
Recognising the contents
in digitised financial documents

Simas Rimašauskas, Igoris Belovas

Vilnius University, Faculty of Mathematics and Informatics,
Didlaukio g. 47, Vilnius, Lithuania
simas.rimasauskas@mif.stud.vu.lt

Abstract. The necessity of content recognition in digital documents is ever-
increasing in the financial sector. Extracted data is used for fundamental
analysis, modelling and portfolio selection. In the most prominent markets,
there is a wide array of available sources to obtain the data, such as SEC filings
easily. However, it is not so in markets with less investor interest, such as the CEE
region or Latin America. Often, the only sources containing the data are primary
reports by the company itself. Scarce secondary sources may provide data of
dubious reliability. This leads to an excessive workload for analysts, implying
the necessity to adapt existing intelligent methods for processing financial data.

Keywords: machine learning, natural language processing, optical character
recognition, text recognition, table recognition.

1 Introduction

Smaller, less popular markets often suffer from a scarcity of secondary
data sources. Financial analysts focusing on these regions, in turn, depend
heavily on primary documents issued by companies. Such reliance leads
to a workload bottleneck due to the manual, time-intensive process
of extracting valuable data from unstructured or poorly formatted
documents. Implementing automatized, intelligent methods to recognize
and extract contents could mitigate this problem. Hence, we sought to
thoroughly review the underlying algorithms of select machine learning
(ML) and natural language processing (NLP) technologies and apply them
in experiments conducted on a real-life dataset comprised of quarterly and
annual reports from firms operating in exotic markets.

2 Historical development of content recognition

Various approaches for detecting tables in images were devised throughout
the years - Dengel et al. [1] proposed a method to cluster word boundaries

Copyright © Simas Rimašauskas, Igoris Belovas, 2025. Published by Vilnius University Press. This is an Open Access article
distributed under the terms of the Creative Commons Attribution License (CC BY), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are credited.
DOI: https://doi.org/10.15388/LMITT.2025.22

https://doi.org/10.15388/LMITT.2025.22

188 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

into a segmentation graph for table detection. However, that failed in the
face of multi-column layouts. Wangt et al. [2] proposed using the distance
between consecutive words as a heuristic in determining table entity
candidates. However, such a method is inevitably tied to a specific layout
template, which hinders its practical application. Gatos et al. [3] proposed
using the intersection area between horizontal and vertical lines to
reconstruct the intersectional pairs. However, this system was said to overly
rely on the visual cues provided by strict, defining table borders. Ultimately,
deep learning methods were implemented when Hao et al. [4] proposed
a regional proposal network using CNNs, which later adapted the faster
R-CNN architecture to segment table regions in a given image. Building
on this, Watson and Liu proposed a table alignment process involving
organizing disjoint text segments into columns by creating disjoint sets and
merging them using an algorithm.

A research survey conducted in a paper by Kasem et al. [5] has
established that ML and deep learning technologies have been effective
in computer vision research tasks such as object detection and object
position estimation. CNN, one of the most widely-used types of neural
networks, can use the fundamental properties of actual signals, such
as translation invariance and compositional hierarchies. A typical CNN
comprises a hierarchical structure and numerous layers for learning data
representations at different levels of abstraction [6]. The efficacy of CNNs
in object identification, the researchers assert, is based on the ability to,
through training on large amounts of data, learn substantial mid-level visual
properties, which are more complex patterns such as textures and shapes,
rather than hand-crafted low-level representations, such as edge detectors,
often used in image categorization. Deep learning models are now widely
used in multiple areas, including general table detection [4]. On the other
hand, table structures receive far less attention, and the table structure is
typically only characterized by the rows and columns of a table [7].

3 Summary of state-of-the-art algorithms

In this section, we survey modern NLP and ML technologies and review
and describe the subtleties and principles behind their algorithms. Owing
to their widespread use in practice, the tools selected for the work are
LayoutLM, OpenCV, Camelot, pdfplumber, and Google Document AI.

