
Quality Evaluation of Large Language
Models Generated Unit Tests:
Influence of Structured Output

Dovydas Marius Zapkus, Asta Slotkienė

Vilnius University,
Universiteto g. 3, Vilnius
marius.zapkus@mif.stud.vu.lt

Summary. Unit testing is critical in software quality assurance, and large
language models (LLMs) offer an approach to automate this process. This paper
evaluates the quality of unit tests generated by large language models using
structured output prompts. The research applied six LLMs in generating unit
tests across different classes of cyclomatic complexity of C# focal methods.
The experiment result shows that LLMs generated results according to a strict
structure output (Arrange-Act-Assert pattern) that significantly influences the
quality of the generated unit tests.

Keywords: large language model, unit test, quality metrics, structured prompt
output

1 Introduction

Unit testing is crucial to ensuring the quality of software code units.
Consequently, various automated unit test generation tools and large
language models (LLMs) have demonstrated promising results and
capabilities in unit test generation [1]. Nevertheless, LLM-based unit test
generation encounters challenges in generating robust unit tests.

This paper investigates the quality of unit tests generated by LLMs
(Gemini-2.0-flash, GPT-4o, GPT-4o-mini, Llama-3.3-70 b-versatile, Qwen-
2.5-32b, Qwen-2.5-coder-32b) when prompted to produce output in a
structured format. There have already been attempts to investigate the
structures of the prompts, and it was shown to influence the reliability
and accuracy of the output [3, 4, 6]. Our experiment showed that LLMs
generated results according to a strict structure output (Arrange-Act-Assert
pattern) that significantly influences the quality of the resulting tests.

Copyright © Dovydas Marius Zapkus, Asta Slotkienė, 2025. Published by Vilnius University Press. This is an Open Access article
distributed under the terms of the Creative Commons Attribution License (CC BY), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are credited.
DOI: https://doi.org/10.15388/LMITT.2025.32

https://doi.org/10.15388/LMITT.2025.32

282 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

2 Research Methodology

The research investigated the effectiveness of LLMs in generating unit tests
by addressing three research questions (RQs). These research questions
allow us to systematically evaluate the capabilities of six different LLMs in
generating unit tests by considering key performance and quality metrics.
The research questions are as follows.

• RQ1: How effective are the LLMs in unit test generation according to
focal method complexity?

• RQ2: How effectively do the generated unit tests cover the focal
method?

• RQ3: How robust are the generated unit tests?

Investigating RQ1, we try to analyze whether the cyclomatic complexity of
the focal method under test impacts the different LLMs abilities to produce
effective unit test cases, helping to understand the relationship between
method complexity and test generation performance. The second research
question (RQ2) will assess the capability of generated tests to fully cover
code lines and code branches and show the carefulness of automatically
generated test suites. Developing robust unit tests for various types of
changes so that they can be retested with small changes and run across a
series of system versions is significant for the improvement of the software
development process [2]. This is the answer we are looking for with RQ3. To
develop unit tests that are robust to various types of changes so that they
can be executed with small changes and across a series of system versions

Figure 1. Research methodology diagram

The research utilized real-world projects implemented in the C#
programming language from the GitHub repository. The research began
with manual retrieval of C# code segments (see Figure 1, first step), and
with the realized template, the code was divided into focal methods and
categorized according to the values of cyclomatic complexity (CC). When the
cyclomatic complexity threshold is 10, the method is considered simple and
straightforward to test. Between 11-19 threshold, is the moderate method,

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 283

and a threshold of 25 indicates that the method is overly complex and may
require refactoring to improve testability. To test evaluation metrics on C#
code, an entire project containing focal methods and focal method tests is
required; thus, we created a project template into which focal methods and
generated unit test methods can be injected. For the testing environment,
we used Python with the PydanticAI library [7], which allowed us to define
the structure of an object (see Figure 2). In this case, the object was a unit
test using the Arrange-Act-Assert template for the structured response. This
object could then be further used to inject generated unit tests into the C#
testing project (see Figure 1, 2nd step).

The prompt engineering for an LLM involves the context and instruction of
the task and should be well designed to guide the result of the desired output
and have a marked effect on the responses generated by the model [3]. As
shown in Figure 2, the prompt consists of these components: instructions (task
and structure relevant), input and output [5]. The instruction part clearly states
the task, setting the tone for the model response, while the input provides the
necessary context or specific examples. In this context, the instruction is struc-
ture-related and shapes the format and structure of the LLM response.

Figure 2. LLM prompt definition

284 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

In this research, six large language models were selected: GPT-4o-mini,
GPT-4o, Gemini-2.0-fl ash, Llama.3.3-70b-versatile, Qwen-2.5-32b, Qwen-2.5-
coder-32b [8-12]. None of the parameters of these models were modifi ed,
meaning they were used as is out of the box. We used three diff erent LLM
API providers to integrate and execute prompts on selected models in our
research: OpenAI API, Gemini Developer API, Groq API (see Figure 1, 3rd
step). Unit tests collected from these providers were validated with the
PydanticAI library and then injected into the C# testing project.

