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Summary. This study evaluates the performance of various speech-to-text 
models for Lithuanian transcription, focusing on how audio formats and 
recording environments affect their accuracy. Among the models tested, 
Google’s Chirp-2 demonstrated the highest accuracy under optimal conditions. 
However, its performance declined with increased playback speeds and in 
environments with significant background noise, highlighting the importance of 
controlled recording conditions for effective deployment of STT systems in real-
world applications.
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1 Introduction

In the past decade, artificial intelligence accelerated the application of speech-
to-text (STT) and inspired the development of STT services that convert 
natural spoken language into text. STT is applicable to various areas where 
human interaction with computers and other digital devices is necessary, 
such as healthcare [1, 2, 3], education [4,5], etc. This technology enhances 
system services, improves content accessibility, and enables automated 
documentation without the need for human interpretation. However, 
a major challenge remains: most STT models have been predominantly 
developed and evaluated for English, which limits their effectiveness when 
applied to other languages, including Lithuanian [6]. In recent years, efforts 
have been made to develop increasingly accurate Lithuanian STT models 
despite limited training data [7]. Additionally, large-scale projects such as 
LIEPA-3 are creating extensive Lithuanian speech corpora to further improve 
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training resources for STT systems [8]. The objective of this research is 
twofold. First, it seeks to determine which existing STT model yields the 
highest transcription accuracy for the Lithuanian language. Second, it aims 
to analyze how various audio parameters—including technical specifications 
like sampling rate and bit depth, as well as environmental conditions such 
as room acoustics and ambient noise—influence transcription accuracy. 

2 Research methodology 

To describe the standardized methodology applied throughout this research 
is essential because this approach ensured consistent recording conditions 
and established a robust pipeline for transcription evaluation.

All recordings utilized an identical 226-word Lithuanian script focused 
on topics related to local nature and culture, including specific references 
to regional objects. A native Lithuanian speaker conducted every recording 
from a fixed distance of 60 centimeters from the microphone. Room noise 
levels were measured using the NIOSH Sound Level Meter App, which 
resulted in three distinct sets of recordings: one set consisted of three 
baseline recordings in a quiet room at approximately 30 dB, with durations 
of 2.02 min, 2.06 min, and 2.03 min.  Another set comprised three recordings 
with “Coffee Shop Background Noise,” maintaining a constant ambient noise 
level of around 50 dB and their durations were 1.50 min, 1.55 min, and 2.02 
min. The final set involved three recordings in a naturally echoey room, also 
at approximately 30 dB but with noticeable acoustic reverberations and 
their durations were 2.04 min, 1.04 min, and 2.01 min.

The baseline audio files then underwent additional processing based 
on experimental conditions, as illustrated below in Figure 1. In Test 1, audio 
files were exported in FLAC format at 48 kHz, with a 24-bit depth and a 
mono channel. Test 2 maintained these FLAC settings but varied the channel 
counts between mono and stereo. Tests 3 and 4 followed the configurations 
detailed in Figure 1, involving variations in sampling rates, bit depths, and 
audio compression formats. Meanwhile, Tests 5 and 6 utilized FLAC files at 
16 kHz and 16-bit depth (mono), which were modified to assess playback 
speed variations along with additional environmental factors such as echo 
and background noise.

Controlled parameters—such as the speaker-to-microphone distance 
and ambient noise measurements—were essential to ensure that any 
observed differences in transcription accuracy could be attributed solely to 
the tested experimental variables.
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Following the generation of the audio samples, all recordings were 
processed through a uniform transcription pipeline, as outlined below in 
Figure 2. In this phase, each audio file was asynchronously submitted to the 
selected STT models operating in their default configurations. The resulting 
transcripts, along with a reference transcript, underwent a standardized 
normalization process that included:

1. Converting all text to lowercase
2. Removing punctuation
3. Eliminating extra spaces (leading, trailing, or redundant)

Accuracy metrics were calculated using the JiWER Python library, 
comparing the normalized model outputs against the normalized reference 
transcripts. The following metrics were recorded: Word Error Rate (WER), 
Character Error Rate (CER), and Real-Time Factor (RTF). These metrics 
calculation and interpretation are detailed in section 3.

Figure 2 encapsulates this transcription and evaluation workflow, 
underscoring the methodical approach taken to process each audio input 
and compute the metrics.

