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Abstract. We consider the fractional Vasicek model of the form dX; = (o — BX;)dt +ydB!, driven by fractional
Brownian motion B with Hurst parameter H € (1/2,1). We construct the maximum likelihood estimators for unknown
parameters o and B, and prove their consistency and asymptotic normality.
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1. Introduction

The standard Vasicek model was proposed and studied by O. Vasicek [19] in 1977 for the purpose of
interest rate modeling. It is described by the following stochastic differential equation

where o, B, Y€ R, , and W is a standard Wiener process. From the financial point of view, § corresponds

to the speed of recovery, the ratio o/f is the long-term average interest rate, and y represents the

stochastic volatility. Now the Vasicek model is widely used not only in finance, but also in various

scientific areas such as economics, biology, physics, chemistry, medicine and environmental studies.
The present paper deals with the fractional Vasicek model of the form

dX; = (o —BX;)dt +ydB" (1.2)

where the Wiener process W is replaced with BY, a fractional Brownian motion with Hurst index
H € (1/2,1). This generalization of the model (1.1) enables one to model processes with long-range
dependence. Such processes appear in finance, hydrology, telecommunication, turbulence and image
processing. In particular, various financial applications of the fractional Vasicek model (1.2) can be
found in the articles [3-9,21].

The goal of the paper is to construct maximum likelihood estimators (MLEs) for the unknown
parameters o and B and to establish their consistency and asymptotic normality. We mention that the
least squares and ergodic-type estimators in the fractional Vasicek model have been recently studied
in [16] and [20]. In [16] the strong consistency of these estimators was proved for the ergodic case
B > 0, and the discretization of the ergodic-type estimators was considered. Note that in [20] a different
parametrization was studied, namely

dX, = «(u—X,)dt +ydBY,

and asymptotic theory for estimating only the persistent parameter ¥ was developed. The authors
proved the strong consistency and asymptotic normality of the ergodic-type estimator for k¥ > 0. They
also investigated the least squares estimator for the non-ergodic case k¥ < 0 and proved its convergence
to the Cauchy distribution.

This paper is organized as follows. In Section 2 we describe the model and give necessary defini-
tions. In Section 3 we formulate and prove the main results on consistency and asymptotic normality
of MLEs. Some auxiliary results are proved in the appendix.
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2. Model description

Let (Q,5,P) be a complete probability space. Let B = {Bf >0} be a fractional Brownian motion
on this probability space, that is, a centered Gaussian process with covariance function

1
BBYBY = (22— i sPH).

Throughout the paper we assume that H € (1/2,1). In what follows we consider the continuous (and
even Holder up to order H) modification of B that exists due to the Kolmogorov theorem.
We study the fractional Vasicek model, described by the stochastic differential equation

Xt:xo—i-/((x—BXy)ds—i—nyI, 1>0. 2.1)

We assume that the parameters xo € R, y>0and H € (1/2,1) are known. The main goal is to estimate
parameters o € R and 3 > 0 by continuous observations of a trajectory of X on the interval [0,7]. We
shall consider three problems:

o estimation of o when B is known,
o estimation of § when o is known,

o estimation of unknown vector parameter 6 = (o, ).

The equation (2.1) has a unique solution, which is given by
X, = xpe P + B l—e B’ +y/ Br=s)gpt 1 >0. (2.2)

where [je PU=)dBH is a path-wise Riemann-Stieltjes integral. It exists due to [2, Prop. A.1].
Following [11], for 0 <s <t < T we define

2HT' (3 —2H)T(H +1/2)
I'(3/2—H) ’

t
ki (t,5) = 1, sV H (0 — ) V2H W 122 M,H:/kH(t,s)ng’.
0

Ky =2HT (3/2—H)T(H+1/2), Ay=

Then the process M is a Gaussian martingale, called the fundamental martingale, whose variance
function (M) is the function w¥ (see [17]). Moreover, the natural filtration of the martingale M*
coincides with the natural filtration of the fractional Brownian motion BY.

Define also three stochastic processes

1 t
ky(t,s)Xds, /k t,s)(o—BX S:f/k t,s)dX;
det/ﬂ On(t) Yth H BX,)ds i yOH()
Note that by Lemma 4.1,

PH(t)

The process S is called a fundamental semimartingale [11]. It has the following properties.
Lemma 2.1 ( [11, Theorem 1]). For defined processes the following statements hold.

