the same as the single-label one.
This research paper utilises two search algorithms for the MLkNN model – K-D tree and ball tree [6],
[7], [8].

3.2. Utilised software tools
The code used for this research paper was written using the “Python“ programming language,

version 3.10.16. All machine-learning methods were coded using the “scikit-learn“ library.
3.3. Model accuracy metrics

The classification accuracy metrics for multi-label models differ significantly from those meant
for single-label models. We utilised 6 accuracy metrics for models’ evaluation and choice. Two of these
metrics are meant for separate labels’ vector coordinate scoring accuracy evaluation, whereas the
remaining four are meant to evaluate the accuracy when classifiying the entire label vector. First, the
base formulae that are used for all the aforementioned accuracy metrics need to be defined. The
indicator function is given by equation

1𝑎𝑎=𝑏𝑏 = {1, 𝑖𝑖𝑖𝑖 𝑎𝑎 = 𝑏𝑏
0, 𝑖𝑖𝑖𝑖 𝑎𝑎 ≠ 𝑏𝑏.

Fractions of true positive predictions (TP), false positive predictions (FP) and false negative
predictions (FN) are defined by equations

𝑇𝑇𝑃𝑃𝐶𝐶 = 1
|𝐶𝐶| ∑ 1�̂�𝑦(𝑐𝑐)=𝐶𝐶′

𝑐𝑐∈𝐶𝐶
,

𝐹𝐹𝑃𝑃𝐶𝐶 = 1
|𝑁𝑁\𝐶𝐶| ∑ 1�̂�𝑦(𝑐𝑐)=𝐶𝐶′

𝑐𝑐∈𝑁𝑁\𝐶𝐶
,

𝐹𝐹𝑁𝑁𝐶𝐶 = 1
|𝐶𝐶| ∑ 1�̂�𝑦(𝑐𝑐)≠𝐶𝐶′

𝑐𝑐∈𝐶𝐶
,

where C is one class of the classified coordinate, N is the union of all classes that are present in
the dataset, and C‘ is a label denoting that the given data entry belongs to the class C.

Accuracy and F1macro for evaluating the single labels’ vector coordinate classification, are defined
as follows:

where C is one class of the classified coordinate, N is the union of all classes
that are present in the dataset, and C‘ is a label denoting that the given data
entry belongs to the class C.

Accuracy and F1macro for evaluating the single labels’ vector coordinate
classification, are defined as follows:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, �̂�𝐴) = 1
𝑛𝑛 ∑ 1𝑦𝑦�̂�𝑖=𝑦𝑦

𝑛𝑛−1

𝑖𝑖=0
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝐿𝐿, 𝐴𝐴�̂�𝐿) =
(1 + 12)𝑇𝑇𝑃𝑃𝐿𝐿

(1 + 12)𝑇𝑇𝑃𝑃𝐿𝐿 + 𝐹𝐹𝑃𝑃𝐿𝐿 + 12𝐹𝐹𝑁𝑁𝐿𝐿
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴, �̂�𝐴) = 1
|𝐿𝐿| ∑ 𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝑙𝑙, 𝐴𝐴�̂�𝑙)

𝑙𝑙∈𝐿𝐿
,

The second formula is devoted to a single label vector coordinate class L, whereas the third

formula is the combined F1macro for a single coordinate of the label vector.
The remaining metrics are for the evaluation of the overall accuracy of the model. Two of these

are the aforementioned accuracy and F1macro, modified to fit multi-label classifiers:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑌𝑌, �̂�𝑌) = 1
𝑛𝑛 ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, �̂�𝐴)

𝑦𝑦∈𝑌𝑌𝑡𝑡
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑌𝑌, �̂�𝑌) = 1
𝑛𝑛 ∑ 𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴, �̂�𝐴)

𝑦𝑦∈𝑌𝑌𝑡𝑡
,

here y is a single coordinate column, the amount of coordinates is labeled n and Y is the set of
all label vectors, represented as a matrix, where one column is for a single technical parameter. So, the
overall classification accuracy and F1macro are calculated by averaging the metric calculated for each
separate technical parameter. Finally, two additional accuracy metrics devoted to multi-label models
were used – Hamming loss and exact-match score [9]:

𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝑛𝑛𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻𝐻𝐻(𝑌𝑌, �̂�𝑌) = 1
𝑁𝑁 ∑

|𝐴𝐴𝑖𝑖 △ 𝐴𝐴�̂�𝑖|
𝑛𝑛

𝑁𝑁

𝑖𝑖=1
,

𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴ℎ(𝑌𝑌, �̂�𝑌) = 1
𝑁𝑁 ∑ 1𝑦𝑦𝑖𝑖=𝑦𝑦�̂�𝑖

𝑁𝑁

𝑖𝑖=1
,

where N denotes the amount of rows in Y, i.e. the amount of data instances in Y.