In this research, the quality of the generated unit tests was leveraged to
widely used metrics to fi nd answers to the fi ndings.

RQ1: the count of unit tests generated using the method of cyclomatic
complexity;

RQ2: line coverage, branch coverage, mutation coverage;
RQ3: killed mutants, surviving mutants.

All generated unit tests were validated for code compilation errors, and
afterwards, the tools for code quality metric analysis were executed (see
Figure 1, 4th step). For unit test code lines and branch coverage evaluation,
the C#/.NET coverage tool was used, and for performing robustness testing
of various mutations, Stryker.NET was applied.

3 Results

The analysis of experimental results began to fi nd the answer to RQ1. In
Table 1, we present the LLM test count generated for each method depending
on the class of cyclomatic complexity. It was noticed that the Gemini 2.0
fl ash model generated most unit tests for simple focal methods. Moving
onto the medium-cyclomatic complexity tasks, the qwen-2.5-coder model
has generated more tests than any other model. For the high-complexity
methods, once again, qwen-2.5-coder-32b was able to generate more tests,
followed by the Gemini-2.0-fl ash model, 38 and 35 tests, respectively. The
number of tests generated cannot be an accurate measure of the unit
test quality; therefore, in a further paragraph, the quality metrics of these
generated unit tests are discussed.

Regarding the RQ2, we evaluated the coverage of the lines, branches,
and mutations, which were measured by how many codes from the focal
method were covered by the unit tests generated. On simple cyclomatic
complexity, all investigated models could achieve 100% code lines, branch

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 285

and mutation coverage of focal methods. The challenges arise when the
focal method has a cyclomatic complexity value greater than 10. The results
of the coverages of moderate and complex CC of the focal methods are
presented in Figure 3.

Table 1. LLMs generated test counts for each varying cyclomatic complexity task.

Gemini-
2.0-fl ash

(1)

GPT-4o

(2)

GPT-4o-
mini
(3)

Llama-
3.3-70b-

versatile (4)

Qwen-2.5-
32b
(5)

Qwen-2.5-
coder-32b

(6)

Cyclomatic
complexity (class) S M C S M C S M C S M C S M C S M C

Generated tests
(count) 12 12 35 8 7 26 9 10 17 9 9 28 7 12 24 9 26 38

Where S is simple cyclomatic complexity (CC≤10), M is moderate cyclomatic complexity (CC is
between 11-19), and C is complex cyclomatic complexity (CC≥ 20).

3 Results

Gemini-2.0-
flash (1)

GPT-4o (2) GPT-4o-mini (3) Llama-3.3-70b-
versatile (4)

Qwen-2.5-32b
(5)

Qwen-2.5-
coder-32b (6)

Cyclomatic
complexity (class)

S M C S M C S M C S M C S M C S M C

Generated tests
(count)

12 12 35 8 7 26 9 10 17 9 9 28 7 12 24 9 26 38

(CC≤10)
(CC≥ 20).

3 Results

Gemini-2.0-
flash (1)

GPT-4o (2) GPT-4o-mini (3) Llama-3.3-70b-
versatile (4)

Qwen-2.5-32b
(5)

Qwen-2.5-
coder-32b (6)

Cyclomatic
complexity (class)

S M C S M C S M C S M C S M C S M C

Generated tests
(count)

12 12 35 8 7 26 9 10 17 9 9 28 7 12 24 9 26 38

(CC≤10)
(CC≥ 20).

Figure 3. Unit tests
quality metric results
with moderate (3a) and
complex (3b) CCs class
of focal methods.

A

B

286 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

From Figure 3a, we can observe that for the moderate complexity code
segments, only two models achieved 100 % code coverage, and only one
of the models, qwen-2.5-coder-32b, achieved 100 % branch coverage for
moderate difficulty methods. The qwen-2.5-coder-32b model also received
the highest mutation score for moderate difficulty unit tests at 71.74 %.
Unexpectedly, the GPT-4o model scored lower in branch coverage and
mutation score than its less capable model, GPT-4o-mini, scoring 85 and 89
% in branch coverage and 28.26 and 56.52 % in mutation score, respectively.
When analyzing the results of the coverage of the complex focal method, the
highest percentage of mutation coverage received by GPT-4o and GPT-4o-
mini at ~89%, and the qwen-2.5-coder-32b model achieved the third highest
mutation score at 80.39 % (see Figure 3b). It was noticed that the llama-
3.3-70b-versatile model could not compete with other models like GPT and
Gwen when introduced to moderate and complex CC of focal methods,
usually scoring lower in mutation coverage than competitors.

Looking for the answer to research question RQ3, we analyze the
robustness of generated unit tests when evaluating the count of generated
unit tests with killed and survived mutants of them.

