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Abstract. An approximation of a cumulative distribution function by the Irwin cumulative distribution function is
considered. The approximating distribution function can be cumulative distribution function of sums (products) of in-
dependent (dependent) random variables. Remainder term of the approximation is estimated by the cumulant method.
The cumulant method is used by introducing special cumulants which satisfy the V. Statulevi¢ius type condition. The
main result is a nonuniform bound for the difference between the cumulative distribution functions in terms of special
cumulants.
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1. Introduction

The approximation of cumulative distribution functions of sums (products) of independent (depen-
dent) random variables by normal and Poisson distributions is analysed in many papers. In this paper,
we consider the approximation by the Irwin law, because the Irwin law is interesting in probability
theory and mathematical statistics.

In 1937, J. O. Irwin [2] considered a random variable ¥ = X; — X,, where X; ~ P(A), Xo ~ P(A) are
independent and P(A) is Poisson distribution. In 1946, J. G. Skellam [10] and in 1952, A. de Castro and
A. Prekopa [8] generalized this random variable Y, where X; ~ P(A;) and X, ~ P(A,) are independent;
therefore, this distribution of random variable ¥ was named the Skellam distribution. Later, in 1962,
J. Strakee and J. J. D. van der Gon [11] presented tables of the cumulative distribution function of the
Skellam distribution to four digits for some combinations of values of the two parameters. In 2006,
D. Karlis and I. Ntzoufras [4] started to examine the random variable Y, when X; ~ P(A;) and
Xo ~ P()y) are correlated. The Skellam distribution estimates of the parameters obtained by the

moment method are . .
A :7(52 7) A :7(52—?>
1 D) + ) 2 D) )

when Y1,Y»,...,Y, are independent and identically distributed by the Skellam distribution, ¥ = %Z?:l Y;

and 82 =Ly (Y, —Y)2. Of course, the estimates of the parameter will exist if $? —|¥| > 0. And only
in 2000, D. Karlis and I. Ntzoufras [3] discussed in detail the properties of the Skellam distribution and
obtained the maximum likelihood estimates. The Skellam distribution estimates of the parameters
obtained by the maximum likelihood method are

do+y y bt <2\/m>
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is a modified Bessel function of the first kind, and
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=n, where I (x) = <
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A=A+, where y= . Zy,-.
i=1
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Later, in 2006, D. Karlis and I. Ntzoufras [4] derived Bayesian estimates and used the Bayesian
approach for testing the equality of the two parameters of the Skellam distribution.

The Skellam distribution has many applications in different fields. D. Karlis and I. Ntzoufras
[5] applied the Skellam distribution for modeling the difference of the number of goals in football
games. They also modeled the difference in the decayed, missing and filled teeth (DMFT) index
before and after treatment in article [4]. This index is one of the most common methods in oral
epidemiology for assessing dental caries prevalence as well as dental treatment needs among populations
and has been used for about 75 years. Y. Hwang, J. Kim and I. Kweon [1] introduced the Skellam
distribution as a sensor noise model for CCD (charge-coupled device) or CMOS (complementary
metal-oxide-semiconductor) cameras. This is derived from the Poisson distribution of photons that
determine the sensor response. They showed that the Skellam distribution can be used to measure the
intensity difference of pixels in the spatial domain, as well as in the temporal domain. In addition, they
showed that Skellam parameters are linearly related to the intensity of the pixels. On applications of
the Skellam law in economics, see [6].

We use the cumulant method for the approximation by the Irwin law. The cumulant method is
widely described in the L. Saulis’ and V. Statulevi¢ius’ monography [9].

2. Irwin Law
We define the Irwin law as an instance of the Skellam distribution:

Definition 2.1 A random variable Y is said to have Irwin distribution if Y = X| — X, where X; ~ P(\),
X ~ P(\) and P () is Poisson distribution.