4. Results
The full dataset was split into training and testing subsets by iterative stratification, which

prioritises the least common labels and starts by stratifying those first [10]. All models were trained
with the same dataset (size – 2,089,508 rows), and all accuracy metrics were calculated after the
trained models classified the same testing dataset (size – 522,377 rows). The optimal parameters for
the models were chosen by using 10-fold cross-validation on a subset of the full dataset. This subset
was created by randomly taking 10 of each unique row in the dataset.

As we can see in the first table, all models reached a quite high overall classification accuracy
(>0.88). However, looking at the F1macro it becomes quite obvious that not all models were capable of
classifiying outliers equally well. The extra trees classifier in particular is the worst in this regard with
only 0.763 F1macro. The exact-match score also separates the extra trees classifier as the worst of the
bunch – it managed to correctly decode the technical specification of only 59.5% of the testing data
VINs. Therefore, for further work it is recommended to skip this model and use one of the three
remaining ones – random forest classifier, decision tree or k-nearest neighbours classifier. For further
analysis the decision tree was chosen as it beats both of the remaining models with respect to all
metrics and manages to correctly predict the technical specification of more than 4 out of 5 VINs in the
testing dataset – an exact-match score of 82.2%.

126 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, �̂�𝐴) = 1
𝑛𝑛 ∑ 1𝑦𝑦�̂�𝑖=𝑦𝑦

𝑛𝑛−1

𝑖𝑖=0
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝐿𝐿, 𝐴𝐴�̂�𝐿) =
(1 + 12)𝑇𝑇𝑃𝑃𝐿𝐿

(1 + 12)𝑇𝑇𝑃𝑃𝐿𝐿 + 𝐹𝐹𝑃𝑃𝐿𝐿 + 12𝐹𝐹𝑁𝑁𝐿𝐿
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴, �̂�𝐴) = 1
|𝐿𝐿| ∑ 𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝑙𝑙, 𝐴𝐴�̂�𝑙)

𝑙𝑙∈𝐿𝐿
,

The second formula is devoted to a single label vector coordinate class L, whereas the third

formula is the combined F1macro for a single coordinate of the label vector.
The remaining metrics are for the evaluation of the overall accuracy of the model. Two of these

are the aforementioned accuracy and F1macro, modified to fit multi-label classifiers:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑌𝑌, �̂�𝑌) = 1
𝑛𝑛 ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, �̂�𝐴)

𝑦𝑦∈𝑌𝑌𝑡𝑡
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑌𝑌, �̂�𝑌) = 1
𝑛𝑛 ∑ 𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴, �̂�𝐴)

𝑦𝑦∈𝑌𝑌𝑡𝑡
,

here y is a single coordinate column, the amount of coordinates is labeled n and Y is the set of
all label vectors, represented as a matrix, where one column is for a single technical parameter. So, the
overall classification accuracy and F1macro are calculated by averaging the metric calculated for each
separate technical parameter. Finally, two additional accuracy metrics devoted to multi-label models
were used – Hamming loss and exact-match score [9]:

𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝑛𝑛𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻𝐻𝐻(𝑌𝑌, �̂�𝑌) = 1
𝑁𝑁 ∑

|𝐴𝐴𝑖𝑖 △ 𝐴𝐴�̂�𝑖|
𝑛𝑛

𝑁𝑁

𝑖𝑖=1
,

𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴ℎ(𝑌𝑌, �̂�𝑌) = 1
𝑁𝑁 ∑ 1𝑦𝑦𝑖𝑖=𝑦𝑦�̂�𝑖

𝑁𝑁

𝑖𝑖=1
,

where N denotes the amount of rows in Y, i.e. the amount of data instances in Y.