Figure 4. Generated unit tests and their mutation robustness

where: 1- Gemini-2.0-flash, 2 - GPT-4o, 3 - GPT-4o-mini, 4 - Llama-3.3-70b-versatile, 5- Qwen-
2.5-32b, 6 - Qwen-2.5-coder-32b.

 Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai / 287

In Figure 4, it was observed that most mutants were killed by the GPT-
4o-mini, GPT-4o and Qwen-2.5-coder-32b models, meaning that these
models should have a higher mutation score than other models which did
not have as many mutants killed or had many of the mutants survive. Since
the mutation score measures the ‘strength’ of a test suite and characterizes
its bug detection abilities, it is highly likely that these tests generated by the
GPT-4o-mini, GPT-4o and qwen-2.5-coder-32b models are of higher quality,
meaning they are more likely to sufficiently cover focal methods under test.
The highest number of mutants that survived mutations were from models
from Llama-3.3-70b-versatile and Gemini-2.0-flash. Llama-3.3-70b-versatile
model had more mutations survive than mutations killed, indicating that
the unit tests generated by this model may not be ideal to adequately cover
test code.

Another observation was made when further analyzing the results; it
seems that the LLM mutation score on medium complexity task was lower
than for the high complexity task. It could be the case that the LLM had
more knowledge about testing the selected complex method; thus, the
medium method was not recognized as such. Another case could be that
the medium cyclomatic complexity task had more complex inner workings
for the LLM to test, compared to the high cyclomatic complexity task.

4 Conclusions

This paper analyzes the capabilities of unit tests generated by six LLMs
utilizing a structured output validation library (PydanticAI) and evaluates
their quality. The results of the experiment carried out indicate that all unit
tests generated achieve 100% code, branch, and mutation coverage when
the focal method has a simple cyclomatic complexity. The quality varies
considerably when faced with moderate and complex cyclomatic complexity
of methods. This research distinguishes the LLM model Gwen-2.5-coder-
32b, which achieves high branch coverage and mutation robustness of
generated unit tests across different method complexities.

Future work on the quality evaluation of LLMs-generated unit tests could
extend to assessment of assertion quality, including density, diversity, and
logical soundness.

288 / Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai

References

[1] Pan, R., Kim, M., Krishna, R., Pavuluri, R., & Sinha, S. (2024). Multi-language Unit Test
Generation using LLMs. arXiv preprint arXiv:2409.03093.

[2] Elbaum, S., Chin, H. N., Dwyer, M. B., & Jorde, M. (2008). Carving and replaying differential
unit test cases from system test cases. IEEE Transactions on Software Engineering, 35(1),
29-45.

[3] Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2023). Pre-train, prompt, and
predict: A systematic survey of prompting methods in natural language processing. ACM
computing surveys, 55(9), 1-35.

[4] Ryan, G., Jain, S., Shang, M., Wang, S., Ma, X., Ramanathan, M. K., & Ray, B. (2024). Code-
Aware Prompting: A Study of Coverage-Guided Test Generation in Regression Setting
using LLM. Proceedings of the ACM on Software Engineering, 1(FSE), 951-971.

[5] Sahoo, P., Singh, A. K., Saha, S., Jain, V., Mondal, S., & Chadha, A. (2024). A systematic
survey of prompt engineering in large language models: Techniques and applications.
arXiv preprint arXiv:2402.07927.

[6] Bhatia, S., Gandhi, T., Kumar, D., & Jalote, P. (2024, April). Unit test generation using
generative AI: A comparative performance analysis of autogeneration tools. In
Proceedings of the 1st International Workshop on Large Language Models for Code (pp.
54–61).

[7] Pydantic Team. (2024). PydanticAI: Agent Framework for Generative AI. Pydantic. https://
ai.pydantic.dev/

[8] OpenAI. (2024, July 18). GPT-4o mini: Advancing cost-efficient intelligence. OpenAI.
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

[9] OpenAI. (2024, May 13). Hello GPT-4o. OpenAI. https://openai.com/index/hello-gpt-4o/
[10] Kavukcuoglu, K. (2025, February 5). Gemini 2.0 model updates: 2.0 Flash, Flash-Lite, Pro

Experimental. Google. https://blog.google/technology/google-deepmind/gemini-model-
updates-february-2025/

[11] Meta. (2024, December 7). Model Cards and Prompt Formats – Llama 3.3. Llama. https://
www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/

[12] Qwen Team. (2024). Qwen2.5 Technical Report. arXiv preprint arXiv:2412.15115. https://
arxiv.org/pdf/2412.15115

https://ai.pydantic.dev/
https://ai.pydantic.dev/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/hello-gpt-4o/
https://blog.google/technology/google-deepmind/gemini-model-updates-february-2025/
https://blog.google/technology/google-deepmind/gemini-model-updates-february-2025/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://arxiv.org/pdf/2412.15115
https://arxiv.org/pdf/2412.15115

	1 Introduction
	2 Research Methodology
	3 Results
	4 Conclusions
	References

