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Abstract. The necessity of content recognition in digital documents is ever-
increasing in the financial sector. Extracted data is used for fundamental 
analysis, modelling and portfolio selection. In the most prominent markets, 
there is a wide array of available sources to obtain the data, such as SEC filings 
easily. However, it is not so in markets with less investor interest, such as the CEE 
region or Latin America. Often, the only sources containing the data are primary 
reports by the company itself. Scarce secondary sources may provide data of 
dubious reliability. This leads to an excessive workload for analysts, implying 
the necessity to adapt existing intelligent methods for processing financial data.
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1 Introduction

Smaller, less popular markets often suffer from a scarcity of secondary 
data sources. Financial analysts focusing on these regions, in turn, depend 
heavily on primary documents issued by companies. Such reliance leads 
to a workload bottleneck due to the manual, time-intensive process 
of extracting valuable data from unstructured or poorly formatted 
documents. Implementing automatized, intelligent methods to recognize 
and extract contents could mitigate this problem. Hence, we sought to 
thoroughly review the underlying algorithms of select machine learning 
(ML) and natural language processing (NLP) technologies and apply them 
in experiments conducted on a real-life dataset comprised of quarterly and 
annual reports from firms operating in exotic markets.

2 Historical development of content recognition

Various approaches for detecting tables in images were devised throughout 
the years - Dengel et al. [1] proposed a method to cluster word boundaries 
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into a segmentation graph for table detection. However, that failed in the 
face of multi-column layouts. Wangt et al. [2] proposed using the distance 
between consecutive words as a heuristic in determining table entity 
candidates. However, such a method is inevitably tied to a specific layout 
template, which hinders its practical application. Gatos et al. [3] proposed 
using the intersection area between horizontal and vertical lines to 
reconstruct the intersectional pairs. However, this system was said to overly 
rely on the visual cues provided by strict, defining table borders.  Ultimately, 
deep learning methods were implemented when Hao et al. [4] proposed 
a regional proposal network using CNNs, which later adapted the faster 
R-CNN architecture to segment table regions in a given image. Building 
on this, Watson and Liu proposed a table alignment process involving 
organizing disjoint text segments into columns by creating disjoint sets and 
merging them using an algorithm.

A research survey conducted in a paper by Kasem et al. [5] has 
established that ML and deep learning technologies have been effective 
in computer vision research tasks such as object detection and object 
position estimation. CNN, one of the most widely-used types of neural 
networks, can use the fundamental properties of actual signals, such 
as translation invariance and compositional hierarchies. A typical CNN 
comprises a hierarchical structure and numerous layers for learning data 
representations at different levels of abstraction [6]. The efficacy of CNNs 
in object identification, the researchers assert, is based on the ability to, 
through training on large amounts of data, learn substantial mid-level visual 
properties, which are more complex patterns such as textures and shapes, 
rather than hand-crafted low-level representations, such as edge detectors, 
often used in image categorization. Deep learning models are now widely 
used in multiple areas, including general table detection [4]. On the other 
hand, table structures receive far less attention, and the table structure is 
typically only characterized by the rows and columns of a table [7].

3 Summary of state-of-the-art algorithms

In this section, we survey modern NLP and ML technologies and review 
and describe the subtleties and principles behind their algorithms. Owing 
to their widespread use in practice, the tools selected for the work are 
LayoutLM, OpenCV, Camelot, pdfplumber, and Google Document AI. 
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In their 2020 work, Xu et al. [8] proposed LayoutLM, a pre-training 
technique with text and layout information in a single framework that 
utilizes Transformer architecture as the backbone. It is inspired by the 
BERT model, which represents text using embeddings. According to the 
researchers, LayoutLM extends the principle by using multimodal inputs, 
including token, layout, and image embeddings. For the experiments, the 
LayoutLMv3 version was used. The model works by processing text using 
an OCR toolkit to extract content and 2D positional information. Word 
embeddings are then initialized using a pre-trained RoBERTa model. The 
layout positions are applied at the segment level, where words in the 
same segment share the same 2D position, as opposed to word-level 
positions used in previous versions like LayoutLM and LayoutLMv2. Image 
embeddings are generated by applying linear projections to image patches, 
which helps to reduce computational complexity compared to previous 
versions that used CNNs, like Faster R-CNN. Images are then resized, split 
into patches, and flattened into a sequence of vectors. Semantic 1D relative 
position and spatial 2D relative position are introduced as bias terms in self-
attention networks for both text and image modalities, which follows the 
previous approach in LayoutLMv2.

