
24

ISSN 1392-1126.  eISSN 2424-6158.  2018  Priedas 
DOI: https://doi.org/10.15388/Problemos.2018.0.12346  

Computational Practices, Educational  
Theories, and Learning Development

Don Passey
Lancaster University
d.passey@lancaster.ac.uk

Valentina Dagienė
Institute of Educational Sciences
Vilnius University
valentina.dagiene@mii.vu.lt

Loice Victorine Atieno
Eötvös Loránd University
atienomunira04@gmail.com

Wilfried Baumann
Austrian Computer Society
baumann@ocg.at

Abstract. Many countries are adopting computing (or informatics) in schools, for pupils from 5 years of 
age. Educational philosophies (and learning theories) that such curricula might be based on are not clear 
in curriculum documentation. Many Western countries’ curricula are based on developmental concepts 
of cognitive constructivism, with activities progressing through sensorimotor, preoperational, concrete 
operational, and formal operational stages. Social constructivism and constructionism add new dimen-
sions to this learning framework, both fundamentally important for developing computing practices. 
We review selected learning theories, and investigate features that should underpin computing curricula 
if practices and outcomes are to develop computing practitioner competencies of a software developer.

Keywords: computational practices; educational philosophy; learning theories; learning progression; 
software developer competencies

Background

Many countries are adopting, or have 
recently adopted, computing as a school 
subject or discipline (such as the national 
curriculum for computing in England, 
2013), although the subject may have al-
ternative names and somewhat different 
concerns in different countries (computer 

science in the United States or Canada, or 
informatics in Germany, Poland or Lithua-
nia, for example). Computing learning prac-
tices in these ‘new’ curricula can involve 
pupils from 5 years of age, perhaps within 
a discrete subject, or perhaps integrated 
into subject topics across the curriculum. 
A key question to ask is – what educational 
philosophies or theories underpin practices 



25

and planning of teachers and educators 
when developing appropriate curricula and 
lessons? Learning concepts, frameworks 
or theories that such curricula are based 
on, which therefore underpin practices and 
outcomes across the age span of learners, 
are not clear in curriculum documentation. 
It is clear that educational philosophies 
need to address two dimensions: depth of 
learning experience (the quality of learning 
activities and interventions), and breadth or 
length of learning experience (the progres-
sion of activities and interventions across a 
learner’s educational career).

Whether a single educational philosophy 
will provide for a teacher’s planning and 
development needs is not clear. Western 
curriculum concepts of learning progression 
are largely based on Jean Piaget’s research 
(1936), describing learning as a form of 
cognitive constructivism, developing over 
the age span of young people, progressing 
through a series of stages or phases: sen-
sorimotor, preoperational, concrete opera-
tional, and formal operational. While Lev 
Vygotsky’s research (1978) added a more 
social dimension of learning, a concept of 
social constructivism, this did not necessar-
ily add to the concept of progression. With 
the advent of digital and computing-based 
resources, further concepts of learning have 
been developed. From the perspective of 
computing, the most significant of these 
is perhaps the concept of constructionism 
developed from Seymour Papert’s research 
(1986). While this research and its resultant 
theory added to the concept of depth and 
quality of learning activities, it did not sub-
stantially add to the concept of progression. 
In summary, there has been an emergence 
of learning theories over the past 80 years, 
tied in certain ways to developments and 

uses of digital resources in education and 
society. Our concepts of learning have been 
reconsidered and regenerated from a cogni-
tive individual perspective to a social per-
spective with others, and then with digital 
resources. Our current contexts, however, 
which now include wide uses of mobile 
devices and social media, for example, are 
quite different from those contexts in which 
researchers including Piaget, Vygotsky and 
Papert developed their learning concepts 
or theories. Does this mean that we need to 
reconsider educational theories in our cur-
rent context? This is particularly pertinent, 
since the implementation of computing into 
school curricula is developing interests in 
educators around the concept of compu-
tational thinking (the thinking required in 
order to develop computing competencies 
(Wing 2008), from school to work-based 
professional practices).

This paper explores the following issue: 
what educational (learning) theories should 
underpin computing curricula to ensure 
that short- and longer-term professional 
practices and outcomes are appropriate and 
effective across the age span of learners.

Research questions

The research questions we ask are:
•	 Can current educational (learning) 

theories be reliably applied to develop 
computational practices across the age 
range from 5 to 18 years?

•	 Do we need a new conception of learn-
ing that accommodates our current 
context?

•	 Can we create this concept or theory 
from a research perspective, or can we 
do it from practical know-how and ex-
perience?



26

•	 What should we do in the future to 
underpin learning development in com-
puting?

Approach

We explore the research questions by taking 
a systematic analytic approach as follows.

To develop breadth and length of learn-
ing experience, we need to identify what 
our end-point will be. One key reason for 
including computing education in schools 
is to support engagement with longer-
term interest and development leading to 
professional practice. For this analysis, 
therefore, we describe and detail compe-
tencies required of a contemporary com-
puter professional, a software developer, 
as the end-point. We could alternatively or 
additionally include competencies of other 
computing specialists, such as network or 
software engineers, but we use the compe-
tencies of a software developer to illustrate 
our approach and concerns. 