Evidently, for k € Z,
) 7\‘2s+k

P{Y =k} = e 2h Z _—
s=max{0,—k} s! (S + k) !
The characteristic function of the Irwin law is

g(t) 1tY Z eltkP{Y k} 727\. Z Z eitk )
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Denote m = s+|k|, then we obtain

+m . ) . .
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Applying the expansion
Ing(t) =A <eit +e i — 2) =2 <,§’1 (i’;)!m + rg (_l)r:(lt)r> = kail Elzt;j;,
we obtain the Irwin law cumulants
I,-1=0, Iy =2A neN. (1)
By the expansion
o A (e" +e " 2)
g(t):exp{k(e”+e ”2)} :n:() o
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we obtain the Irwin law moments

r m
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In particular, the Irwin law moments are
( o = 0,
O = 27\,,
o3 =0,
oy = 1202 42, 3)
os =0,
o6 = 120A% + 60A% + 2,

3. Special cumulants in approximation by the Irwin law

To approximate the symmetric cumulative distribution function F(x) of a random variable X by
the cumulative distribution function of the Irwin law, we use special cumulants

- , X
o= &mE (1424 V2+2:) |, keN, )
z=0
. X
where z = cost — 1 and fx(t) = Ee'¥ = E (1 +z+ vz2+2z) :
It is easy to find connection between I and T, = %lnfx(t) . m=1,2,3,...,k,
t=

k=1,2,3,...:

. k (_l)kJrr.Fzr'zr
Iy =k!
r:Zi (2r)!
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X
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W=D are the Catalan numbers, when N € N and 14 the indicator function of

where Co=1, Cy =
a set A.

In particular,

I =Ty,
F2 = %F4 éFZa (6)
I3 =06 — 104+ 4D,
It is easy to make sure that for the Irwin law
= 2, if k=1, o
“T) o, if k2.



Kazimieras Padvelskis, Ruslan Prigodin 115

4. Nonuniform estimates of the remainder term

In this section, we will find nonuniform estimates of the remainder term in the approximation by
the Irwin law. For that purpose, we will use a lemma:

Lemma 4.1 [7] If X and Y are integer-valued random variables with cumulative distribution functions F(x),
G(x) and characteristic functions f(t), g(t), then

(l+|X|)‘F(X)—G(x)’<$ 4/’; f(fiin—ég(ﬂ N
+EL_2,()(”+2RM¢. "
T STy - sin §

Assume that a random variable X with the symmetric cumulative distribution function F(x) and a
characteristic function f(¢) have all finite moments EX*, k=1,2,3,.... Then Inf(¢) can be represented

in the form .

~Z
lnf(t) = Z kEa

k=1
where z = cosr — 1.
We denote the Irwin law cumulative distribution function with parameter A by G(x).

Theorem 4.1 Let cumulants l:k of integer-valued random variable X with the symmetric cumulative
distribution function F (x) and the variance DX = 2, satisfy the V. Statulevicius type condition:

‘fk‘g(k;_ll)!m, A>0, k=2.3.4,.... 9)
then
(T+ D [F (x) = G)| < M?IMS), (10)
where
A}Zmax{é;ll_s}, 0<d<l. (11)
Proof of Theorem 4.1. From the inequality [e” — 1| < |w|el*l, w € C, we obtain
f(1)—g(t)| = eln /(1) _ olng() =g(n)]le Inf(r)-Ing() _ |
< |g(0)|[Inf(1) — Ing(r) | elins@-mso)], (12)
Notice that I'; = 2A and Ing(r) = 2Az, where z = cost — 1; therefore, from (9), we obtain
[In £ (1) — 2hz] = Z ‘Fk 2" X‘Z’ Z : k=2
k=2
Since
|z| =|cost — 1| = 2sin2% <2,
and A > %, 0<d< 1, then ‘ﬂ < 0. Therefore,
In (1) — Ing(1)] < x'f; : e AZ‘I’Z_'ZS) < A(l‘”_‘ 5o 5 (13)
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Since .
‘g(t)’ — eZK(costfl) _ 6747\.5111 3 (14)
from (12), (13) we obtain that
4N .4t .ot 1
- <— 2 sints - Sy ( P
| £ (1) g(t)}\A(l_g)sm 2exp{ 4\ sin 2(1 A(l—S))} (15)
From (11), we obtain 1 — ﬁ > 1. Therefore,
4h ey
[F(1)—g()] < sin® L e hsin’ s (16)

A1=8)"" 2

Now we estimate (f(r) —g(z))’. We have
(1) =£0))' = (1) (70150 _1) + (1) (1n )~ Ing(r)) -/ 040

= —2hsint(£(1) — g(1)) +g(1) (In (1) ~ Ing(1))’ -/ -ne0),

then
|(£(1) — (1)) < 20-|£(r) — (1) +|g(1)] -|(n £ (¢) — Ing(r))'] - elinsO-msto)], (17)