4. Results
The full dataset was split into training and testing subsets by iterative stratification, which

prioritises the least common labels and starts by stratifying those first [10]. All models were trained
with the same dataset (size – 2,089,508 rows), and all accuracy metrics were calculated after the
trained models classified the same testing dataset (size – 522,377 rows). The optimal parameters for
the models were chosen by using 10-fold cross-validation on a subset of the full dataset. This subset
was created by randomly taking 10 of each unique row in the dataset.

As we can see in the first table, all models reached a quite high overall classification accuracy
(>0.88). However, looking at the F1macro it becomes quite obvious that not all models were capable of
classifiying outliers equally well. The extra trees classifier in particular is the worst in this regard with
only 0.763 F1macro. The exact-match score also separates the extra trees classifier as the worst of the
bunch – it managed to correctly decode the technical specification of only 59.5% of the testing data
VINs. Therefore, for further work it is recommended to skip this model and use one of the three
remaining ones – random forest classifier, decision tree or k-nearest neighbours classifier. For further
analysis the decision tree was chosen as it beats both of the remaining models with respect to all
metrics and manages to correctly predict the technical specification of more than 4 out of 5 VINs in the
testing dataset – an exact-match score of 82.2%.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, �̂�𝐴) = 1
𝑛𝑛 ∑ 1𝑦𝑦�̂�𝑖=𝑦𝑦

𝑛𝑛−1

𝑖𝑖=0
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝐿𝐿, 𝐴𝐴�̂�𝐿) =
(1 + 12)𝑇𝑇𝑃𝑃𝐿𝐿

(1 + 12)𝑇𝑇𝑃𝑃𝐿𝐿 + 𝐹𝐹𝑃𝑃𝐿𝐿 + 12𝐹𝐹𝑁𝑁𝐿𝐿
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴, �̂�𝐴) = 1
|𝐿𝐿| ∑ 𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝑙𝑙, 𝐴𝐴�̂�𝑙)

𝑙𝑙∈𝐿𝐿
,

The second formula is devoted to a single label vector coordinate class L, whereas the third

formula is the combined F1macro for a single coordinate of the label vector.
The remaining metrics are for the evaluation of the overall accuracy of the model. Two of these

are the aforementioned accuracy and F1macro, modified to fit multi-label classifiers:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑌𝑌, �̂�𝑌) = 1
𝑛𝑛 ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, �̂�𝐴)

𝑦𝑦∈𝑌𝑌𝑡𝑡
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑌𝑌, �̂�𝑌) = 1
𝑛𝑛 ∑ 𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴, �̂�𝐴)

𝑦𝑦∈𝑌𝑌𝑡𝑡
,

here y is a single coordinate column, the amount of coordinates is labeled n and Y is the set of
all label vectors, represented as a matrix, where one column is for a single technical parameter. So, the
overall classification accuracy and F1macro are calculated by averaging the metric calculated for each
separate technical parameter. Finally, two additional accuracy metrics devoted to multi-label models
were used – Hamming loss and exact-match score [9]:

𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝑛𝑛𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻𝐻𝐻(𝑌𝑌, �̂�𝑌) = 1
𝑁𝑁 ∑

|𝐴𝐴𝑖𝑖 △ 𝐴𝐴�̂�𝑖|
𝑛𝑛

𝑁𝑁

𝑖𝑖=1
,

𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴ℎ(𝑌𝑌, �̂�𝑌) = 1
𝑁𝑁 ∑ 1𝑦𝑦𝑖𝑖=𝑦𝑦�̂�𝑖

𝑁𝑁

𝑖𝑖=1
,

where N denotes the amount of rows in Y, i.e. the amount of data instances in Y.

4. Results
The full dataset was split into training and testing subsets by iterative stratification, which

prioritises the least common labels and starts by stratifying those first [10]. All models were trained
with the same dataset (size – 2,089,508 rows), and all accuracy metrics were calculated after the
trained models classified the same testing dataset (size – 522,377 rows). The optimal parameters for
the models were chosen by using 10-fold cross-validation on a subset of the full dataset. This subset
was created by randomly taking 10 of each unique row in the dataset.