We then take a number of learning theo-
ries, selected as being relevant to our anal-
ysis, describing and detailing their sources, 
and their main features. Other learning 
theories are not included, but at this stage of 
analysis, we wish to exemplify our approach 
and concerns. As educational concepts or 
practices (concerning teaching as well as 
learning) are derived from learning theories 
rather than being developed as standalone 
theories, we focus in this paper on learning 
theories rather than on educational theories.

Using features of each learning theory, 
we identify whether and to what extent there 
is a considered match with the practices, 
competencies required of a contemporary 
software developer, and whether certain 
competencies would not be easily devel-

oped if teachers and educators used each 
specific learning theory to underpin educa-
tional practices.

We critically map the findings from 
across the learning theories explored, indi-
cating where there are matches and where 
there are gaps, and considering whether a 
new learning theory is required, and how 
this relates to previous learning theories.

From the outcomes of the mapping, we 
identify the rationale for, a possible name 
for, and detail the nature of a new learning 
theory proposed.

This is an ambitious project. Hence, 
we do not provide in this paper a picture 
that cannot be further developed and ques-
tioned. It is our intention to open up the 
research questions, which we see as being 
important strategically for the future of 
computing (informatics) development in 
education. Learning theories continue to 
evolve in parallel with social constructs; 
we see this paper as a contribution within 
that evolution.

Competencies Required of a 
Contemporary Software Developer 
or Computer Programmer

Competencies (which also in this paper 
include skills, as described and defined by 
other authors) needed by a software devel-
oper can be detailed through nine different 
elements or processes (identified in, for 
example, Ahmed, et al. 2013; Surakka and 
Malmi 2004):
•	 Conceiving – taking user, market, tech-

nical and end-product requirements into 
consideration, producing ideas or drafts 
of a software process or product.

•	 Planning – exploring scope and defining 
specific user requirement, outlining and 



27

detailing the overall process and time 
plan leading to a final outcome.

•	 Designing – generating an overview or 
high-level design of the outcome, iden-
tifying specific elements or modules of 
a program, how they integrate, and what 
language, operating system and hard-
ware components might be involved.

•	 Developing – prototyping to consider 
proof-of-concept or trials of possible 
alternatives, leading to implementation 
that involves programming the code.

•	 Documenting – detailing the internal 
design, so that the software and process 
can be reviewed, revised and maintained 
in the future.

•	 Debugging/testing – finding and resolv-
ing problems that stop efficient and ef-
fective use of the software, and judging 
the quality of the outcome compared to 
initial requirements.

•	 Deploying – releasing the software for 
use, with additional concern for custo-
misation.

•	 Evaluating/improving – beyond the ini-
tial deployment period, taking ongoing 
feedback into account, and exploring 
how to improve, perhaps integrating 
further or new software facility.

•	 Maintaining software – picking up on 
problems or issues over longer periods 
of time, and exploring ways to resolve 
these within contemporary situations.
Competencies can be categorised in a 

number of different ways. Stephen Lamb, 
Quentin Maire and Esther Doecke (2017) 
categorised 21st century skills as: critical 
thinking; creativity; metacognition; prob-
lem solving; collaboration; motivation; 
self-efficacy; conscientiousness; and grit or 
perseverance. This categorisation focuses 

on what might be regarded as “soft skills”, 
without emphasising skills regarded as 
operational or technical (manipulative and 
mechanical, for example). SkillScan (2012) 
takes an alternative approach, categorising 
competencies as: relationship; communi-
cation; management/leadership; analytical; 
creative; and physical or technical. For 
this paper, the competencies are broadly 
categorised into three different groups, 
formed from a coalescence of these sourc-
es: technical competencies (having a good 
understanding of the theoretical background 
of the field as well as common practices 
used and discussed by the community, 
including those enabling effective interac-
tions between the individual with physical 
objects such as machines and technological 
systems); analytical competencies (abilities 
to collect and analyse information, prob-
lem-solve, and make decisions concerned 
with logical thinking, mathematical reason-
ing, and structural reasoning and planning); 
social and emotional competencies (effec-
tive communication skills when communi-
cating with team members, customers, or 
team leaders, writing and understanding 
documentation such as manuals, tutorials, 
or trouble-shooting guides, being willing 
and able to share knowledge and expertise 
with fellow team members, working inde-
pendently and within groups, analysing user 
needs and having a solid understanding of a 
company’s needs, scrutinising information 
given, anticipating events that are hard to 
predict, and handling pressure and failure).

Some competencies listed above are 
more obviously critical requirements, of-
ten easier to assess. Some are more related 
to short-term success, and those would 
be expected to be in high demand in job 



28

advertisements. Some competencies are 
more subtle, and related more to long-term 
success. Interestingly, these competencies 
relate strongly to those identified within 
school computing curricula. How school 
practices enable development towards 
these competency goals is our concern in 
this paper.

Taking the range of required compe-
tencies (considered in the next section of 
the paper), our framework for analysis is 
shown in Table 1. Using this framework, 
we consider whether each selected learning 
theory can underpin the creation of learning 
activities required to develop each of these 
competency sets. We answer the question: is 
it possible to understand how this learning 
theory provides for educational practice, 
relating to or explaining or underpinning the 
progression of learning activities to support 
each of these competencies?

