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Abstract. In the paper, the application of confidence intervals in the surveys of official statistics is discussed. It is noticed 
that there are situations where at the first sight natural normal distribution-based confidence intervals are not suitable. We 
demonstrate it by examples taken from Lithuanian statistical surveys. We also discuss an Edgeworth expansion and a 
bootstrap method as an alternative to the normal approximation.   
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1. Introduction 

A very common parameter estimated, for example, in Lithuanian surveys of official statistics is the sum of 
measurements of a certain variable of interest in a finite population of enterprises or individuals. A typical sample 
design used to form a sample is stratified simple random sampling, where, e.g. in cases of surveys of enterprises, the 
strata are naturally formed by economic activity and by sizes of enterprises. The next thing which is always important in 
the estimation process and which must be controlled is the quality of estimates. There are several very common ways to 
present it. The first way is the estimate of the coefficient of variation (or variance), the second one, which is somewhat 
more informative, is the estimate of the confidence interval. In this paper, we discuss the use of the latter one. 

The application of the traditional normal confidence interval 
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is based on the assumption that the estimator θ̂  has a normal or approximately normal distribution. Here )ˆ(θVar  is 

the variance of θ̂  and αz  denotes α -quantile of the standard normal distribution. In case of large-scale surveys 

(where sample sizes are large), the normality assumption is quite natural because, theoretically, many estimators (i.e. 
not only estimators of sums) are asymptotically normal under quite mild assumptions on the population. In particular, 
for simple random samples without replacement (one-stratum case) the central limit theorem, in the case of the sample 
mean, was proved in [5]. For the case of classical linear combinations of stratum means (sums) in stratified sampling: 
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we refer to e.g. [2]. Here hN and hn are the population and sample sizes in h -stratum; hjy , hnj ,,1K=  denote the 

sample values of the study variable y  in h -stratum. 

2. Numerical examples 

Example 1. We illustrate the use of (1) in the following numerical example. Let the population of interest be two 
strata of medium-size enterprises from the survey of construction. The sizes of the strata are 7311 =N and 4552 =N . 

The corresponding sample sizes are 1361 =n  and 2042 =n . We aim to estimate the population sum of the number 

of employees (here we use the data for the fourth quarter of 2011). Since the values of this study variable are known for 

mailto:andrius.ciginas@stat.gov.lt�


18 Confidence intervals in official statistics: the case of Lithuania 
 

all units of the population (from administrative data sources), we evaluate the distribution of the estimator (2) and 
compare it with the normal distribution. Specifically, we estimate the distribution  
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by applying the Monte Carlo method, i.e. by drawing independently C  stratified samples from the population and 

creating the empirical distribution from the standardized observations si ˆ)ˆˆ( μθ − , where μ̂ and 2ŝ are the empirical 

mean and variance of iθ̂ , Ci ,,1K= , respectively. We take 1000=C . It is seen from Fig. 1, and the normality tests 

show that, in this case, the distribution (3) is close to the standard normal. Thus, the use of αz  in (1) has a background. 

 

Fig. 1. Distribution of the estimator in the construction survey 

Example 2. To show a different situation, the data are taken from the survey on investment. The parameter of 
interest is the population sum of investment in tangible fixed assets. We form an artificial population from the sample 
data of several strata (data for the fourth quarter of 2011). The size of the whole new population is 665=N , and the 
total sample size is chosen to be 200=n . We evaluate the distribution (3) of the estimator (2) in the same way as in 
the previous example, and now results are different: the normality tests and Fig. 2 show that the distribution is not close 
to the standard normal. Next, the evaluated quantiles 2/αq  and 2/1 α−q  of the distribution (3), if 05.0=α , 

are 52.1025.0 −=q  and 08.2975.0 =q . 

 

Fig. 2. Distribution of the estimator in the investment survey 
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The difference between these two examples of sample surveys lies in the different distributions of the populations. 
It is seen from Fig. 3 and Fig. 4 that the population values of investment in tangible fixed assets are much more 
asymmetric compared to the values of the first population. Recall (e.g. from [5]) a Lindeberg-type Erdős–Rényi 
condition, which also means that the survey population should not be very asymmetric. 

 

Fig. 3. Number of employees in the population of the construction survey 

 
Fig. 4. Investment in tangible fixed assets in the population of the investment survey   

 
Thus, in the case of data of Example 2, we need to use methods other than the normal approximation to estimate 

(3).  

3. Edgeworth and bootstrap approximations 

 
The two well-known second-order approximations to (3) are Edgeworth expansions and bootstrap approximations. 

In particular, the one-term (short) Edgeworth expansion is of the form 
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where )(xΦ  and )(xφ  denote the distribution and density of the standard normal random variable, and λ  is, in fact, 