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 189

In their 2020 work, Xu et al. [8] proposed LayoutLM, a pre-training
technique with text and layout information in a single framework that
utilizes Transformer architecture as the backbone. It is inspired by the
BERT model, which represents text using embeddings. According to the
researchers, LayoutLM extends the principle by using multimodal inputs,
including token, layout, and image embeddings. For the experiments, the
LayoutLMv3 version was used. The model works by processing text using
an OCR toolkit to extract content and 2D positional information. Word
embeddings are then initialized using a pre-trained RoBERTa model. The
layout positions are applied at the segment level, where words in the
same segment share the same 2D position, as opposed to word-level
positions used in previous versions like LayoutLM and LayoutLMv2. Image
embeddings are generated by applying linear projections to image patches,
which helps to reduce computational complexity compared to previous
versions that used CNNs, like Faster R-CNN. Images are then resized, split
into patches, and flattened into a sequence of vectors. Semantic 1D relative
position and spatial 2D relative position are introduced as bias terms in self-
attention networks for both text and image modalities, which follows the
previous approach in LayoutLMv2.

Another tool used for data extraction in financial documents is OpenCV, a
real-time computer vision programming function library initially launched by
Intel in 1999 [9]. The tool provides numerous image manipulation, analysis,
and data extraction methods. Mat class serves as the main data structure
in OpenCV for the storage and manipulation of images and matrices. It
holds pixel values and handles memory management by automatically
allocating memory as necessary. It also supports reference counting,
allowing efficient memory use by preventing redundant copying of image
data when objects are passed by reference. Histograms are commonly
used for image processing, representing the distribution of pixel intensity
in an image. Additionally, OpenCV supports techniques such as Fourier
transform to analyse the frequency content of an image. By decomposing
an image into its frequency components, algorithms can be designed to
filter out unwanted noise or enhance certain features. Hough transform is
also implemented in OpenCV and is used to detect geometric shapes in
an image. OpenCV also provides Edge detection as another fundamental
image processing technique - a canny edge detector combines gradient
calculation with non-maximum suppression to detect edges accurately
while reducing noise.

190 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

Pdfplumber is an open-source Python library created to extract
information from PDF documents. It was created by Singer-Vine and was
initially released in 2016 [10]. Pdfplumber builds on top of pdfminer, another
PDF processing library. The approach is heavily inspired by Nurminen’s
master’s thesis [11]. In essence, for any PDF page, either actual lines, which
are explicitly defined and give the table a grid-like structure, or invisible lines
implied by word alignment are found. Overlapping or nearly-overlapping
lines are merged, and intersections of all these lines are found. The most
granular set of rectangles, which use the intersections as vertices, are found,
and contiguous cells are then grouped into tables. Pdfplumber recognizes
lines in a PDF by parsing the document’s raw content streams to identify
vector graphics commands corresponding to line-drawing operations.
These instructions are then decoded by extracting the coordinates,
orientation, and thickness of lines explicitly defined in the document. The
extracted line objects are then interpreted, and the positioning of the text
element is examined further to infer implied lines where no explicit borders
are present. Text alignment and spacing are analysed to identify patterns
that might imply grid structures.

Camelot, a Python library for data extraction from PDFs, was created by
Vinayak Mehta [12]. Camelot offers two table parsing methods, Stream and
Lattice, each designed to accommodate different PDF table structures. The
Stream method, best used for tables that do not have visible borders but
instead rely on whitespace between cells to create a table structure, works
by grouping words on the PDF page into rows based on their y-axis overlaps.
It then calculates text edges to identify areas that could contain tables. The
number of columns is estimated by calculating the mode of the word count
in text rows, thus determining column ranges. The words are then assigned
to columns based on whether they fall within the calculated x and y ranges.
The lattice method is more suitable for tables with visible cell borders,
relying on precise line detection and geometric calculations. It works by
converting the page into an image using Ghostscript. The algorithm then
detects horizontal and vertical line segments by applying transformations
such as erosion and dilation. The detected lines are processed to identify
intersections, marking the boundaries of table cells. They are scaled and
translated back to the file’s coordinate space to create a representation of
the table. Spanning cells are then identified, and the words are assigned to
the correct table cells based on their x and y coordinates.

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 191

The Document AI platform is a unified document processing console
launched by Google Cloud, the cloud computing division of Google,
in November 2020 [13]. The platform aims to automate and validate
documents by providing access to document parsers, tools, and solutions
via an API. Because of the proprietary nature of the application, the table
extraction algorithms used by Google Document AI are not disclosed to the
public and, therefore, were not reviewed in our work.