Matching Learning Theories  
to Competencies of Contemporary 
Software Developers

Here, we take a number of learning theories, 
chosen because they either often underpin 

educational curricula and practices, or are 
associated in certain ways with computing 
(informatics) education and longer-term 
professional practices. For each learning 
theory, we consider their source(s), main 
features, the match to the development of 
learning activities to support the competen-
cies of a contemporary software developer 
(the competencies identified in Table 1), 
and highlight competencies not clearly sup-
ported using this learning theory approach.

Cognitive constructivism

Source. Cognitive constructivism emerges 
from Piaget’s studies on cognitive devel-
opment (Piaget 1936,1952). He did not 
examine the development of learning per 
se, but on learning development from ear-
ly learners up to 11 years of age (beyond 
this age, the development identified was 
considered to go across the lifespan). He 
gathered evidence from a small, discrete 
sample (3 of his own children, and some of 
his colleague’s children in his later work).

Main features. Piaget’s theory identifies 
three components of development: schema-
ta (building blocks in memory that develop 

Table 1. Framework of required competencies of contemporary software developers.

Elements  
or processes

Technical 
competencies

Analytical 
competencies

Social and emotional 
competencies

Conceiving
Planning
Designing
Developing
Documenting
Debugging/testing
Deploying
Evaluating/improving
Maintaining 



29

arenas of knowledge or understanding); 
adaptation (how an individual moves from 
one stage of development to another); and 
stages of cognitive development. He de-
scribed schemata as sequences of actions 
held in memory, providing blocks for the 
retention and building of knowledge, ideas 
and understanding. He described adapta-
tion in three stages: assimilation (using an 
existing schema to explain or work with a 
new idea or piece of knowledge); accommo-
dation (realisation that an existing schema 
does not apply and needs to be adapted); 
equilibration (when a schema needs to be 
replaced, and the challenges associated with 
doing this). He described overall stages 
of development as: sensorimotor (up to 2 
years, when mental representations are held 
in memory or mind); preoperational (2 to 
7 years, when an object or word is sym-
bolically associated with something else); 
concrete operational (7 to 11 years, when 
internal thinking occurs without having to 
do this physically); and formal operation 
(from 11 years, when thinking is logical and 
about abstract concepts). Whether stages do 
exist, and what the influences of social and 
cultural factors might be, were not explored 
within his research. The role of language, 

and the concept of schemata, have both been 
questioned by other researchers.

Match to competencies of a contem-
porary software developer. Learning ac-
tivities could be devised to support the 
development of competencies in the Table 
1 framework, as shown in Table 2.

Competencies not covered. Taking Pia-
get’s stages of development as a guide, some 
technical competencies could be developed 
from 2 years of age, while others could be 
developed from 7 years of age. If all the 
competencies could not be developed until 
11 years of age, then this places a wide num-
ber and range of learning activities out of the 
central context of contemporary practice. 
Additionally, the stages of development do 
not allow a clear understanding of how nec-
essary social and emotional competencies 
might be developed.

Social constructivism

Source. Social constructivism is concerned 
with the social construction of knowl-
edge. Influenced by Vygotsky’s work, it is 
centred on the social context of learning, 
recognising that knowledge is collectively 
created and assembled (Bodrova and Leong 

Table 2. Framework of competencies related to cognitive constructivism.

Elements  
or processes

Technical  
ompetencies

Analytical 
competencies

Social and emotional 
competencies

Conceiving √ from 2 years of age √ from 11 years of age ?
Planning √ from 11 years of age √ from 11 years of age ?
Designing √ from 7 years of age √ from 11 years of age ?
Developing √ from 7 years of age √ from 11 years of age ?
Documenting √ from 7 years of age √ from 11 years of age ?
Debugging/testing √ from 11 years of age √ from 11 years of age ?
Deploying √ from 7 years of age √ from 11 years of age ?
Evaluating/improving √ from 11 years of age √ from 11 years of age ?
Maintaining √ from 11 years of age √ from 11 years of age ?



30

2012; Gauvain 2008). Through interaction, 
learners can express their thoughts, hence 
creating a common understanding associat-
ed with an idea (Kalpana 2014). Margaret 
Gredler (2008) believes that in moving from 
the theory developed by Piaget towards 
that of Vygotsky, there is a shift of ideas 
from individualism to collaboration, aided 
performance, social communication and 
sociocultural activity. Accordingly, learning 
can be socially constructed, perhaps mod-
elled, making a sequence of ideas public, 
for discussion and change. This practice 
parallels the needs of programming activ-
ity. Indeed, Papert indicated relationships 
between professional programmer work and 
children’s programming actions.

Main features. Conversation is the 
most important means of maintaining, 
modifying and reconstructing subjective 
reality (according to Berger and Luck-
mann 1991). Vygotsky’s theory is based 
on three major themes: social interaction, 
the “More Knowledgeable Other” (MKO) 
and the “Zone of Proximal Development” 
(ZDP). Social interaction enables the 
process of cognitive development, with 
learners exhibiting both social and indi-
vidualistic functions. Learning through a 
MKO concerns learning through someone 
more familiar with the subject under study, 
whether a teacher, coach, older or younger 
person, peer, or even a computer. The ZPD 
is the cognitive gap or difference between 
the learner’s ability to perform a task with 
the help of another or through collaboration 
and the time the learner performs the task 
independently.

Match to the competencies of a con-
temporary software developer. Learning 
activities could be devised to support the 

development of all competencies shown in 
Table 1, but the progression of these compe-
tencies is not clear from this learning theory.