1. The process S is an (§;)-semimartingale with the decomposition

t
S, = /0 Oul(s)aw +mH. (2.3)

t
Xt:/KH(t,S)dSS,
0

Ky(t,s) =YH(2H — l)/trH_l/z(r—s)H_3/2dr, He(1/2,1).

2. The process X admits the representation

where

3. Natural filtrations of processes S and X coincide.
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3. Main results

Applying the analog of the Girsanov formula for a fractional Brownian motion ( [11, Theorem 3], see

also [13]) and (2.3), one can obtain the following likelihood ratio
T P e LT 2 5 H
An(T) =expd [ Qu(amf!+3 [ (0u(0)* awt! t = exp / 0ult dst—i (Qn (1)) dw!

2 2
_exp{aST—B/OTPH(I)dSt—;YZ H “B/ Pu(t) dwt — B (PH( )) dw,}
(3.1)

Now we can construct MLEs.

3.1. MLE for o when 3 is known

Theorem 3.1. Let H > 1/2 and B is known. The MLE for a. is

g, STEBIT Payant!
T

3.2)

It is unbiased, strongly consistent and normal

7' (6 — o) LN (0,Au7) .

Proof. Letus maximize the likelihood ratio in (3.1) with respect to o.. The first and the second partial derivatives

are equal to
OAy(T) 1 B O*Au(T) 1

o, v

Hence, the MLE for « is given by (3.2).
By Lemma 2.1, the process S admits the representation

T
St = (;WI;—B/ PH(I)de-I +M71-I.
0

Hence
Lyl =B Jy Pu(t)dwy' +MF 4[5 Pu(r)dw!! MY
T

~

Oor =
wi

Recall that the process M* is a martingale with quadratic variation w’. Since w4 — o0, as T — o, by the strong

law of large numbers for martingales [15, Theorem 2.6.10], we have

MY
—T£>0 as T — oo,
WT

Hence, 0y —> «, as T — oo, which confirms the strong consistency of the estimator.
H it follows that

9
Since M" is a Gaussian process with variance function w

H
M4 N@,1).
wr
Hence,
M M
M M LN (0. ?)
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3.2. MLE for 3 when a is known

Theorem 3.2. Let H > 1/2 and o is known. The maximum likelihood estimator for B is

o 2 Pu(t)dwl — [§ Pu(r)dsS,
v
WP R )

It is strongly consistent and asymptotically normal:

VT (Br—B) % N(0,2B)

or \/% (ET - B) 4 N(0,1).

Proof. Let us maximize likelihood ratio in (3.1) with respect to 3. We have

Ay ( *Ay(T T
H /pH )dS; +— /PH 1) dwt B/ (Py(T))* dwh, agZ():_/ (Pu(1))? dw!!.
0
Hence the MLE for [ is given by (3.3).
By Lemma 2.1,
ds, = —dw, — BPy(t)dwH +am"? (3.4)
T
/ Py(1)dS; = / Py (t)dwl! — / )2 dwl + / Py (t)dM". (3.5
0
Hence
Br—p Jo Pu(t)amy!
T=pP— .
Jo (Pu())® awf!

Since the process M* is a martingale with quadratic variation w'/, the process JoPu(t) dM" is a martingale
with quadratic variation [ (Py (t))* dw¥ . Taking into account the monotonicity of I (Py(t))* dw¥ in upper
bound 7', we obtain from (4.7) the almost sure convergence

T
/(PH(t))ZdW,H&oo, as T — oo,
0

Therefore, by the strong law of large numbers for martingales [15, Theorem 2.6.10], we get the convergence
Br == B, as T — oo, which confirms the strong consistency of the estimator.
Applying Lemma 4.7, we obtain

B._g) = _ Jo Pu(r)dmy! __ﬁfoTPH(l)szH
ﬁ(BT B)_ ﬁfoT(PH(f))def{_ L1 (Pu(t))” awl!

Remark 3.3. If e = 0, then the process X is the fractional Ornstein—Uhlenbeck process. In this case the MLE

for B equals BT —M. This MLE was first investigated in [12], where its strong consistency was

Jo (Pu(0)*awf!” .
established. Its asymptotic normality was proved in [18].