As we can see in the first table, all models reached a quite high overall classification accuracy
(>0.88). However, looking at the F1macro it becomes quite obvious that not all models were capable of
classifiying outliers equally well. The extra trees classifier in particular is the worst in this regard with
only 0.763 F1macro. The exact-match score also separates the extra trees classifier as the worst of the
bunch – it managed to correctly decode the technical specification of only 59.5% of the testing data
VINs. Therefore, for further work it is recommended to skip this model and use one of the three
remaining ones – random forest classifier, decision tree or k-nearest neighbours classifier. For further
analysis the decision tree was chosen as it beats both of the remaining models with respect to all
metrics and manages to correctly predict the technical specification of more than 4 out of 5 VINs in the
testing dataset – an exact-match score of 82.2%.

The second formula is devoted to a single label vector coordinate class
L, whereas the third formula is the combined F1macro for a single coordinate
of the label vector.

The remaining metrics are for the evaluation of the overall accuracy
of the model. Two of these are the aforementioned accuracy and F1macro,
modified to fit multi-label classifiers:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, �̂�𝐴) = 1
𝑛𝑛 ∑ 1𝑦𝑦�̂�𝑖=𝑦𝑦

𝑛𝑛−1

𝑖𝑖=0
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝐿𝐿, 𝐴𝐴�̂�𝐿) =
(1 + 12)𝑇𝑇𝑃𝑃𝐿𝐿

(1 + 12)𝑇𝑇𝑃𝑃𝐿𝐿 + 𝐹𝐹𝑃𝑃𝐿𝐿 + 12𝐹𝐹𝑁𝑁𝐿𝐿
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴, �̂�𝐴) = 1
|𝐿𝐿| ∑ 𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝑙𝑙, 𝐴𝐴�̂�𝑙)

𝑙𝑙∈𝐿𝐿
,

The second formula is devoted to a single label vector coordinate class L, whereas the third

formula is the combined F1macro for a single coordinate of the label vector.
The remaining metrics are for the evaluation of the overall accuracy of the model. Two of these

are the aforementioned accuracy and F1macro, modified to fit multi-label classifiers:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑌𝑌, �̂�𝑌) = 1
𝑛𝑛 ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, �̂�𝐴)

𝑦𝑦∈𝑌𝑌𝑡𝑡
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑌𝑌, �̂�𝑌) = 1
𝑛𝑛 ∑ 𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴, �̂�𝐴)

𝑦𝑦∈𝑌𝑌𝑡𝑡
,

here y is a single coordinate column, the amount of coordinates is labeled n and Y is the set of
all label vectors, represented as a matrix, where one column is for a single technical parameter. So, the
overall classification accuracy and F1macro are calculated by averaging the metric calculated for each
separate technical parameter. Finally, two additional accuracy metrics devoted to multi-label models
were used – Hamming loss and exact-match score [9]:

𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝑛𝑛𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻𝐻𝐻(𝑌𝑌, �̂�𝑌) = 1
𝑁𝑁 ∑

|𝐴𝐴𝑖𝑖 △ 𝐴𝐴�̂�𝑖|
𝑛𝑛

𝑁𝑁

𝑖𝑖=1
,

𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴ℎ(𝑌𝑌, �̂�𝑌) = 1
𝑁𝑁 ∑ 1𝑦𝑦𝑖𝑖=𝑦𝑦�̂�𝑖

𝑁𝑁

𝑖𝑖=1
,

where N denotes the amount of rows in Y, i.e. the amount of data instances in Y.

4. Results
The full dataset was split into training and testing subsets by iterative stratification, which

prioritises the least common labels and starts by stratifying those first [10]. All models were trained
with the same dataset (size – 2,089,508 rows), and all accuracy metrics were calculated after the
trained models classified the same testing dataset (size – 522,377 rows). The optimal parameters for
the models were chosen by using 10-fold cross-validation on a subset of the full dataset. This subset
was created by randomly taking 10 of each unique row in the dataset.

As we can see in the first table, all models reached a quite high overall classification accuracy
(>0.88). However, looking at the F1macro it becomes quite obvious that not all models were capable of
classifiying outliers equally well. The extra trees classifier in particular is the worst in this regard with
only 0.763 F1macro. The exact-match score also separates the extra trees classifier as the worst of the
bunch – it managed to correctly decode the technical specification of only 59.5% of the testing data
VINs. Therefore, for further work it is recommended to skip this model and use one of the three
remaining ones – random forest classifier, decision tree or k-nearest neighbours classifier. For further
analysis the decision tree was chosen as it beats both of the remaining models with respect to all
metrics and manages to correctly predict the technical specification of more than 4 out of 5 VINs in the
testing dataset – an exact-match score of 82.2%.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, �̂�𝐴) = 1
𝑛𝑛 ∑ 1𝑦𝑦�̂�𝑖=𝑦𝑦