Competencies not covered. Whilst it is 
possible for all competencies to be devel-
oped using this learning theory as a back-
ground, roles of different social actors will 
clearly be important. This will also relate 
to the progression of competencies and the 
development of appropriate learning activ-
ities. How teachers and significant others 
are involved, including the extent and forms 
of interactions, could easily determine the 
feasibility of any of these forms of compe-
tency development.

Social learning

Source. Introduced by Albert Bandura 
(1977), this theory sought to clarify how 
youngsters learn in social conditions, 
watching and afterwards mimicking the 
conduct of others. The theory postulates 
that individuals learn through observation, 
simulation, and demonstration. The theory 
has been described as a link between behav-
iourist and cognitive learning theories as it 
incorporates attention, memory, and moti-
vation. The outcome of a learner’s conduct 
is seen to result more from watched behav-
iour than one they had adopted themselves.

Main features. Social learning has 
four elements: observational learning, 
reciprocal determinism, self-regulation, 
and self-efficacy. Observational learning 
involves observing a model in action (a 
person, a description in a book or even a 
movie) and then imitating the same. For 
the model to be enacted, it must be given 
attention, what is observed is retained, 
and learners are motivated to apply what 



31

has been learnt. Reciprocal determinism 
describes the influence of the environment, 
concerned with social interaction between 
the learner and others. Self-regulation in-
volves the setting of goals, discipline for 
action, and follow-through for learning to 
occur and performance to improve. Lastly, 
self-efficacy involves the belief the learner 
has in their capability to learn and perform. 
Hence, creation of an environment that 
fosters confidence in the learner should be 
encouraged and cultivated.

Match to the competencies of a con-
temporary software developer. Learning 
activities could be devised to support the 
development of all competencies shown in 
Table 1, but the range of activities would be 
limited, and progression of these competen-
cies is not clear from this learning theory.

Competencies not covered. Concerns 
with using this background learning theory 
are similar to those posed in discussing so-
cial constructivism. Although all competen-
cies could be developed, the range and order 
of these, and the importance of developing 
and subsequent reliance upon metacognitive 
skills such as self-regulation, could affect 
the relationship of the development of these 
competencies.

Constructionism

Source. This educational development the-
ory, developed by Papert, highlights that 
though learning happens inside a learner’s 
mind, this happens when the person is 
engaged in a personally meaningful activ-
ity outside of their mind. Four aspects are 
essential to the design of constructionist 
learning environments: learning through 
designing, personalising, sharing, and re-

flecting. Constructionism is grounded in 
the belief that the most effective learning 
experiences grow out of active construction 
of all types of artefacts (Papert 1986), so it 
strongly resonates with the current maker 
movement (Martinez and Stager 2013). It is 
argued that the most general and effective 
learning is building a model, reflecting 
on it, testing it, and sharing with others. 
Andrea diSessa and Paul Cobb (2004) 
argued that constructionism is “learning 
by designing”, falling into a category they 
called “frameworks for action”. Richard 
Noss and James Clayson (2015) suggested 
six characteristics for such a framework: 
(1)  odelling; (2) accessibility to the model-
ling process; (3) layering of principles and 
abstraction; (4) tapping into youth culture; 
(5) being represented in learner’s language; 
and (6) collaboration. Constructionism has 
appeared in many other frameworks of 
activities, for example, the integration of 
robotics (Camilleri 2017).

Main features. Constructionism is built 
on the main idea that knowledge is not 
passively received either through the senses 
or by way of communication – it is actively 
built up by the learner during the learning 
process. A strong feature stressed by Ernst 
von Glasersfeld (1988) is that the func-
tion of cognition is adaptive, serving the 
subject’s organisation of the experiential 
world, not the discovery of an objective 
ontological reality.

Match to the competencies of a con-
temporary software developer. Learning 
activities could be devised to support the 
development of technical and analytical 
competencies shown in Table 1, but the pro-
gression of activities is not clarified by this 
theory. It is not clear that this educational 



32

philosophy would support the develop-
ment of social and emotional competency 
activities.

Competencies not covered. The im-
portance of development of social and 
emotional competencies, and the need for 
these to be introduced at a young age, is 
stated more clearly in later definitions and 
discussions of constructionism. If there is 
a focus on interaction in learning activities 
with material resources, at the expense of 
interactions with peers and others when do-
ing this, then this could hinder the important 
development of relevant and related social 
and emotional competencies.

Situated learning

Source. The idea of situated learning was 
used by John Seeley Brown, Allan Collins 
and Paul Duguid (1989) to develop a pro-
posal for an instructional model that has 
implications for classroom practice. De-
veloped further by Jean Lave and Etienne 
Wenger (1991), situated learning (accord-
ing to Clancey 1995) is a theory about the 
nature of human knowledge, dynamically 
constructed according to experience, often 
considered within the context of individuals 
acquiring professional skills.

Main features. According to Jan Her-
rington and Ron Oliver (1995), the principal 
theorists and critics of situated learning (fo-
cusing on the relationship between learning 
and the social situation in which it occurs) 
believe that learning environments that 
possess certain features elicit effective and 
usable knowledge: authentic context; au-
thentic activities; expert performances and 
the modelling of processes; multiple roles 
and perspectives; collaborative construction 
of knowledge; coaching and scaffolding at 

critical times; reflection to enable abstrac-
tions to be formed; articulation to enable 
tacit knowledge to be made explicit; and 
integrated assessment of learning within 
the tasks. Situated learning (according to 
Clancey 1995): (1) should always be in-
tegrated with the individual’s identity and 
participation; (2) is constituting an evolving 
membership and capability to participate 
in different forms; and (3) is the means of 
reproduction and development of commu-
nities of practice.