The previously described table data extraction methods differ in
some ways yet have similarities. Regarding the data extraction approach,
pdfplumber and Camelot are similar because both libraries do rule-based
parsing, where predefined rules are used to identify and extract specific
structures or patterns from documents. OpenCV operates utilizing the
approach of low-level image processing, while LayoutLM uses a multimodal
transformer architecture that integrates text and visual embeddings for
document understanding. LayoutLMv3 and Google Document AI are better
suited for complex documents with rich layouts and can handle visual and
textual data. Camelot and pdfplumber rely on line detection for grid-based
structures, although Camelot’s Stream method is optimized for whitespace-
based tables, while Lattice is tailored for bordered table layouts. OpenCV
uses pixel-level manipulation (such as detection of edges or contour
analysis) to identify lines or shapes.

4 Experiments

An original dataset consisting of 7 selected PDF format financial documents
published by different companies in Central and Eastern Europe and
Latin America was compiled and used for our experiments. The files were
quarterly or annual reports published in financial periods from 2018 to
2022. The eight selected tables consisted of the main parts of financial
statements (statements of income and loss, financial position, and cash
flows), notes, and appendices and were in English. Using a Python API, a
ground truth version of the tables and their text content was extracted and
reviewed manually.

In order to test the selected tools, five scripts were written in Python,
each using a different tool to recognize text and extract tables from PDF
pages into a spreadsheet. For LayoutLMv3, the FUNSD dataset was used for
the training process, which focuses on form understanding [14]. However,

192 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

the model cannot perform text recognition, so the Tesseract OCR engine
was additionally integrated, which renders high-resolution images of PDF
format file pages and performs optical character recognition (OCR) to detect
text and bounding boxes [15]. This consideration also applies to OpenCV.
Since it does not perform OCR, Tesseract was also used to extract text
and bounding box information from the document images in the OpenCV
implementation. Custom functions were developed to merge extracted
text boxes when they were sufficiently close in terms of coordinates,
improving the coherence of detected text blocks. For Google Document
AI, a Form Parser processor was selected to process the document, which
was developed for the extraction of tables and is best suited for table data
recognition and extraction [16]. Pdfplumber, a library developed explicitly
for text extraction from searchable .pdf files and table extraction, offered
ample table extraction settings. Because most tables in the dataset were
borderless, we used vertical and horizontal strategy values of “text” for
the pdfplumber function extract_tables(), which allowed the library to aim
specifically to identify columns in borderless tables. In the implementation
of Camelot, another Python library specifically made to extract tables,
there was also little need for pre-processing as the PDF files were simply
processed using a library function read_pdf(). The previously discussed
Stream method, which is more suitable for tables without explicit borders,
was chosen. Finally, algorithms were created to evaluate the tables using
the defined metrics.

 To assess the accuracy of the selected tools, three metrics were defined:
1. Symbol accuracy is defined as correctly output characters divided

by all output symbols. It was evaluated by comparing the lists of
characters for each cell to those from the ground truth.

extract_tables()

read_pdf()

 Symbol accuracy

𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝐶𝐶𝑦𝑦𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴𝐶𝐶𝑦𝑦𝑦𝑦 𝑂𝑂𝐴𝐴𝐶𝐶𝑂𝑂𝐴𝐴𝐶𝐶 𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑆𝑆
𝑇𝑇𝑦𝑦𝐶𝐶𝐴𝐴𝑦𝑦 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝑂𝑂𝐴𝐴𝐶𝐶𝑂𝑂𝐴𝐴𝐶𝐶 𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑆𝑆

 Word accuracy

Rupšys in his bachelor thesis [1

𝑊𝑊𝑦𝑦𝐴𝐴𝑊𝑊 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝐶𝐶𝑦𝑦𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴𝐶𝐶𝑦𝑦𝑦𝑦 𝑂𝑂𝐴𝐴𝐶𝐶𝑂𝑂𝐴𝐴𝐶𝐶 𝑊𝑊𝑦𝑦𝐴𝐴𝑊𝑊𝑆𝑆
𝑇𝑇𝑦𝑦𝐶𝐶𝐴𝐴𝑦𝑦 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝑂𝑂𝐴𝐴𝐶𝐶𝑂𝑂𝐴𝐴𝐶𝐶 𝑊𝑊𝑦𝑦𝐴𝐴𝑊𝑊𝑆𝑆