4 N(0,2B). O

3.3. MLE for vector parameter (o, 3)
Theorem 3.4. Let H > 1/2. The MLEs for o. and B equal

Gy — T Py (e)ds, [T Py (z)2 dwl — Sp [T (Py(2))? dw!!
(fOTPH(t)deI) —wil Jy (Pu(1))?dwf!
By = Wﬁmwgﬁ&hm@mt.
(I Paeydwt?)” = wit i (Pra(e))2

Y, (3.6)

3.7
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They are consistent and asymptotically normal:
T!-H (&T —) i) N (O,XH’YZ) ,
VT (Br—B) > N(0,2B),

H

or T (6 — o) S N(0, 1), \/% (BT - B) 4 N(0,1).

Proof. Let us maximize likelihood ratio in (3.1) with respect to a and B simultaneously. Obviously, the system

of equations
OAy(T 1
H( ):7 Sy — g [3 / Pu(T —0
aoc Y 2
OAg(
H /PH )dS, + = /PH 1) dwl! — B/ (Py(T))? dwi =0

has the solution given by (3.6)—(3.7). Now we check the second partial derivatives of Ay (T):

9*Au(T 1 2 Ay (T T
PAu(T) PAy(T) [ PA(T)\> 1 , i - X
o o < dadp > - vzwg/o (Pale))” i’ =5 </0 PH(f)de') >0,

by the Cauchy—Schwarz inequality, which confirms maximization.
Applying the representation of the process S from Lemma 2.1 and formulas (3.4)—(3.5), we obtain

foTPH(f)dMﬁfoTPH(t)deI—MHfoT(PH(f))defI
(W Rao)dnd')” it T (Ba(0)) !

W?foTPH(t)szH_MIT{fo Py(1)dw)!

(W Bao)dw) il T (Bua)2 !

Hence due to Lemmas 4.6 and 4.7 and the properties of the martingale M we get

&T:(X-f—

Y

ETZB—I—

J= Jo Pu(t)dM — T Py (t) dw!

~ 0 H o Iult t

VT (Br—B) = 7 4 N(0.28)
(v foTPH<r>dwﬁ> I (P
| T H M} 1T 2 g H
7 Jo Pult)aM, f w (1) dwi' =Lz 7 fo (Pu(t))* dw

_H /i~ \/Tfo ,/ 0 t i T J0 toy
T (Gr —a) = 5 Vo Y5 N(0,A07)
( \/;T,T,J’OTPH(t)de’) L o)t
which confirms asymptotical normality of the estimators and consequently their (weak) consistency. O

Remark 3.5. It is worth noting that for H = 1/2 the estimators 07, BT and (&T,ET) are nothing but the MLEs

for classical Vasicek model (1.1), see [14, Example 1.35]. This means that for H = 1/2 formulas (3.2)—(3.3)
and (3.6)—(3.7) transform to

o X —Xo+BJy Xedt i _ofy Xdt — [y X, dX,
T — T ) T — fOTXZ dt )
i — (Xr —Xo) fy X2dt — [y X, dX, [ X,dt B - (Xr —Xo) [y Xedt —T [ X, dx,

T3 X2di— (J3 %, dt>2 T Jg X2di— (J3 %, dz)

Remark 3.6. The problem of finding the bivariate asymptotic distribution of the estimator (&T,BT) is more

involved and requires different tools. In particular, one should find the joint asymptotic distribution of the
statistics Sz, [y Pu(t)dS;, [y Pu(t)dw!, and [ (Py(t))>dw!. This will be done in our further work.
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4. Appendix

We start with the following simple lemma.

Lemma 4.1. For any H € (0, 1) the following equation holds:

t
/ ke (t,5)ds = wH.
0

Proof. The proof is carried out by substitution s = 7z.

1
/kH t,5)ds =X / 1/2— Hp )1/2 H g — 1t2 2H/0 ZI/Z_H(l—Z)l/z_HdZ
K;Il 2— 2HB(3/2 H 3/2 H) x 1l2 2H _W[H 0
Let us introduce the following process

t
U, = / e P=9gBt 1 >0.
0

Then U is a fractional Ornstein—-Uhlenbeck process (see [2]), which is the solution of
dU; = —BU,dt +dB", Uy =0.