Figure 2 outlines this transcription and evaluation workflow, emphasizing 
the systematic approach taken to accurately assess the impact of different 
audio characteristics on transcription performance. Overall, the described 
methodology ensures reliable and comparable results across varied testing 
conditions, thereby enabling clear insights into how specific audio attributes 
influence the accuracy and efficiency of STT models.

3 Metrics for Speech-based Models

In this investigation, the results were validated with a wide range of 
evaluation metrics, such as acoustic and text-based metrics, which allows 
to compare different STT models. One of them is word error rate (WER) 
is calculated using Levenshtein distance between word [9]. In Levenshtein 
distance, we count the number of insertions (I), substitutions (S) and 
deletions (D) performed to equal two-word sequences. WER is calculated 
by this formula present in (1). Lower values of WER are preferred since they 
indicate an STT model that makes fewer errors.

3 Metrics for Speech-based Models 

𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑆𝑆+𝐷𝐷+𝐼𝐼
𝑁𝑁   (1)

Where S = the number of substitutions required to change the hypothesis 
string to the reference string, D = the number of necessary deletions, I = the 
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number of insertions, and N = the total number of words in the reference 
string [10].  Other metrics that complement the widely used WER to evaluate 
the performance of STT model are character error rate (CER). CER measures 
the edit distance between the recognized text and the reference text at 
the character level, where substitutions (S), deletions (D), and insertions (I), 

3 Metrics for Speech-based Models 

𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑆𝑆+𝐷𝐷+𝐼𝐼
𝑁𝑁

Figure 2. Audio transcription and evaluation pipeline.
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respectively, at the character level [11]. The CER is calculated as (2) formula, 
and with lower values indicating better performance of STT model.

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑆𝑆+𝐷𝐷+𝐼𝐼
𝑁𝑁    

𝐶𝐶𝑅𝑅𝑅𝑅 = 𝑇𝑇
𝐷𝐷     

RTF<1.0 are preferred since values≥1.0 indicate that the decoding (transcribing) an audio file 

4 Analysis of Experimental Results 

Test 1

 
 
 
 
 

The selection criteria emphasized the providers’ market 
Tilde’s specific focus on Baltic region languages.

Provider Model WER CER RTF 

  (2)

In addition to the accuracy indicator, the real time factor (RTF) is another 
important performance indicator and it applied to measure the speed of a 
system that processes an input audio signal. The RTF is the ratio of the time 
taken to process a speech to the duration of that speech, and the lower the 
value is, the better the real-time performance of text extraction. The RTF 
can be defined as:

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑆𝑆+𝐷𝐷+𝐼𝐼
𝑁𝑁    

𝐶𝐶𝑅𝑅𝑅𝑅 = 𝑇𝑇
𝐷𝐷     

RTF<1.0 are preferred since values≥1.0 indicate that the decoding (transcribing) an audio file 

4 Analysis of Experimental Results 

Test 1

 
 
 
 
 

The selection criteria emphasized the providers’ market 
Tilde’s specific focus on Baltic region languages.

Provider Model WER CER RTF 

   (3)

Where T is time to transcribe the audio file and D is duration of the audio 
file [8]. Values of RTF<1.0 are preferred since values≥1.0 indicate that the 
decoding (transcribing) an audio file takes a larger amount of time than the 
duration of the audio itself. 

4 Analysis of Experimental Results

This section provides an in-depth analysis of the experimental results, 
beginning with the identification of the optimal STT model for Lithuanian 
transcription and continuing with a detailed examination of how various 
audio configurations and environmental conditions affect transcription 
accuracy.

Test 1 identified the best STT Model for the Lithuanian language.
The goal of this test was to determine which of the five selected STT 

models provides the highest transcription accuracy for the Lithuanian 
language. By comparing performance across these models, the optimal 
candidate was chosen to serve as the baseline for subsequent experiments 
involving modifications in audio quality. The selected models were based on 
their explicit support for Lithuanian language. The models evaluated were:

1. OpenAI: GPT-4o-transcribe
2. Google: Chirp-2
3. Amazon Web Services: unknown
4. Microsoft: Whisper Large V2
5. Tilde: unknown 
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The selection criteria emphasized the providers’ market scale and 
reputation, as well as Tilde’s specific focus on Baltic region languages.

The results presented in Table 1 reflect the average performance across 
the three audio recordings.

Table 1. STT Model Accuracy Comparison.