𝑛𝑛−1

𝑖𝑖=0
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝐿𝐿, 𝐴𝐴�̂�𝐿) =
(1 + 12)𝑇𝑇𝑃𝑃𝐿𝐿

(1 + 12)𝑇𝑇𝑃𝑃𝐿𝐿 + 𝐹𝐹𝑃𝑃𝐿𝐿 + 12𝐹𝐹𝑁𝑁𝐿𝐿
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴, �̂�𝐴) = 1
|𝐿𝐿| ∑ 𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝑙𝑙, 𝐴𝐴�̂�𝑙)

𝑙𝑙∈𝐿𝐿
,

The second formula is devoted to a single label vector coordinate class L, whereas the third

formula is the combined F1macro for a single coordinate of the label vector.
The remaining metrics are for the evaluation of the overall accuracy of the model. Two of these

are the aforementioned accuracy and F1macro, modified to fit multi-label classifiers:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑌𝑌, �̂�𝑌) = 1
𝑛𝑛 ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, �̂�𝐴)

𝑦𝑦∈𝑌𝑌𝑡𝑡
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑌𝑌, �̂�𝑌) = 1
𝑛𝑛 ∑ 𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴, �̂�𝐴)

𝑦𝑦∈𝑌𝑌𝑡𝑡
,

here y is a single coordinate column, the amount of coordinates is labeled n and Y is the set of
all label vectors, represented as a matrix, where one column is for a single technical parameter. So, the
overall classification accuracy and F1macro are calculated by averaging the metric calculated for each
separate technical parameter. Finally, two additional accuracy metrics devoted to multi-label models
were used – Hamming loss and exact-match score [9]:

𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝑛𝑛𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻𝐻𝐻(𝑌𝑌, �̂�𝑌) = 1
𝑁𝑁 ∑

|𝐴𝐴𝑖𝑖 △ 𝐴𝐴�̂�𝑖|
𝑛𝑛

𝑁𝑁

𝑖𝑖=1
,

𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴ℎ(𝑌𝑌, �̂�𝑌) = 1
𝑁𝑁 ∑ 1𝑦𝑦𝑖𝑖=𝑦𝑦�̂�𝑖

𝑁𝑁

𝑖𝑖=1
,

where N denotes the amount of rows in Y, i.e. the amount of data instances in Y.

4. Results
The full dataset was split into training and testing subsets by iterative stratification, which

prioritises the least common labels and starts by stratifying those first [10]. All models were trained
with the same dataset (size – 2,089,508 rows), and all accuracy metrics were calculated after the
trained models classified the same testing dataset (size – 522,377 rows). The optimal parameters for
the models were chosen by using 10-fold cross-validation on a subset of the full dataset. This subset
was created by randomly taking 10 of each unique row in the dataset.

As we can see in the first table, all models reached a quite high overall classification accuracy
(>0.88). However, looking at the F1macro it becomes quite obvious that not all models were capable of
classifiying outliers equally well. The extra trees classifier in particular is the worst in this regard with
only 0.763 F1macro. The exact-match score also separates the extra trees classifier as the worst of the
bunch – it managed to correctly decode the technical specification of only 59.5% of the testing data
VINs. Therefore, for further work it is recommended to skip this model and use one of the three
remaining ones – random forest classifier, decision tree or k-nearest neighbours classifier. For further
analysis the decision tree was chosen as it beats both of the remaining models with respect to all
metrics and manages to correctly predict the technical specification of more than 4 out of 5 VINs in the
testing dataset – an exact-match score of 82.2%.

here y is a single coordinate column, the amount of coordinates is labeled
n and Y is the set of all label vectors, represented as a matrix, where one
column is for a single technical parameter. So, the overall classification
accuracy and F1macro are calculated by averaging the metric calculated for
each separate technical parameter. Finally, two additional accuracy metrics
devoted to multi-label models were used – Hamming loss and exact-match
score [9]:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, �̂�𝐴) = 1
𝑛𝑛 ∑ 1𝑦𝑦�̂�𝑖=𝑦𝑦

𝑛𝑛−1

𝑖𝑖=0
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝐿𝐿, 𝐴𝐴�̂�𝐿) =
(1 + 12)𝑇𝑇𝑃𝑃𝐿𝐿