 Table accuracy structural integrity

𝑇𝑇𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝐶𝐶𝑁𝑁𝑦𝑦𝑦𝑦𝑆𝑆 𝑖𝑖𝑖𝑖 𝐶𝐶𝑦𝑦𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴𝐶𝐶 𝑅𝑅𝑁𝑁𝑦𝑦𝐴𝐴𝐶𝐶𝑖𝑖𝑅𝑅𝑁𝑁 𝑃𝑃𝑦𝑦𝑆𝑆𝑖𝑖𝐶𝐶𝑖𝑖𝑦𝑦𝑖𝑖
𝑇𝑇𝑦𝑦𝐶𝐶𝐴𝐴𝑦𝑦 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝐶𝐶𝑁𝑁𝑦𝑦𝑦𝑦𝑆𝑆

2. Word accuracy is defined as the proportion of correctly output
words (which we define as ordered lists of characters divided by
blank characters) to the total number of output words in the table.
This and the symbol accuracy metrics are based on the metrics used
by Rupšys in his bachelor thesis [17]

extract_tables()

read_pdf()

 Symbol accuracy

𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝐶𝐶𝑦𝑦𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴𝐶𝐶𝑦𝑦𝑦𝑦 𝑂𝑂𝐴𝐴𝐶𝐶𝑂𝑂𝐴𝐴𝐶𝐶 𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑆𝑆
𝑇𝑇𝑦𝑦𝐶𝐶𝐴𝐴𝑦𝑦 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝑂𝑂𝐴𝐴𝐶𝐶𝑂𝑂𝐴𝐴𝐶𝐶 𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑆𝑆

 Word accuracy

Rupšys in his bachelor thesis [1

𝑊𝑊𝑦𝑦𝐴𝐴𝑊𝑊 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝐶𝐶𝑦𝑦𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴𝐶𝐶𝑦𝑦𝑦𝑦 𝑂𝑂𝐴𝐴𝐶𝐶𝑂𝑂𝐴𝐴𝐶𝐶 𝑊𝑊𝑦𝑦𝐴𝐴𝑊𝑊𝑆𝑆
𝑇𝑇𝑦𝑦𝐶𝐶𝐴𝐴𝑦𝑦 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝑂𝑂𝐴𝐴𝐶𝐶𝑂𝑂𝐴𝐴𝐶𝐶 𝑊𝑊𝑦𝑦𝐴𝐴𝑊𝑊𝑆𝑆

 Table accuracy structural integrity

𝑇𝑇𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝐶𝐶𝑁𝑁𝑦𝑦𝑦𝑦𝑆𝑆 𝑖𝑖𝑖𝑖 𝐶𝐶𝑦𝑦𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴𝐶𝐶 𝑅𝑅𝑁𝑁𝑦𝑦𝐴𝐴𝐶𝐶𝑖𝑖𝑅𝑅𝑁𝑁 𝑃𝑃𝑦𝑦𝑆𝑆𝑖𝑖𝐶𝐶𝑖𝑖𝑦𝑦𝑖𝑖
𝑇𝑇𝑦𝑦𝐶𝐶𝐴𝐴𝑦𝑦 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝐶𝐶𝑁𝑁𝑦𝑦𝑦𝑦𝑆𝑆

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 193

3. Table accuracy metric to evaluate the structural integrity of tables
has been established based on the content accuracy metric used by
Smock et al. [18]. By calculating the share of correct cells, we can
deduce whether the output table retained the correct structure of
the original.

extract_tables()

read_pdf()

 Symbol accuracy

𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝐶𝐶𝑦𝑦𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴𝐶𝐶𝑦𝑦𝑦𝑦 𝑂𝑂𝐴𝐴𝐶𝐶𝑂𝑂𝐴𝐴𝐶𝐶 𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑆𝑆
𝑇𝑇𝑦𝑦𝐶𝐶𝐴𝐴𝑦𝑦 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝑂𝑂𝐴𝐴𝐶𝐶𝑂𝑂𝐴𝐴𝐶𝐶 𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑆𝑆

 Word accuracy

Rupšys in his bachelor thesis [1

𝑊𝑊𝑦𝑦𝐴𝐴𝑊𝑊 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝐶𝐶𝑦𝑦𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴𝐶𝐶𝑦𝑦𝑦𝑦 𝑂𝑂𝐴𝐴𝐶𝐶𝑂𝑂𝐴𝐴𝐶𝐶 𝑊𝑊𝑦𝑦𝐴𝐴𝑊𝑊𝑆𝑆
𝑇𝑇𝑦𝑦𝐶𝐶𝐴𝐴𝑦𝑦 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝑂𝑂𝐴𝐴𝐶𝐶𝑂𝑂𝐴𝐴𝐶𝐶 𝑊𝑊𝑦𝑦𝐴𝐴𝑊𝑊𝑆𝑆