Provider Model WER CER RTF

OpenAI GPT-4o-transcribe 0.196 0.053 0.083

Google Chirp-2 0.093 0.033 0.086

Amazon Web Services Unknown 0.133 0.044 0.112

Microsoft Whisper Large V2 0.342 0.217 0.519

Tilde Unknown 0.323 0.211 0.591

The results indicate that Google’s Chirp-2 outperforms the other models, 
achieving the lowest WER (0.093) and CER (0.033). Although OpenAI’s GPT-
4o-transcribe demonstrated a slightly lower RTF (0.083) compared to Chirp-2 
(0.086), its error rates were considerably higher, making it less favorable for 
accurate transcription. The unnamed models from Amazon Web Services, 
Microsoft, and Tilde showed progressively poorer performance with higher 
error rates and, in the case of Microsoft and Tilde, substantially higher RTFs, 
suggesting slower processing times unsuitable for efficient transcription 
tasks.

In conclusion, the evaluation establishes Google’s Chirp-2 as the optimal 
STT model for Lithuanian transcription under controlled conditions. Its 
superior accuracy, combined with competitive processing speed, renders it 
the preferred choice for further experiments involving the impact of audio 
quality modifications and environmental factors.

For Tests 2 through 5, the same set of audio recordings and normalization 
procedures as described in Test 1 were employed. In these tests, only the 
performance of Google’s Chirp-2 was evaluated, and transcription accuracy 
was quantified solely using Word Error Rate (WER) and Character Error Rate 
(CER). Each result represents the average performance across the three 
audio recordings.

Test 2 investigated whether the number of audio channels influences 
transcription accuracy. The recordings were processed in both mono (one 
channel) and stereo (two channels) configurations using Chirp-2 model. The 
results, summarized in Table 2 below, indicate that there is no discernible 
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difference in performance between the two configurations. Both mono 
and stereo recordings yielded identical error rates (WER of 0.093 and CER 
of 0.033), suggesting that mono recordings are sufficient for accurate 
transcription while offering advantages in terms of file size.

Table 2. Channel Count Impact.

STT model Channel count WER CER

Chirp-2
1 0.093 0.033

2 0.093 0.033

Test 3 examined the impact of varying FLAC audio settings on 
transcription accuracy. In this test, the FLAC files were exported using 
different combinations of sampling rates (16kHz, 32kHz, and 48kHz) and 
bit depths (16-bit and 24-bit). Table 4 shows that the optimal performance 
was achieved with both 16kHz/16-bit and 16kHz/24-bit configurations, each 
resulting in a WER of 0.088 and a CER of 0.031. Since lower sampling rates 
and bit depths produce smaller file sizes without compromising accuracy, 
the 16kHz, 16-bit configuration was selected as the optimal setting for 
subsequent evaluations. 

Table 3. FLAC Audio Settings Impact.

STT model Sampling Rate & Bit Depth WER CER

Chirp-2

16kHz, 16bit 0.088 0.031

16kHz, 24bit 0.088 0.031

32kHz, 16bit 0.089 0.032

32kHz, 24bit 0.092 0.033

48kHz, 16bit 0.092 0.033

48kHz, 24bit 0.092 0.033

Test 4 focused on the effect of MP3 compression settings on transcription 
accuracy. The original recordings were converted to MP3 format under 
various configurations, varying both sampling rates (16kHz, 32kHz, and 
48kHz) and bitrates (64, 128, and 192 kbps), while maintaining mono audio. 
Table 3 presents the average WER and CER for each configuration. The 
findings demonstrate that transcription accuracy remains relatively stable 
across the different MP3 settings. With an average WER of approximately 
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0.091 and a CER of about 0.032, these results imply that MP3 compression 
does not significantly impair the performance of Chirp-2, thereby providing 
flexibility in the choice of audio compression without a major impact on 
accuracy. Note: The configuration 16kHz, 192kbps is not included in the 
table because Audacity did not support exporting audio with this specific 
combination.

Table 4. MP3 Compression Settings Impact.