(1 + 12)𝑇𝑇𝑃𝑃𝐿𝐿 + 𝐹𝐹𝑃𝑃𝐿𝐿 + 12𝐹𝐹𝑁𝑁𝐿𝐿
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴, �̂�𝐴) = 1
|𝐿𝐿| ∑ 𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝑙𝑙, 𝐴𝐴�̂�𝑙)

𝑙𝑙∈𝐿𝐿
,

The second formula is devoted to a single label vector coordinate class L, whereas the third

formula is the combined F1macro for a single coordinate of the label vector.
The remaining metrics are for the evaluation of the overall accuracy of the model. Two of these

are the aforementioned accuracy and F1macro, modified to fit multi-label classifiers:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑌𝑌, �̂�𝑌) = 1
𝑛𝑛 ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, �̂�𝐴)

𝑦𝑦∈𝑌𝑌𝑡𝑡
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑌𝑌, �̂�𝑌) = 1
𝑛𝑛 ∑ 𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴, �̂�𝐴)

𝑦𝑦∈𝑌𝑌𝑡𝑡
,

here y is a single coordinate column, the amount of coordinates is labeled n and Y is the set of
all label vectors, represented as a matrix, where one column is for a single technical parameter. So, the
overall classification accuracy and F1macro are calculated by averaging the metric calculated for each
separate technical parameter. Finally, two additional accuracy metrics devoted to multi-label models
were used – Hamming loss and exact-match score [9]:

𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝑛𝑛𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻𝐻𝐻(𝑌𝑌, �̂�𝑌) = 1
𝑁𝑁 ∑

|𝐴𝐴𝑖𝑖 △ 𝐴𝐴�̂�𝑖|
𝑛𝑛

𝑁𝑁

𝑖𝑖=1
,

𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴ℎ(𝑌𝑌, �̂�𝑌) = 1
𝑁𝑁 ∑ 1𝑦𝑦𝑖𝑖=𝑦𝑦�̂�𝑖

𝑁𝑁

𝑖𝑖=1
,

where N denotes the amount of rows in Y, i.e. the amount of data instances in Y.

4. Results
The full dataset was split into training and testing subsets by iterative stratification, which

prioritises the least common labels and starts by stratifying those first [10]. All models were trained
with the same dataset (size – 2,089,508 rows), and all accuracy metrics were calculated after the
trained models classified the same testing dataset (size – 522,377 rows). The optimal parameters for
the models were chosen by using 10-fold cross-validation on a subset of the full dataset. This subset
was created by randomly taking 10 of each unique row in the dataset.

As we can see in the first table, all models reached a quite high overall classification accuracy
(>0.88). However, looking at the F1macro it becomes quite obvious that not all models were capable of
classifiying outliers equally well. The extra trees classifier in particular is the worst in this regard with
only 0.763 F1macro. The exact-match score also separates the extra trees classifier as the worst of the
bunch – it managed to correctly decode the technical specification of only 59.5% of the testing data
VINs. Therefore, for further work it is recommended to skip this model and use one of the three
remaining ones – random forest classifier, decision tree or k-nearest neighbours classifier. For further
analysis the decision tree was chosen as it beats both of the remaining models with respect to all
metrics and manages to correctly predict the technical specification of more than 4 out of 5 VINs in the
testing dataset – an exact-match score of 82.2%.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, �̂�𝐴) = 1
𝑛𝑛 ∑ 1𝑦𝑦�̂�𝑖=𝑦𝑦

𝑛𝑛−1

𝑖𝑖=0
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝐿𝐿, 𝐴𝐴�̂�𝐿) =
(1 + 12)𝑇𝑇𝑃𝑃𝐿𝐿

(1 + 12)𝑇𝑇𝑃𝑃𝐿𝐿 + 𝐹𝐹𝑃𝑃𝐿𝐿 + 12𝐹𝐹𝑁𝑁𝐿𝐿
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴, �̂�𝐴) = 1
|𝐿𝐿| ∑ 𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝑙𝑙, 𝐴𝐴�̂�𝑙)

𝑙𝑙∈𝐿𝐿
,

The second formula is devoted to a single label vector coordinate class L, whereas the third

formula is the combined F1macro for a single coordinate of the label vector.
The remaining metrics are for the evaluation of the overall accuracy of the model. Two of these

are the aforementioned accuracy and F1macro, modified to fit multi-label classifiers:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑌𝑌, �̂�𝑌) = 1
𝑛𝑛 ∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴, �̂�𝐴)