Match to the competencies of a contem-
porary software developer. Learning activ-
ities could be devised to support the devel-
opment of all competencies shown in Table 
1, but the theory explored learning across a 
time-limited development span, rather than 
a long-term span from 5 years of age.

Competencies not covered. While situ-
ated learning would appear to be an ideal 
background learning theory to frame learn-
ing activities to develop all of these compe-
tencies, it is difficult to see how this might 
be applied in practice for young people 
starting their involvement from, say, 5 years 
of age. Success would be likely to depend 
on teachers being competent and confident 
in terms of creating a resource-rich situated 
learning environment.

Discovery learning

Source. Discovery learning, based on the-
ories developed by John Dewey (1997), 
Piaget (1973), and Vygotsky (Rice and 
Wilson 1999), describes learning as active, 
process-based, and collaborative. Discovery 
learning is an inquiry-based, constructivist 
theory that takes place in problem-solv-
ing situations. The learner draws on past 
experience and existing knowledge to 



33

discover facts and relationships and new 
truths (Bruner 1961). Models based upon a 
discovery learning model include: guided 
discovery; problem-based learning; simu-
lation-based learning; case-based learning; 
and incidental learning.

Main features. Tracy Bicknell-Holmes 
and Paul Hoffman (2000) describe five main 
features of discovery learning: exploring 
and problem solving; taking responsi-
bility for learning (student driven); and 
building new from existing knowledge. Its 
key features are: (1) encouraging active 
engagement; (2) promoting motivation; 
(3) promoting autonomy, responsibility, 
independence; (4) developing creativity 
and problem solving skills; and (5) tailoring 
learning experiences.

Match to the competencies of a con-
temporary software developer. Learning 
activities could be devised to support the 
development of all competencies shown in 
Table 1, but integrating the additional role 
of instruction is not clear.

Competencies not covered. The ap-
proach to discovery learning would need 
to be carefully considered; expecting dis-
covery to result without appropriate and 
adequate support would not enable effec-
tive development of these competencies. 
Misunderstandings and misinterpretations 
could too easily develop and persist without 
sufficient monitoring and discussion.

Experiential learning

Source. Developed by David Kolb (1984) 
and Carl Rogers (1969), the model of ex-
periential learning was based on Dewey’s 
concept of “Learning by Doing”. Rogers 
emphasised the importance of experiential 

learning for knowledge application and not 
mental learning. He believed experiential 
learning supported needs of individuals, 
connected to their change and growth. 
Kolb described it as a four-stage cyclical 
process: concrete experience, reflection, 
abstract conceptualisation, and active ex-
perimentation. 

Main features. Kolb (1984) proposed 
six key features of experiential learning: 
being perceived best as a process, rather 
than outcomes; an unceasing process based 
on experience; need for conflict resolution 
between dialectically contrasting ways of 
adaptation to the world; an all-inclusive 
process of adaptation to the world; encom-
passing connections between the individual 
and the environment; and involving creation 
of knowledge as a result of the relationship 
between social and personal knowledge. 
While experiential learning is a process of 
learning through experience, it has been 
more specifically defined as “learning 
through reflection on doing” (Patrick 2011: 
1003). From the four-stage cyclical model, 
Kolb’s theory combines experience, percep-
tion, cognition, and behaviour. Four styles 
of learning are proposed: (1) assimilators, 
who learn better when presented with 
sound logical theories; (2) convergers, who 
learn better when provided with practical 
applications of concepts and theories; (3) 
accommodators, who learn better when 
provided with “hands-on” experiences; 
and (4) divergers, who learn better when 
allowed to observe and collect a wide range 
of information.

Match to the competencies of a con-
temporary software developer. Learning 
activities could be devised to support the 
development of technical competencies 



34

shown in Table 1, but this theory is based 
on adult learning perspectives. It is not clear 
that this educational philosophy would ena-
ble the development of learning activities to 
support analytical or social and emotional 
competencies.

Competencies not covered. The basis of 
the learning theory and its focal elements 
were developed from adult investigations 
and approaches, rather than from explo-
ration of developmental approaches at 
younger ages.

Problem-based learning

Source. Wai Leung Tse and Wai Lok Chan 
(2003) describe problem-based learning 
(PBL) as an approach where “the problem 
drives the learning”. John Savery and Thom-
as Duffy (1995) assert that PBL first emerged 
in the field of medical education in the 
1950s. In problem-based learning, teachers 
facilitate discussion-based learning through 
questions, asking about and monitoring the 
problem-solving process (Hmelo 1998; 
Brilingaitė, Bukauskas, and Juškevičienė 
2018). PBL is a constructionist method, 
allowing students to learn about a subject 
by exposing them to multiple problems and 
asking them to construct understanding of 
the subject through these problems. This kind 
of learning has been shown to be effective. 
For example, in mathematics or computing 
classes where students try to solve problems 
in many different ways (Hmelo-Silver and 
Barrows 2006). Many studies have reported 
adoption of PBL in teaching software engi-
neering courses, especially in Agile software 
development methods.