STT model Sampling Rate & Bitrate WER CER

Chirp-2

16kHz, 64kbps 0.088 0.032

16kHz, 128kbps 0.089 0.032

16kHz, 192kbps - -

32kHz, 64kbps 0.093 0.034

32kHz, 128kbps 0.093 0.034

32kHz, 192kbps 0.093 0.033

48kHz, 64kbps 0.091 0.032

48kHz, 128kbps 0.092 0.032

48kHz, 192kbps 0.092 0.032

Test 5 assessed the effect of altering the playback speed of the recordings 
on transcription accuracy. Under baseline conditions—using the normal 
playback speed with optimal FLAC settings (16kHz, 16bit)—the transcription 
achieved a Word Error Rate (WER) of 0.088 and a Character Error Rate 
(CER) of 0.032. The audio samples were then artificially accelerated to 1.5x 
and 2.0x their original speed while retaining these settings. As shown in 
Table 5, at a 1.5x speed-up, the WER increased to 0.140 and the CER to 
0.058, corresponding to an approximate increase of 59% in WER and 81% 
in CER relative to the baseline. When the playback speed was doubled to 
2.0x, transcription performance deteriorated even further, with the WER 
rising to 0.286—a 225% increase over baseline—and the CER climbing to 
0.148, representing an increase of approximately 362.5%. These results 
underscore the model’s sensitivity to changes in speech rate, confirming 
that acceleration negatively impacts transcription accuracy compared to 
the normal playback regime.
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Table 5. Playback Speed Impact.

STT model Speed WER CER

Chirp-2
1.5x 0.140 0.058

2.0x 0.286 0.148 

Test 6 evaluated the impact of environmental factors on transcription 
accuracy. Recordings were conducted under two distinct conditions: one in 
an echoey room selected for its natural acoustic reverberations, and another 
in a setting where “Coffee Shop Background Noise” was played to create 
a constant ambient noise level of approximately 50 dB. These conditions 
were compared against the baseline performance achieved under optimal 
recording conditions (WER of 0.088 and CER of 0.031).

As depicted in Table 6, under the echo condition, the transcription 
accuracy decreased slightly, with the WER increasing to 0.105 and the CER to 
0.035—representing approximate increases of 19% and 13%, respectively, 
relative to baseline. In contrast, the background noise condition had a more 
pronounced effect, with the WER rising to 0.162 and the CER to 0.075. This 
corresponds to increases of about 84% in WER and 142% in CER compared to 
the optimal baseline. These results clearly indicate that while a modest echo 
exerts a minor impact on transcription accuracy, significant background 
noise substantially degrades performance, highlighting the importance 
of maintaining controlled acoustic environments for high-accuracy STT 
applications.

Table 6. Environmental Conditions Impact.

STT model Room setting WER CER

Chirp-2
Echo 0.105 0.035

Noise 0.162 0.075

5 Conclusions

In evaluating various STT models for Lithuanian transcription, Google’s 
Chirp-2 emerged as the top performer, achieving the lowest WER of 0.093 
and CER of 0.033. Subsequent analyses provided several key insights:

Firstly, the configuration of audio channels—whether mono or stereo—
showed no impact on transcription accuracy, with both setups yielding 
identical WER and CER values. This suggests that mono recordings are 
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sufficient for accurate transcription while offering advantages in terms of 
smaller file sizes.

Secondly, among the FLAC audio settings tested, both 16kHz/16-bit and 
16kHz/24-bit configurations achieved optimal performance, each resulting 
in a WER of 0.088 and a CER of 0.031. Given that the 16-bit setting produces 
smaller file sizes without compromising accuracy, it is recommended for 
efficient storage and processing.

Thirdly, varying MP3 compression settings, including different sampling 
rates and bitrates, demonstrated no significant influence on transcription 
accuracy. All configurations consistently yielded approximately a 0.091 
WER and 0.032 CER, comparable to the lossless FLAC format. Notably, for 
both MP3 and FLAC formats, lower sampling rates resulted in slightly better 
accuracy. 

However, increasing playback speed adversely affected transcription 
quality. At 1.5× speed, the WER increased by 59% and the CER by 81%. At 
2.0× speed, the degradation was even more pronounced, with WER rising by 
225% and CER by 362.5%.

Environmental conditions also played a significant role in transcription 
accuracy. Moderate echo led to a modest 19% increase in WER, while 
substantial background noise resulted in severe degradation, with WER 
increasing by 84% and CER by 142%.

Overall, while Chirp-2 demonstrates great performance under ideal 
conditions, it remains sensitive to variations in playback speed and 
environmental noise. These findings underscore the importance of 
controlled recording environments and appropriate playback settings for 
the effective real-world deployment of STT systems.
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