Another tool used for data extraction in financial documents is OpenCV, a 
real-time computer vision programming function library initially launched by 
Intel in 1999 [9]. The tool provides numerous image manipulation, analysis, 
and data extraction methods. Mat class serves as the main data structure 
in OpenCV for the storage and manipulation of images and matrices. It 
holds pixel values and handles memory management by automatically 
allocating memory as necessary. It also supports reference counting, 
allowing efficient memory use by preventing redundant copying of image 
data when objects are passed by reference. Histograms are commonly 
used for image processing, representing the distribution of pixel intensity 
in an image. Additionally, OpenCV supports techniques such as Fourier 
transform to analyse the frequency content of an image. By decomposing 
an image into its frequency components, algorithms can be designed to 
filter out unwanted noise or enhance certain features. Hough transform is 
also implemented in OpenCV and is used to detect geometric shapes in 
an image. OpenCV also provides Edge detection as another fundamental 
image processing technique - a canny edge detector combines gradient 
calculation with non-maximum suppression to detect edges accurately 
while reducing noise.
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Pdfplumber is an open-source Python library created to extract 
information from PDF documents. It was created by Singer-Vine and was 
initially released in 2016 [10]. Pdfplumber builds on top of pdfminer, another 
PDF processing library. The approach is heavily inspired by Nurminen’s 
master’s thesis [11]. In essence, for any PDF page, either actual lines, which 
are explicitly defined and give the table a grid-like structure, or invisible lines 
implied by word alignment are found. Overlapping or nearly-overlapping 
lines are merged, and intersections of all these lines are found. The most 
granular set of rectangles, which use the intersections as vertices, are found, 
and contiguous cells are then grouped into tables. Pdfplumber recognizes 
lines in a PDF by parsing the document’s raw content streams to identify 
vector graphics commands corresponding to line-drawing operations. 
These instructions are then decoded by extracting the coordinates, 
orientation, and thickness of lines explicitly defined in the document. The 
extracted line objects are then interpreted, and the positioning of the text 
element is examined further to infer implied lines where no explicit borders 
are present. Text alignment and spacing are analysed to identify patterns 
that might imply grid structures.

Camelot, a Python library for data extraction from PDFs, was created by 
Vinayak Mehta [12]. Camelot offers two table parsing methods, Stream and 
Lattice, each designed to accommodate different PDF table structures. The 
Stream method, best used for tables that do not have visible borders but 
instead rely on whitespace between cells to create a table structure, works 
by grouping words on the PDF page into rows based on their y-axis overlaps. 
It then calculates text edges to identify areas that could contain tables. The 
number of columns is estimated by calculating the mode of the word count 
in text rows, thus determining column ranges. The words are then assigned 
to columns based on whether they fall within the calculated x and y ranges. 
The lattice method is more suitable for tables with visible cell borders, 
relying on precise line detection and geometric calculations. It works by 
converting the page into an image using Ghostscript. The algorithm then 
detects horizontal and vertical line segments by applying transformations 
such as erosion and dilation. The detected lines are processed to identify 
intersections, marking the boundaries of table cells. They are scaled and 
translated back to the file’s coordinate space to create a representation of 
the table. Spanning cells are then identified, and the words are assigned to 
the correct table cells based on their x and y coordinates. 
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The Document AI platform is a unified document processing console 
launched by Google Cloud, the cloud computing division of Google, 
in November 2020 [13]. The platform aims to automate and validate 
documents by providing access to document parsers, tools, and solutions 
via an API. Because of the proprietary nature of the application, the table 
extraction algorithms used by Google Document AI are not disclosed to the 
public and, therefore, were not reviewed in our work. 