Main features. For PBL, activities 
should be: problem-focused (learning 

begins by addressing simulations of an 
authentic, ill-structured problem - built 
around a problem rather than creating a list 
of topics); student-centred (the teacher does 
not command the learning activities, but 
acts as a facilitator in the whole process); 
self-directed (students individually and 
collaboratively assume responsibility for 
generating learning issues and processes 
through self- and peer-assessment and ac-
cess their own experiential knowledge and 
learning materials); self-reflective (learners 
monitor their understanding and learn to 
adjust strategies for learning); and facili-
tative (instructors are facilitators and not 
teachers). Defining characteristics of PBL 
are: (1) learning is driven by challenging, 
open-ended problems or tasks; (2) problems 
are context specific; (3) group work is com-
mon (learners work as self-directed, active 
investigators and problem-solvers in small 
collaborative groups); (4) a key problem is 
identified and a solution is agreed upon and 
implemented; (5) teachers adopt the role as 
facilitators of learning, guiding the learning 
process and promoting an environment of 
inquiry.

Match to the competencies of a con-
temporary software developer. Learning 
activities could be devised to support the 
development of all competencies shown in 
Table 1, but PBL has not been extensively 
explored for younger age groups.

Competencies not covered. Appropriate-
ness to age would need to be considered. 
While problem-based approaches are used 
in effective ways across the age span of 
compulsory and higher education, in prima-
ry education, topic-based and project-based 
approaches tend to be used more than prob-
lem-based approaches.



35

Connectivism

Source. Connectivism, a digital age theory 
developed by George Siemens and Stephen 
Downes, resulted from critiquing perceived 
limitations of behaviourism, cognitivism 
and constructivism theories (Siemens 2005; 
Downes 2012). Connectivism describes 
how Internet technologies have created 
new opportunities for learning and sharing 
information across the World Wide Web and 
among themselves.

Main features. According to Siemens 
(2005), key concerns of connectivist learn-
ing include: identifying correct and current 
knowledge; establishing associations across 
multiple fields, ideas, and concepts; ac-
quitting knowledge through linking varied 
devices, knowledge bases, or existing net-
works; and being able to acquire knowledge 
more vital than already-known knowledge. 
A key feature of connectivism is that learn-
ing taking place online can happen across 
peer networks; a teacher will guide students 
to information and answer key questions 
as needed, to support student learning and 
sharing. A connected community around 
shared information can then result. How-
ever, how connectivism relates to prior 
theories has been questioned.

Match to the competencies of a contem-
porary software developer. It is not clear 
that learning activities could be devised to 
support the development of any competen-
cies shown in Table 1.

Competencies not covered. Activities 
that would depend on uses and understand-
ing of distributed resources and distributed 
knowledge might not easily support young-
er age groups.

Mapping Learning Theory Features 
to Competencies of a Contemporary 
Software Developer

The mapping exercise in the previous sec-
tion shows the extent to which a number of 
background learning theories could be used 
to frame learning activities in computing 
(informatics) education. A number of crit-
ical concerns are raised from this mapping 
exercise:
•	 If Piaget’s stages of cognitive develop-

ment are used to frame learning activity 
development, as abstract concepts arise 
at older ages, then computational prac-
tices could become decontextualised 
from a contemporary perspective. In this 
situation, certain technical competencies 
will be emphasised earlier than others; 
how abstract skills are then contextual-
ised later will need to be a key concern.

•	 Using social constructivist approaches, 
when and how extents and forms of so-
cial intervention and social interaction 
are introduced would need to be care-
fully considered, as this will influence 
outcomes and longer-term approaches 
to competency development and use.

•	 For social learning approaches, the 
importance of developing and subse-
quently using metacognitive skills will 
need to be a focus for development from 
early ages.

•	 For constructionism approaches, the 
presence and roles of social interaction 
will need to be as much a focus as ma-
terial resource creation, across ages and 
in all forms of activity (those concerned 
with technical competencies just as 
much as those focusing on social and 
emotional competencies).



36

•	 For situated learning, teachers and other 
supporters will need to be highly compe-
tent and confident in creating and using 
a resource-rich situated context for their 
learners.

•	 For discovery learning, independent and 
unsupported discovery will not be likely 
to result in effective outcomes, consid-
ering the nature of the subject and the 
misconceptions and misunderstandings 
that could result.

•	 Experiential learning, arising from 
studies of adult interactions, means 
that it will need to be trialled and tested 
extensively across age ranges.

•	 Problem-based learning has been used 
across educational practice widely (al-
though limited at primary age level, and 
in some countries in the secondary age 
level).

•	 Connectivism is likely to be difficult to 
apply for younger age ranges as this the-
ory is concerned with how individuals 
manage distributed (online) resources 
and knowledge across networks.
These concerns indicate that any un-

derpinning learning theory should embody 
social interactivity and development, crea-
tive practice, and constructionist principles. 
This might be termed social creative con-
structionism, an emerging theory for further 
future research.