 Table accuracy structural integrity

𝑇𝑇𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝐶𝐶𝑁𝑁𝑦𝑦𝑦𝑦𝑆𝑆 𝑖𝑖𝑖𝑖 𝐶𝐶𝑦𝑦𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴𝐶𝐶 𝑅𝑅𝑁𝑁𝑦𝑦𝐴𝐴𝐶𝐶𝑖𝑖𝑅𝑅𝑁𝑁 𝑃𝑃𝑦𝑦𝑆𝑆𝑖𝑖𝐶𝐶𝑖𝑖𝑦𝑦𝑖𝑖
𝑇𝑇𝑦𝑦𝐶𝐶𝐴𝐴𝑦𝑦 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝐶𝐶𝑁𝑁𝑦𝑦𝑦𝑦𝑆𝑆

It was found that, regarding the accuracy of the table structure, Camelot
strongly outperformed the peer group with a simple average accuracy of
90.0%, as seen in table 1. Google Document AI also provided tables that
may be considered satisfactory in terms of structure at 72.8%. LayoutLM
resulted in the least accurate table structure at 34.3%. In terms of symbol
accuracy seen in table 2, Camelot was strongest among the peer group as
well, with a simple average accuracy of 93.0%; Google Document AI also
outputs sufficiently accurate tables in terms of symbols at 81.3%. LayoutLM
resulted in the least accurate table structure at 23.3%. Lastly, as seen in
table 3, the word accuracy is highly correlated with the symbol metric:
Camelot performed best in terms of correct words with a 92.1% accuracy.
Tables obtained using LayoutLM, which was combined with Tesseract for
optical character recognition, provided the lowest average word accuracy
at 21.0%.

Table 1. Percentages of identical cells (table accuracy).

Table ID Total
Cells Camelot Google LayoutLM OpenCV Pdfplumber

1 165 97.0% 44.2% 57.6% 79.4% 91.8%

2 161 84.5% 87.0% 44.1% 17.4% 77.0%

3 136 98.5% 84.6% 13.3% 72.8% 32.5%

4 96 84.0% 59.4% 44.8% 48.0% 68.0%

5 96 93.8% 93.8% 53.1% 74.0% 5.8%

6 252 97.2% 89.3% 42.6% 24.6% 15.5%

7 168 88.7% 57.7% 14.9% 62.5% 48.8%

8 84 76.2% 66.7% 3.6% 51.2% 21.4%

Average - 90.0% 72.8% 34.3% 53.7% 45.1%

194 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

Table 2. Percentages of correctly output symbols.

Table ID
Total
Cells

Camelot Google LayoutLM OpenCV Pdfplumber

1 165 98.6% 58.9% 36.0% 91.8% 94.5%

2 161 83.9% 92.9% 38.7% 35.7% 71.3%

3 136 96.8% 89.1% 3.2% 79.7% 58.4%

4 96 86.8% 66.9% 20.3% 52.6% 52.4%

5 96 93.2% 87.1% 35.2% 86.1% 5.9%

6 252 98.0% 88.4% 22.5% 42.0% 7.6%

7 168 89.9% 74.0% 14.5% 67.4% 63.5%

8 84 96.5% 93.1% 16.3% 85.1% 40.6%

Average - 93.0% 81.3% 23.3% 67.5% 49.3%

Table 3. Percentages of correctly output words.

Table ID Total
Cells Camelot Google LayoutLM OpenCV Pdfplumber

1 165 97.4% 54.9% 39.4% 81.9% 93.3%

2 161 81.1% 90.6% 23.2% 31.3% 69.5%

3 136 96.3% 83.3% 0.5% 69.9% 45.4%

4 96 85.5% 65.9% 21.0% 50.7% 54.4%

5 96 91.2% 86.1% 38.7% 77.4% 0.0%

6 252 96.9% 86.9% 19.8% 22.8% 0.0%

7 168 92.3% 72.1% 12.4% 64.7% 58.1%

8 84 96.0% 88.5% 13.0% 80.0% 37.5%

Average - 92.1% 78.5% 21.0% 59.8% 44.8%

5 Conclusion

The overview of the state-of-the-art literature on the topics of NLP and ML
in table data extraction, taken together with our practical experiments, has
led us to conclude that while deep learning and ML are widely used in table
detection, the research on table structures, in particular, has yet to receive
wide attention. Regarding the tools used in the experiment, the setup for
pdfplumber, Camelot, and Google Document AI is relatively straightforward
and quick. Camelot and pdfplumber were the easiest to implement in
practice. In contrast, LayoutLM and OpenCV demand more effort and are

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 195

time-intensive because of requirements such as model training. In terms
of table structure and symbol and word accuracy, Camelot performed
the task of data extraction from tables the best. Along with Camelot, it
was established that Google Document AI is also an acceptable venue for
obtaining tables of satisfactory accuracy.