The previously described table data extraction methods differ in 
some ways yet have similarities. Regarding the data extraction approach, 
pdfplumber and Camelot are similar because both libraries do rule-based 
parsing, where predefined rules are used to identify and extract specific 
structures or patterns from documents. OpenCV operates utilizing the 
approach of low-level image processing, while LayoutLM uses a multimodal 
transformer architecture that integrates text and visual embeddings for 
document understanding. LayoutLMv3 and Google Document AI are better 
suited for complex documents with rich layouts and can handle visual and 
textual data. Camelot and pdfplumber rely on line detection for grid-based 
structures, although Camelot’s Stream method is optimized for whitespace-
based tables, while Lattice is tailored for bordered table layouts. OpenCV 
uses pixel-level manipulation (such as detection of edges or contour 
analysis) to identify lines or shapes.

4 Experiments

An original dataset consisting of 7 selected PDF format financial documents 
published by different companies in Central and Eastern Europe and 
Latin America was compiled and used for our experiments. The files were 
quarterly or annual reports published in financial periods from 2018 to 
2022. The eight selected tables consisted of the main parts of financial 
statements (statements of income and loss, financial position, and cash 
flows), notes, and appendices and were in English. Using a Python API, a 
ground truth version of the tables and their text content was extracted and 
reviewed manually.

In order to test the selected tools, five scripts were written in Python, 
each using a different tool to recognize text and extract tables from PDF 
pages into a spreadsheet. For LayoutLMv3, the FUNSD dataset was used for 
the training process, which focuses on form understanding [14]. However, 
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the model cannot perform text recognition, so the Tesseract OCR engine 
was additionally integrated, which renders high-resolution images of PDF 
format file pages and performs optical character recognition (OCR) to detect 
text and bounding boxes [15]. This consideration also applies to OpenCV. 
Since it does not perform OCR, Tesseract was also used to extract text 
and bounding box information from the document images in the OpenCV 
implementation. Custom functions were developed to merge extracted 
text boxes when they were sufficiently close in terms of coordinates, 
improving the coherence of detected text blocks. For Google Document 
AI, a Form Parser processor was selected to process the document, which 
was developed for the extraction of tables and is best suited for table data 
recognition and extraction [16]. Pdfplumber, a library developed explicitly 
for text extraction from searchable .pdf files and table extraction, offered 
ample table extraction settings. Because most tables in the dataset were 
borderless, we used vertical and horizontal strategy values of “text” for 
the pdfplumber function extract_tables(), which allowed the library to aim 
specifically to identify columns in borderless tables. In the implementation 
of Camelot, another Python library specifically made to extract tables, 
there was also little need for pre-processing as the PDF files were simply 
processed using a library function read_pdf(). The previously discussed 
Stream method, which is more suitable for tables without explicit borders, 
was chosen. Finally, algorithms were created to evaluate the tables using 
the defined metrics.

 To assess the accuracy of the selected tools, three metrics were defined: 
1. Symbol accuracy is defined as correctly output characters divided 

by all output symbols. It was evaluated by comparing the lists of 
characters for each cell to those from the ground truth.
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2. Word accuracy is defined as the proportion of correctly output 
words (which we define as ordered lists of characters divided by 
blank characters) to the total number of output words in the table. 
This and the symbol accuracy metrics are based on the metrics used 
by Rupšys in his bachelor thesis [17]
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3. Table accuracy metric to evaluate the structural integrity of tables 
has been established based on the content accuracy metric used by 
Smock et al. [18]. By calculating the share of correct cells, we can 
deduce whether the output table retained the correct structure of 
the original.
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 Table accuracy structural integrity

𝑇𝑇𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝐶𝐶𝑁𝑁𝑦𝑦𝑦𝑦𝑆𝑆 𝑖𝑖𝑖𝑖 𝐶𝐶𝑦𝑦𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴𝐶𝐶 𝑅𝑅𝑁𝑁𝑦𝑦𝐴𝐴𝐶𝐶𝑖𝑖𝑅𝑅𝑁𝑁 𝑃𝑃𝑦𝑦𝑆𝑆𝑖𝑖𝐶𝐶𝑖𝑖𝑦𝑦𝑖𝑖
𝑇𝑇𝑦𝑦𝐶𝐶𝐴𝐴𝑦𝑦 𝑁𝑁𝐴𝐴𝑦𝑦𝑦𝑦𝑁𝑁𝐴𝐴 𝑦𝑦𝑜𝑜 𝐶𝐶𝑁𝑁𝑦𝑦𝑦𝑦𝑆𝑆