Conclusions

It is not possible to say that competencies 
could not be developed through educational 
practices framed by one or another learning 

theory. However, background learning theo-
ries used to frame developments of learning 
activities can have a major effect, easily 
influencing (positively or negatively) forms 
of interaction and, hence, either enhancing 
or limiting developments of certain com-
petencies. There are some limitations that 
could arise when planning a progression of 
activities if cognitive constructivism is used 
as the only underpinning learning theory 
(Table 2). There are also limitations arising 
from using other learning theories: for tech-
nical competencies, progression of learning 
activities is not clearly identified (although 
depth of quality is identified in some cases 
for some age groups); for analytical com-
petencies, support for creation of activities 
is not clear; and for social and emotional 
competencies, creation of activities across 
the age span is not clear.

Based on this review and analysis, 
whilst a completely new learning theory 
might not be shown as an absolute necessity 
at this time, it is clear that our educational 
context has shifted. So, any background 
framing educational theory needs to ade-
quately and appropriately consider particu-
larly how analytical, social and emotional 
competencies will be developed across 
age ranges. How competencies not easy to 
develop at young ages will be appropriately 
contextualised as early as possible will 
also require careful consideration. Future 
research will clearly need to consider how 
length of learning is conceived across the 
age range, as well as depth of learning, 
meeting the demands of social creative 
constructionism.



37

Ahmed, F., Capretz, L. F., Bouktif, S., and Camp-
bell, P., 2013. Soft Skills and Software Development: 
A Reflection from Software Industry. International 
Journal of Information Processing and Management 
4(3): 171-191.

Bandura, A., 1977. Social Learning Theory. 
Englewood Cliffs, NJ: Prentice Hall.

Berger, P., and Luckmann, T., 1991. The Social 
Construction of Reality: A Treatise in the Sociology 
of Knowledge. London: Penguin Books.

Bicknell-Holmes, T., and Hoffman, P. S., 2000. 
Elicit, Engage, Experience, Explore: Discovery 
Learning in Library Instruction. Reference Services 
Review 28(4): 313-322.

Bodrova, E., and Leong, D. J., 2012. Tools of 
the Mind: Vygotskian Approach to Early Childhood 
Education. In J.L. Rooparine and J. Jones (eds.), 
Approaches to Early Childhood Education (6th ed.), 
Upper Saddle River, NJ: Merrill, 2012, pp. 241-260.

Brilingaitė, A., Bukauskas, L., and Juškevičienė, 
A., 2018. Competency Assessment in Problem-Based 
Learning Projects of Information Technologies Stu-
dents. Informatics in Education 17(1): 21-44.

Brown J. S., Collins, J., and Duguid, P., 1989. 
Situated Cognition and the Culture of Learning. Ed-
ucational Researcher 18(1): 32-42.

Bruner, J. S., 1961. The Act of Discovery. Har-
vard Educational Review 31: 21-32.

Camilleri, P., 2017. Minding the Gap: Proposing 
a Teacher Learning-Training Framework for the Inte-
gration of Robotics in Primary Schools. Informatics 
in Education 16(2):165-179.

Clancey, W. J., 1995. A Tutorial on Situated 
Learning. In J. Self (ed.), Proceedings of the Inter-
national Conference on Computers and Education. 
Charlottesville, VA: AACE, pp. 49-70.

Department for Education, 2013. National 
Curriculum in England: Computing Programmes of 
Study. Available at https://www.gov.uk/government/
publications/national-curriculum-in-england-comput-
ing-programmes-of-study.

Dewey, J., 1997. Democracy and Education. New 
York, NY: Simon and Schuster.

diSessa, A. A., and Cobb, P., 2004. Ontological 
Innovation and the Role of Theory in Design Experi-
ments. Journal of the Learning Sciences 13(1): 77-103.

Downes, S., 2007. What connectivism is, Half 
An Hour, February 3, Retrieved from http://halfan-
hour.blogspot.ro/2007/02/what-connectivism-is.html

References

Downes, S., 2012. Connectivism and Connective 
Knowledge. Available at https://www.downes.ca/files/
books/Connective_Knowledge-19May2012.pdf

Gauvain, M., 2008. Vygotsky’s Sociocultural 
Theory. In M. M. Haith and J. B. Benson (eds.), Ency-
clopedia of Infant and Early Childhood Development, 
Vol. 3, Oxford, UK: Elsevier, 2008, pp. 404-413.

Glasersfeld, E. von, 1988. The Reluctance to 
Change a Way of Thinking. Irish Journal of Psychol-
ogy 9(1): 83-90.

Gredler, M., 2008. Vygotsky’s Cultural-Historical 
Theory of Development. In N. J. Salkind (ed.), Ency-
clopedia of Educational Psychology, Vol. 1, Thousand 
Oaks, CA: Sage Publications, pp. 1011-1014.

Herrington, J., and Oliver, R., 1995. Critical 
Characteristics of Situated Learning: Implications for 
the Instructional Design of Multimedia. In ASCILITE 
1995 Conference, December 3-7, 1995, University of 
Melbourne, Melbourne, pp. 253-262.

Hmelo, C. E., 1998. Problem-Based Learning: 
Effects on the Early Acquisition of Cognitive Skill in 
Medicine. Journal of the Learning Sciences 7: 173-208.

Hmelo-Silver, C. E., and Barrows, H. S., 2006. 
Goals and Strategies of a Problem-Based Learning Fa-
cilitator. Interdisciplinary Journal of Problem-based 
Learning 1: 21-39.