(an approximation to) the standardized third cumulant of the estimator of interest. The Edgeworth correction term, 
added to the normal approximation in (4), reflects the skewness of the distribution of the estimator and thus an 
asymmetry of the population. In the case of the estimator (2), the one-term Edgeworth expansion was studied in [1]; see 
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also [4]. It is important to note that the theory in [1] (and [4]) also holds for other common estimators: ratio and 
regression estimators in stratified samples. It is well known that typically )(|)()(| 2/1−=Φ− nOxxF , while in the 

case of the short Edgeworth expansion (4), in many situations,  
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holds. Clearly, the parameterλ  is an unknown characteristic of the population and should be estimated. Then, with the 

consistent estimate λ̂  of λ , (5) holds in probability.  
The second universal method is the bootstrap. There are several bootstrap variants considered in literature for the 

case of samples without replacement. Some of these methods are reviewed in [4]. In the present paper, we discuss one 
method, which is proposed in [4]. The practical realization of this method is the following. For each Hh ,,1K= , write 

hhhh tnmN += , hh nt <≤0 . Then, for each Hh ,,1K= , we form an empirical stratum by repeating hm  times 

the sample },,1,{ hhjh njy K==Υ  and joining the simple random sample without replacement hjz , 

htj ,,1K= drawn from hΥ . Then the union of the empirical strata is one empirical population. Next, in the same way 

as in the evaluation of the distribution (3) by Monte Carlo method, we draw R samples (called resamples) from the 

empirical population and calculate standardized values of the estimator of interest. Denote them by )1(~
iθ , Ri ,,1K= . 

Next, we repeat it with other 1−B empirical populations and, finally, from the collection of data )(~ b
iθ , Ri ,,1K= , 

Bb ,,1K= , we get the (empirical) bootstrap estimate )(xH of (3). It is shown in [4] that, for many common 
estimators of the sum (including (2)), under certain conditions, )(xH  is the second-order correct approximation, i.e. 

)(|)()(| 2/1−=− noxHxF P . Moreover, it is well known that the bootstrap approximation )(xH  is in a sense very 
similar to the one-term Edgeworth expansion )(xG , since it also captures the skewness of the distribution of the 

estimator. 
 

Example 2 (continued). We apply the bootstrap approximation )(xH  to )(xF . To see how it works, we draw 
80 stratified samples from the population and, for each of them, we calculate )(xH  by the algorithm given above (we 
take 100=R  and 10=B ). Then we get 80 pairs of 025.0  and 975.0  quantiles of )(xH  and, in order to see the 

efficiency of the bootstrap method, we present histograms for both quantiles (see Fig. 5).    
 

 
Fig. 5. Normal and the evaluated )(xF  quantiles and histograms of bootstrap quantiles 

 
It is seen that, applying a bootstrap approximation, there is a very small risk to get worse estimates of quantiles 

than the normal quantiles. Note that, by the obtained results, the corresponding bootstrap confidence interval 
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))ˆ(ˆˆ,)ˆ(ˆˆ( 2/12/ θθθθ αα VarqVarq −++ , where 2/ˆαq  and 2/1ˆ α−q  are the bootstrap estimates of 2/αq  and 2/1 α−q , 

tends to be conservative. 

4. Remarks 

Note that, in the real applications of the confidence interval ))ˆ(ˆ,)ˆ(ˆ( 2/12/ θθθθ αα VarqVarq −++ , we need 

to estimate not only 2/αq  and 2/1 α−q , replacing them by the normal quantiles as in (1) or by the quantiles from the 

Edgeworth expansion or bootstrap distribution, but we also need to estimate the variance )ˆ(θVar . Here we do not 
consider either this question or the estimation of the parameter λ , which defines the short Edgeworth expansion (4). 
 

It is important to mention that there are some works on second-order approximations, which are done for more 
general (than traditional estimators of sums) estimators in the case of stratified samples, see e.g. [3] on U -statistics 
(which are close to very general symmetric statistics), but a number of important results are still not extended from the 
one-stratum case to the stratified sampling or more complex sampling designs. On the other hand, sometimes we need 
to estimate the accuracy of the estimate in a single stratum, where the sample size is small and therefore the normal 
approximation often fails.   

References 

1. Babu G. J. and Singh K. Edgeworth expansions for sampling without replacement from finite populations, J. Multivariate Anal., 
17, p. 261–278, 1985. 

2. Bickel P. J. and Freedman D. A. Asymptotic normality and the bootstrap in stratified sampling, Ann. Statist., 12, p. 470–482, 1984.  

3. Bloznelis M. Second-order and resampling approximation of finite population U -statistics based on stratified samples, Statistics, 
41, p. 321–332, 2007. 

4. Booth J., Butler R. and Hall P. Bootstrap methods for finite populations, J. Amer. Statist. Assoc., 89, p. 1282–1289, 1994. 
5. Erdős P. and Rényi A. On the central limit theorem for samples from a finite population, Publ. Math. Inst. Hungar. Acad. Sci., 4, 

p. 49–61, 1959. 
 
 
 
 

PASIKLIAUTINIEJI INTERVALAI OFICIALIOJOJE STATISTIKOJE: LIETUVOS ATVEJIS 

Andrius Čiginas 

Santrauka. Straipsnyje aptariamas pasikliautinųjų intervalų vertinimas oficialiosios statistikos tyrimuose. Atkreipiamas 
dėmesys į atvejus, kada įprasti normaliuoju skirstiniu pagrįsti pasikliautinųjų intervalų įvertiniai yra nepakankamai tikslūs. Tai 
iliustruojama Lietuvos statistinių tyrimų pavyzdžiais. Siūlomi alternatyvūs Edgewortho skleidinio ir savirankos metodais pagrįsti 
pasikliautinųjų intervalų įvertiniai. 

 
Reikšminiai žodžiai: pasikliautinasis intervalas, normalioji aproksimacija, Edgewortho skleidinys, saviranka, baigtinė 

populiacija. 
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