Maximum likelihood estimation for this process was widely studied in [12] and [18].
Now from (2.2) one can get

o
X ==+ (x-%)e P+, 4.1
B <x0 B> k @D

Then applying (4.1) and Lemma 4.1, we get

o
P ki (t,5) X, ds = — k e Pyl d
H(I) de[/ HIS S Yd H/ HTS |:B+<X() B) + Y :| s

o 4
L B 42
BYd H/ ky(t,s ds—I—Y<xo |3> dw{*/o ky(t,s)e f{/o ky (t,5)Ugds 4.2)

[;))’CY '1Y (xO_B> VH(Z)+ﬁH(t),

where

_ d [t
Palt) =~ 5 /0 ki (t,5)Usds,  Va(t) = / ki (1,5)e P ds.
t

dwH
Lemma 4.2. Let H > 1/2. Then
' I'(3/2—H) B B\ _T(B/2—H) i/ —1/2-
—Bs _\f— P _1W/2—H) pp-nH ( 1/2H> -
/OkH(t,s ds KB 7 ¢! 2I]_H<2 KHB3/2_H t +0(t , ast— oo,
where I, (z) is the modified Bessel function of the first kind.
Proof. By [1, formulas 9.6.18 and 9.7.1],

ZV 1 2 V*l/Z _
I = 1— Zud
WD = T L( ) ey,
Z
L(z) = e (1+0(z7"), asz— .
Therefore, by substitution s = £ (u+ 1), we get
220 4l :
/kHts B gs =« / 1/2- A — )1/27H67B‘Yds— I_f(;) e*%/ (1—u2)1/2’H67%”du
-1
Val'(3/2—H) [A-H % pr I(3/2—H) \/r-n -1
W He 211,H E :Wt/ (1+0(t ))
I'(3/2—H) 1/-n —1/2-H
:Wl‘ +0<t ) ast — oo, 0
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Corollary 4.3. Let H > 1/2. Then it is easy to see that

T
/VH(t)dw{":o(Tl/Z—H), as T — oo,
0

Lemma 4.4. Let H > 1/2. Then

H-1 /ar(3 — L
V() = ([; 2H7)tr((33/2321)) [(1_ e E H(%)
et ana(5) e (3) e (5]
BH 3(/12/1;(2 Z)H) H- 3/2+0< 5/2)’ 4St — oo,
Proof. By [1, formulas 9.6.29 and 9.7.1],
d 1

67Z]V(Z) =3 (IV+1 (z) + 11 (Z))a

et 4v? — 1 2
Kz) = 1— 0(z o0
@- = (1= o) wses

Then applying Lemma 4.2 we get:

d t s Agv/aU(3/2—H) d Bt
Bs gy = 1 a |-y
dwﬁ/o kg (t,s)e P ds K (2 — 22 g e~ z[1 1%

B VAL(3—2H) B v Bt
- @25 TG/ - 1{(”’” et H<2>

(8] B () ()]

Bl RT( - 2H) e
= 220G/ H) [“‘H)’ s ’”’(2)

ettt (e (5) gt (5) 0 (3))
- (ngﬂi(;/;m)) [1\/_3%1’}13/2 (1 - _41;)2—1 +0(f2))

{3 -5

i Al

B BH_]\/RF(3—2H)) ll_HtH3/2_ 1 tH3/2+0<tH5/2)]

VH(Z‘) =

T (2-2HIG/2-H) | \/pn 2/Bn
_ B 3(/12/1;(2 H?H) H=3/2 (H—5/2), as t — oo. =

Lemma 4.5. For any € > 0 the following convergence holds:

1 T .
_ P, tde—>0, as T — oo,
(W]T.])I/Z-l-S/O H() t
inlly, =1L, (Q,F,P).

Proof. From [10, Lemma 5.4] we have for some Cup>0

E[UU;] < Cplt—s[* 2.
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Then

2 2
E( (H)llm /OTﬁH@deI) = (H;HZE( /0 TkH(T,r)Utdt>
wr
- 1+2g// ky (T, t)ku(T,s)E[UU;] dsdt

7\11+28C
< i 1&25 // P2 (V2 H 1 2H (V2 H | (202 gy

Due to [17, Lemma 2.2 (iv)] it holds that for u € (0,1) and x € (0, 1),

1
/ A=) H x— 1) dr = B(u, 1 —p). (4.3)
0

Substituting s = uT', t = vT, and applying (4.3) we obtain

2
1 T
(g o)