Since

|2[F! a5t
< —
— S ad—o) " 2 (18)

from the estimates (13), (14), (15), (17) and (18), we obtain that

(n () - 202)| <[¢] L[
k=2 (

(0 @) < W“nzéexp{ —nsin® <1 - A(11—8)> }

12hmax{1,A} . >t 0t
< A(L—0) sin 2e z, (19)

From (16) and (19), we obtain that

1) — ) 8L /" 3 sin?s ,
< —. <
[ﬂ sin’ dt\A(l—S) | s’ e 2dt\A(1_6)m1n{l,k}, (20)
") — ) 8L /" o sin?s ,
< —. <
/45 sin2% df < A(1—-29) Jo - 2 © 2dr < A(1-38) min{1,A}, (21)
(O —g@) |, 24Amax{LA} (T r ey 48max{1A}
AT TV gy ¢ 22T r o 48maxql,Ap
/—n sin § dr < A1=08) Jo Sm5e 2dr < A(T—9) min{1,A}
48\
< .
T A(1-9) (22)

Then from (8), (20), (21) and (22), we obtain

22
1 F(x)—G <——.
Theorem 4.1 is proved.
We will apply the results of Theorem 4.1 for the approximation of cumulative distribution functions
of sums of independent generalized Rademacher random variables by the cumulative distribution
function of the Irwin law.
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Corollary 4.1 Let X, k = 1,2,....n, n = 1,2,..., denote independent generalized Rademacher random
variables:
A 2\
P{Xnk:—l}:P{Xnkzl}:;, P{Xx = 0}—1—7
and Fy, (x) are cumulative distribution functions of random variables S,, = X1 + -+ + Xun, G(x) is
the cumulative distribution function of the Irwin law , then

4402
(1 )| F < ————, 2
where .
47umax{6 1—8}’ 0<d< 1. (24)
Proof of Corollary 4.1. Characteristic functions of random variables S,,, = X,;; + - - - + Xy, are
21 "
fs,, (1) = <1 + — (cost — 1)) : (25)

Since

(1—1—2:(cost—1)> —>exp{2A(cost —1)}, as n— oo,

then P{S,, <x} = G(x) as n — oo.
For z=cost — 1, we obtain

o =
Infs, (t)=n-In (1—|—Z> ; (k- — DM 2 o

nk
Therefore, cumulants fk, k=1,2,3,... of random variables S,,, are

= (D=0

nk—1

and (k— DI (k- 1)
~ k—1)1(2 k—1)!
D<=

where A, = 55, k=1,2,3,....
From Theorem 4.1 with A = A, = 53, we obtain (23). Corrollary 4.1 is proved.

5. Conclusions

We obtain the nonuniform estimates of the remainder term (10) through the application of
the cumulant method to the integer-valued random variable, provided all its moments are finite and
its special cumulants satisfy the V. Statulevicius type condition (9) described in this paper. The
results from Theorem 4.1 allow approximating cumulative distribution functions of sums (products)
of independent (dependent) random variables by the Irwin law. Nonuniform estimates of cumulative
distribution functions of sums of independent generalized Rademacher random variables by the Irwin
distribution are obtained from Corollary 4.1.
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NETOLYGUS IVERCIAI APROKSIMUOJANT IRWIN DESNIU

Kazimieras Padvelskis, Ruslan Prigodin

Santrauka. Siame darbe nagrinéjama visus baigtinius momentus turinéiy atsitiktiniy dydziy skirstiniy
aproksimacija Irwin skirstiniu. Aproksimacijos liekamasis narys vertinamas kumulianty metodu. Nagrinéjami
specialus kumuliantai, leidziantys uzrasyti V. Statulevi¢iaus tipo salygas. Gauti sveikasias reikSmes jgyjan-
¢io atsitiktinio dydzio, kurio pasiskirstymo funkcija yra simetriné ir kurio specialieji kumuliantai tenkina V.
Statuleviciaus tipo salyga, aproksimacijos Irwin skirstiniu liekamojo nario netolygus jverciai.

ReikSminiai Zodziai: pasiskirstymo funkcija, charakteristiné funkcija, kumuliantai, Irwin skirstinys, api-
bendrintieji Rademacherio atsitiktiniai dydziai, netolygus jverciai.
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