𝑦𝑦∈𝑌𝑌𝑡𝑡
,

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑌𝑌, �̂�𝑌) = 1
𝑛𝑛 ∑ 𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴, �̂�𝐴)

𝑦𝑦∈𝑌𝑌𝑡𝑡
,

here y is a single coordinate column, the amount of coordinates is labeled n and Y is the set of
all label vectors, represented as a matrix, where one column is for a single technical parameter. So, the
overall classification accuracy and F1macro are calculated by averaging the metric calculated for each
separate technical parameter. Finally, two additional accuracy metrics devoted to multi-label models
were used – Hamming loss and exact-match score [9]:

𝐻𝐻𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝑛𝑛𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻𝐻𝐻(𝑌𝑌, �̂�𝑌) = 1
𝑁𝑁 ∑

|𝐴𝐴𝑖𝑖 △ 𝐴𝐴�̂�𝑖|
𝑛𝑛

𝑁𝑁

𝑖𝑖=1
,

𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴ℎ(𝑌𝑌, �̂�𝑌) = 1
𝑁𝑁 ∑ 1𝑦𝑦𝑖𝑖=𝑦𝑦�̂�𝑖

𝑁𝑁

𝑖𝑖=1
,

where N denotes the amount of rows in Y, i.e. the amount of data instances in Y.

4. Results
The full dataset was split into training and testing subsets by iterative stratification, which

prioritises the least common labels and starts by stratifying those first [10]. All models were trained
with the same dataset (size – 2,089,508 rows), and all accuracy metrics were calculated after the
trained models classified the same testing dataset (size – 522,377 rows). The optimal parameters for
the models were chosen by using 10-fold cross-validation on a subset of the full dataset. This subset
was created by randomly taking 10 of each unique row in the dataset.

As we can see in the first table, all models reached a quite high overall classification accuracy
(>0.88). However, looking at the F1macro it becomes quite obvious that not all models were capable of
classifiying outliers equally well. The extra trees classifier in particular is the worst in this regard with
only 0.763 F1macro. The exact-match score also separates the extra trees classifier as the worst of the
bunch – it managed to correctly decode the technical specification of only 59.5% of the testing data
VINs. Therefore, for further work it is recommended to skip this model and use one of the three
remaining ones – random forest classifier, decision tree or k-nearest neighbours classifier. For further
analysis the decision tree was chosen as it beats both of the remaining models with respect to all
metrics and manages to correctly predict the technical specification of more than 4 out of 5 VINs in the
testing dataset – an exact-match score of 82.2%.

where N denotes the amount of rows in Y, i.e. the amount of data instances
in Y.

4. Results

The full dataset was split into training and testing subsets by iterative
stratification, which prioritises the least common labels and starts by

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 127

stratifying those first [10]. All models were trained with the same dataset
(size – 2,089,508 rows), and all accuracy metrics were calculated after the
trained models classified the same testing dataset (size – 522,377 rows).
The optimal parameters for the models were chosen by using 10-fold
cross-validation on a subset of the full dataset. This subset was created by
randomly taking 10 of each unique row in the dataset.

As we can see in the first table, all models reached a quite high overall
classification accuracy (>0.88). However, looking at the F1macro it becomes
quite obvious that not all models were capable of classifiying outliers
equally well. The extra trees classifier in particular is the worst in this regard
with only 0.763 F1macro. The exact-match score also separates the extra
trees classifier as the worst of the bunch – it managed to correctly decode
the technical specification of only 59.5% of the testing data VINs. Therefore,
for further work it is recommended to skip this model and use one of the
three remaining ones – random forest classifier, decision tree or k-nearest
neighbours classifier. For further analysis the decision tree was chosen as it
beats both of the remaining models with respect to all metrics and manages
to correctly predict the technical specification of more than 4 out of 5 VINs
in the testing dataset – an exact-match score of 82.2%.

Table 1. The accuracy metrics for all models.