AL 2Cy o722
= re- 2H (1+2¢) // V2R (1 ) V2R V228 () V22 |y P72 duay

7\'1+2€CH 1 B - B
= 2HB29/ 1/2— el 1/2 H</O 472 H(l_u)l/Z H|v_u|2H 2du> dv
_ }\,}-1+2SCH7[3B( - 1/2a3/2_ ) /1V1/2H(1 _V)1/27Hdv
K%IT(272H)28 0

7\'[11+2£CH’BB(H -1/2,3/2—H)B(3/2—H,3/2—H)
= K2, T(2-2H)2

—0, asT — oo,

that concludes the proof of the lemma. O

By [18, Proof of Th. 3|, the next convergences hold:

. 1

\/T/O PH([)dMZHi>N<O,2[3), aST—>°°, (44)
1T 2 1
?/0 (PH(t)> dwﬁgﬁ, as T — oo, 4.5)

Hence we get the following results.

Lemma 4.6. Let H > 1/2. Then it holds that:

1 T

o
— P tdeg—, as T — oo.
W]]-! 0 H() t B,Y

Proof. Applying (4.2) we get:

S [ rwavt = Sy [T (0= %) vt But]
_ g‘wi (30— ) 7 ) vttt 55 [ Butoyant

Combining Corollary 4.3 and Lemma 4.5 with € = % concludes the proof. O
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Lemma 4.7. Let H > 1/2. Then the following convergences hold

/PH dMH—>N< 2B> as T — oo,
7/ (Pult

Proof. Due to [1, formula 9.6.7] we have

dw!! 2[3’ as T — oo,

(Vi (1)) @ —2H)A ' =0 (11 72H) | ast — 0.
By the limit comparison test for improper integrals it follows from [, t'=2# dt < oo that

| V(o)) al? < .
From Lemma 4.4 we get

(Var(1))* 2= 2H)A 112

=0(t?), ast— oo
Applying the limit comparison test for improper integrals again, we get from [;"t~>dt < oo that

| a0 avtt <o

Now it is easy to see that

T/ dw,—T/ ) dwl + T/ (Va())* dwl =0, asT — oo
Hence applying equation (4.5) and the Cauchy—Schwarz inequality we obtain
1 1 T —_~ 2 H P
—/ Vi (1) Py (1) dw!! / )2 dwH — / (PH(I)> dwf B0, asT = oo
T Jo T Jo
Due to (4.8) the following holds

E(\%/OTVH(I)CIM,H>2 _1

T
T/ (Vi ()2 dwH =0, asT — oo
0

Hence

ﬁ/o V() dM? 50, asT — oo

Then combining equations (4.2), (4.4), (4.10) and properties of the martingale M we get
1 /T H 1 T { a 1 < a) ~ o
= Py (t)dM :7/ —+—|x0— 5 VH(I)—FPH(Z) amM
VT o PO =T ) [y Ty (07 ’
o Ml

R o) ot

Py(t)dm? 4N T — co.
/ a($)ad > ( 2B>
Finally, combining equations (4.2), (4.5), (4.8), (4.9), Corollary 4.3 and Lemma 4.5 we get

Oy W L O PO O R
= <[§;>2 Mf—l—; (XO— g) ;/{)T (Vi (1))? dwfl+71,/0T (ﬁH(t))de{{

+§;’°< ) [ vt dwt+f*/ Pra(t)dw!?

BT

42 (0) /VH Pt 1

—, T —o
26 ) )
that concludes the proof of the lemma

(4.8)

4.9)

(4.10)

85

(4.6)

4.7)
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DIDZIAUSIOJO TIKETINUMO IVERTINIMAS TRUPMENINIAME
VASICEKO MODELYJE

Stanislav Lohvinenko, Kostiantyn Ralchenko

Santrauka. Mes nagrinéjame trupmeninj Vasiceko modelj dX, = (o.— BX;)dt +ydB" | valdoma trupmeninio
Brauno proceso B su Hursto parametru H € (1/2,1). Sukonstruojami nezinomy parametry o ir B didziausiojo
tikétinumo jvertiniai ir jrodomas ju pagristumas bei asimptotinis normalumas.

ReikSminiai zodziai: trupmeninis Brauno procesas, trupmeninis Vasiceko modelis, didziausiojo tikétinu-
mo jvertinimas, stiprusis pagristumas, asimptotinis normalumas.
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