Kalpana, T., 2014. A Constructivist Perspective 
on Teaching and Learning: A Conceptual Framework. 
International Research Journal of Social Sciences 
3(1): 27-29.

Kolb, D. A., 1984. Experiential Learning: Expe-
rience as the Source of Learning and Development. 
Englewood Cliffs, NJ: Prentice-Hall.

Lamb, S., Maire, Q., and Doecke, E., 2017. Key 
Skills for the 21st Century: An Evidence-based Re-
view. Melbourne, VIC: Victoria University, Australia.

Lave, J., and Wenger, E., 1991. Situated Learning: 
Legitimate Peripheral Participation. Cambridge: 
Cambridge University Press.

Martinez, S. L., and Stager, G., 2013. Invent to 
Learn: Making, Tinkering, and Engineering in the 
Classroom. Torrance, CA: Constructing Modern 
Knowledge Press.

Noss, R., and Clayson, J., 2015. Reconstructing 
Constructionism. Constructivist Foundations 10(3): 
285-288.

Papert, S., 1986. Constructionism: A New Op-
portunity for Elementary Science Education. Massa-
chusetts Institute of Technology, Media Laboratory, 
Epistemology and Learning Group.



38

INFORMATIKOS PRAKTIKOS, UGDYMO TEORIJOS IR MOKYMOSI PAŽANGA

Don Passey, Valentina Dagienė, Loice Victorine Atieno, Wilfried Baumann

Santrauka. Daugelis šalių imasi mokyti informatikos (arba kompiuterių mokslo) mokyklose pradėdamos 
nuo pradinių klasių ar net darželinio amžiaus. Tačiau nėra pakankamai aišku, kokiomis ugdymo filosofijos 
prielaidomis grindžiamos atitinkamos mokymų programos, nėra aiškiai įvardyta, kokiomis mokymo teorijomis 
remiamasi bendrųjų ugdymo programų dokumentuose. Dauguma bendrųjų ugdymo programų Vakarų šalyse yra 
grindžiamos kognityvinio konstruktyvizmo principais parenkant veiklas pagal amžiaus tarpsnius, atsižvelgiant 
į sensomotorinio, priešoperacinio, konkrečių operacijų ir formalių operacijų mąstymo stadijas. Šią ugdymo 
sistemą papildo socialinis konstruktyvizmas ir konstrukcionizmas, kurie fundamentaliai prisidėjo plėtojant 
praktines informatikos ugdymo veiklas. Straipsnyje apžvelgiamos atrinktos ugdymo teorijos ir tyrinėjamos 
savybės, kurios turėtų atsirasti informatikos ugdymo programose, siekiant ugdyti praktinius programavimo ir 
programinės įrangos kūrimo įgūdžius.

Pagrindiniai žodžiai: informatikos praktika, ugdymo filosofija, mokymo(si) teorijos, mokymosi pažanga, 
programinės įrangos kūrėjo kompetencijos 

Įteikta 2018 08 20
Priimta 2018 12 03

Patrick, F., 2011. Handbook of Research on Im-
proving Learning and Motivation through Education-
al Games: Multidisciplinary Approaches. Hershey, 
PA: Information Science Reference.

Piaget, J., 1936. La Naissance de l’Intelligence 
chez l’Enfant. Neuchatel, Paris: Delachaux & Niestlé.

Piaget, J., 1952. The Origins of Intelligence in 
Children. Transl. by M. Cook. New York: Interna-
tional University Press.

Piaget, J., 1973. To Understand is to Invent: The 
Future of Education. Transl. by G.-A. Roberts. New 
York, NY: Grossman.

Rice, M. L., and Wilson, E. K., 1999. How Tech-
nology Aids Constructivism in the Social Studies 
Classroom. Social Studies 90(1): 28-33.

Rogers, C. R., 1969. Freedom to Learn: A View 
of What Education Might Become. Columbus, OH: 
Charles E. Merrill.

Savery, J. R., and Duffy, T. M., 1995. Problem 
Based Learning: An Instructional Model and Its 
Constructivist Framework. Educational Technology 
35(5): 31-38.

Siemens, G., 2005. Connectivism: A Learning 
Theory for the Digital Age. International Journal 

of Instructional Technology and Distance Learning 
2(1): 3-10.

SkillScan, 2012. Chart of Skill Categories, Skill Sets 
and Sample Career Options. Available at: https://www.
skillscan.com/sites/default/files/chart-of-skill-sets.pdf

Surakka, S., and Malmi, L., 2004. Cognitive 
Skills of Experienced Software Developer: Delphi 
Study. In A. Korhonen and L. Malmi (eds.), Kolin 
Kolistelut - Koli Calling 2004: Proceedings of the 
Fourth Finnish/Baltic Sea Conference on Computer 
Science Education, Helsinki: Helsinki University of 
Technology, pp. 37-46.

Tse, W. L., and Chan, W. L., 2003. Application of 
Problem-Based Learning in an Engineering Course. 
International Journal of Engineering Education 19(5): 
747-753.

Vygotsky, L. S., 1978. Mind in Society: The 
Development of Higher Psychological Processes. 
Translated by M. Cole, V. John-Steiner, S. Scribner, 
and E. Souberman. Cambridge, MA: Harvard Uni-
versity Press.

Wing, J. M., 2008. Computational Thinking and 
Thinking about Computing. Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical 
and Engineering Sciences 366: 3717-3725.