Classifier Classification
accuracy F1macro

Exact-match
score Hamming loss

RFC 0.932 0.870 0.747 0.068
DTC 0.950 0.923 0.822 0.050
ETC 0.884 0.763 0.595 0.116
MLkNN 0.930 0.878 0.764 0.070

The second table shows the accuracy metrics for all technical parameters
separately when using a decision tree. All parameters are classified with at
least 85% accuracy. The classification of an automobile‘s make is especially
accurate – the model only made mistakes for “Seat“ and “Cupra“ VINs
(99.5% and 91.0% of “Seat“ and “Cupra“ VIN codes respectively had their
make labeled correctly). The F1macro of the fuel type is quite a bit lower than
that of other technical parameters – while analysing incorrectly labeled VINs
it was noticed that the model classified VINs, where fuel type was labeled

128 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

as “Gasoline/LPG“, poorly – only 10.2% of such VINs had their fuel type
labeled correctly. All remaining fuel types were classified with at least 87.7%
accuracy. The lowest individual classification accuracy was achieved with
engine power, but even this value of 0.859 should be considered impressive,
given that this information is not even encoded in “Seat“ and “Cupra“ VINs.

Table 2. Accuracy metrics for separate technical parameters using the DTC model.

Technical parameter Classification accuracy F1macro

Make 0.997 0.985

Model name 0.974 0.951

Body type 0.974 0.986

Model generation code 0.994 0.992

Fuel type 0.950 0.802

Engine displacement 0.899 0.866

Engine power 0.859 0.879

5. Conclusions

This research paper proposes several machine-learning methods capable
of decoding a vehicle‘s technical parameters from its VIN. The optimal
parameters for the models were selected using a small subsample and
applying cross-validation to it. The data was split into training and testing
subsets by stratifying it by the rarest labels, thus ensuring good data
distribution in these subsets. After all models were fitted, the best results
were achieved using the decision tree classifier which achieved 95% overall
classification accuracy and correctly predicted the full technical specification
of 82.2% VINs in the testing dataset. This model classified all individual
technical parameters with at least 85.9% accuracy as well as F1macro no
smaller than 0.802. Future research will consider the improvement of
classification of rare values as well as finding better ways to separate “Seat“
and “Cupra“ VINs.

Acknowledgements. The author is grateful to Assoc. Prof. V. Skorniakov
for providing feedback on the final version of the manuscript.

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 129

References

[1] W. Bachman, J. Granell, R. Guensler, and J. Leonard (1998). Research Needs for
Determining Spatially Resolved Subfleet Characteristics. Transportation Research
Record, 1625(1), pp. 139-146.

[2] P. Geurts, L. Wehenkel, and F. d‘Alché-Buc (2006). Kernelizing the output of tree-based
methods. In Proceedings of the 23rd international conference on Machine learning (ICML
‚06). Association for Computing Machinery, New York, NY, USA, pp. 345–352.

[3] M. N. Dumont, R. Marée, L. Wehenkel, and P. Geurts (2009). Fast Multi-class Image
Annotation with Random Subwindows and Multiple Output Randomized Trees.
International Conference on Computer Vision Theory and Applications, pp. 196-203.

[4] L. Breiman (1998). Arcing Classifiers. The Annals of Statistics 26(3), pp. 801–849.
[5] P. Geurts, D. Ernst, and L. Wehenkel (2006). Extremely randomized trees. Mach Learn 63,

pp. 3–42.
[6] J. L. Bentley (1975). Multidimensional binary search trees used for associative searching.

Commun. ACM 18(9), pp. 509–517.
[7] J. H. Friedman, J. L. Bentley, and R. A. Finkel (1977). An algorithm for finding best matches

in logarithmic expected time. ACM Transactions on Mathematical Software (TOMS), 3(3),
pp. 209-226.

[8] S. M. Omohundro (1989). Five balltree construction algorithms, pp. 1-22.
[9] D. Krstinić, M. Braović, L. Šerić, and D. Božić-Štulić (2020). Multi-label classifier performance

evaluation with confusion matrix. Computer Science & Information Technology, 1, pp.
1-14.

[10] K. Sechidis, G. Tsoumakas, and I. Vlahavas (2011). On the stratification of multi-label data.
In Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2011, Athens, Greece, September 5-9, 2011, Proceedings, Part III 22, pp. 145-
158.

	1. Introduction
	2. Data
	3. Methodology
	3.1. Classifiers
	3.2 Utilised software tools
	3.3. Model accuracy metrics
	4 Results
	5. Conclusions
	References