Literature

[1] Dengel, A., Kieninger, T. (1998) A Paper-to-HTML Table Converting System. DAS98, Int’l
Association for Pattern Recognition Workshop on Document Analysis Systems. Deutsches
Forschungszentrum für Künstliche Intelligenz.

[2] Wangt, Y., Phillipst, I. T., Haralick, R. (2001). Automatic table ground truth generation and
a background-analysis-based table structure extraction method. In Proceedings of Sixth
International Conference on Document Analysis and Recognition, Seattle, WA, USA, 2001,
pp. 528-532. IEEE.

[3] Gatos B., Danatsas, D., Pratikakis, I., Perantonis, S.J. (2005). Automatic table detection in
document images. In Proceedings of the Third International Conference on Advances in
Pattern Recognition - Volume Part I (Bath, UK) (ICAPR’05). Springer-Verlag.

[4] Hao, L., Gao, L., Yi, X., Tang, Z. (2016). A Table Detection Method for PDF Documents
Based on Convolutional Neural Networks. 2016 12th IAPR Workshop on Document
Analysis Systems (DAS). IEEE.

[5] Kasem, M., Abdallah, A., Berendeyev, A., Elkady, E., Abdalla, M., Mahmoud, M., Hamada,
M., Nurseitov, D., Taj-Eddin, I. (2024). Deep Learning for Table Detection and Structure
Recognition: A Survey. ACM Computing Surveys, 56(12). Association for Computing
Machinery.

[6] LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep Learning. Nature, 521(7553), pp. 436-444.
[7] Kara, E., Traquair, M., Simsek, M., Kantarci, B., Khan, S. (2020). Holistic Design for Deep

Learning-Based Discovery of Tabular Structures in Datasheet Images. Engineering
Applications of Artificial Intelligence, 90(C).

[8] Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., Zhou, M. (2020). LayoutLM: Pre-training of Text
and Layout for Document Image Understanding. Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD ‘20), pp. 1192-1200.
ACM.

[9] OpenCV. Introduction to OpenCV-Python Tutorials (2025). URL: https://docs.opencv.
org/4.x/d0/de3/tutorial_py_intro.html.

[10] Singer-Vine, J., & The pdfplumber contributors (2025). Pdfplumber (Version 0.11.6). URL:
https://github.com/jsvine/pdfplumber/.

[11] Nurminen, A. (2013). Algorithmic Extraction of Data in Tables in PDF Documents (Master’s
thesis). Tampere University of Technology.

[12] Mehta, V. & The Camelot contributors (2025). Camelot (Version 1.0.0). URL: https://
github.com/camelot-dev/camelot/.

[13] Google (2020). Introducing Document AI platform, a unified console for document
processing. URL: https://cloud.google.com/blog/products/ai-machine-learning/google-
cloud-announces-document-ai-platform/.

196 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

[14] Rogge, N. (2022). layoutlmv3-finetuned-funsd. URL: https://huggingface.co/nielsr/
layoutlmv3-finetuned/.

[15] Smith, R. (2007). An Overview of the Tesseract OCR Engine. ICDAR ‘07: Proceedings of the
Ninth International Conference on Document Analysis and Recognition, pp. 629-633. IEEE
Computer Society.

[16] Google (2025). Process documents with Form Parser. URL: https://cloud.google.com/
document-ai/docs/form-parser/.

[17] Rupšys, J. (2021). Lentelių atpažinimas (Bachelor’s thesis). Vilnius University.
[18] Smock, B., Pesala, R., Abraham, R. (2022). PubTables-1M: Towards Comprehensive Table

Extraction from Unstructured Documents. 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition. Microsoft.

	1 Introduction
	2 Historical development of content recognition
	3 Summary of state-of-the-art algorithms
	4 Experiments
	5 Conclusion
	Literature