It was found that, regarding the accuracy of the table structure, Camelot 
strongly outperformed the peer group with a simple average accuracy of 
90.0%, as seen in table 1. Google Document AI also provided tables that 
may be considered satisfactory in terms of structure at 72.8%. LayoutLM 
resulted in the least accurate table structure at 34.3%. In terms of symbol 
accuracy seen in table 2, Camelot was strongest among the peer group as 
well, with a simple average accuracy of 93.0%; Google Document AI also 
outputs sufficiently accurate tables in terms of symbols at 81.3%. LayoutLM 
resulted in the least accurate table structure at 23.3%. Lastly, as seen in 
table 3, the word accuracy is highly correlated with the symbol metric: 
Camelot performed best in terms of correct words with a 92.1% accuracy. 
Tables obtained using LayoutLM, which was combined with Tesseract for 
optical character recognition, provided the lowest average word accuracy 
at 21.0%. 

Table 1. Percentages of identical cells (table accuracy).

Table ID Total 
Cells Camelot Google LayoutLM OpenCV Pdfplumber

1 165 97.0% 44.2% 57.6% 79.4% 91.8%

2 161 84.5% 87.0% 44.1% 17.4% 77.0%

3 136 98.5% 84.6% 13.3% 72.8% 32.5%

4 96 84.0% 59.4% 44.8% 48.0% 68.0%

5 96 93.8% 93.8% 53.1% 74.0% 5.8%

6 252 97.2% 89.3% 42.6% 24.6% 15.5%

7 168 88.7% 57.7% 14.9% 62.5% 48.8%

8 84 76.2% 66.7% 3.6% 51.2% 21.4%

Average - 90.0% 72.8% 34.3% 53.7% 45.1%
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Table 2. Percentages of correctly output symbols.

Table ID
Total 
Cells

Camelot Google LayoutLM OpenCV Pdfplumber

1 165 98.6% 58.9% 36.0% 91.8% 94.5%

2 161 83.9% 92.9% 38.7% 35.7% 71.3%

3 136 96.8% 89.1% 3.2% 79.7% 58.4%

4 96 86.8% 66.9% 20.3% 52.6% 52.4%

5 96 93.2% 87.1% 35.2% 86.1% 5.9%

6 252 98.0% 88.4% 22.5% 42.0% 7.6%

7 168 89.9% 74.0% 14.5% 67.4% 63.5%

8 84 96.5% 93.1% 16.3% 85.1% 40.6%

Average - 93.0% 81.3% 23.3% 67.5% 49.3%

Table 3. Percentages of correctly output words.

Table ID Total 
Cells Camelot Google LayoutLM OpenCV Pdfplumber

1 165 97.4% 54.9% 39.4% 81.9% 93.3%

2 161 81.1% 90.6% 23.2% 31.3% 69.5%

3 136 96.3% 83.3% 0.5% 69.9% 45.4%

4 96 85.5% 65.9% 21.0% 50.7% 54.4%

5 96 91.2% 86.1% 38.7% 77.4% 0.0%

6 252 96.9% 86.9% 19.8% 22.8% 0.0%

7 168 92.3% 72.1% 12.4% 64.7% 58.1%

8 84 96.0% 88.5% 13.0% 80.0% 37.5%

Average - 92.1% 78.5% 21.0% 59.8% 44.8%

5 Conclusion

The overview of the state-of-the-art literature on the topics of NLP and ML 
in table data extraction, taken together with our practical experiments, has 
led us to conclude that while deep learning and ML are widely used in table 
detection, the research on table structures, in particular, has yet to receive 
wide attention. Regarding the tools used in the experiment, the setup for 
pdfplumber, Camelot, and Google Document AI is relatively straightforward 
and quick. Camelot and pdfplumber were the easiest to implement in 
practice. In contrast, LayoutLM and OpenCV demand more effort and are 
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time-intensive because of requirements such as model training. In terms 
of table structure and symbol and word accuracy, Camelot performed 
the task of data extraction from tables the best. Along with Camelot, it 
was established that Google Document AI is also an acceptable venue for 
obtaining tables of satisfactory accuracy.
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