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Abstract. In this paper, we focus on Lee–Carter mortality forecasting. Model residuals and future mortality trends
are explored. Predictions of the force of mortality for France, Belarus and Lithuania are provided and compared. Several
modifications of the model are applied to Lithuanian mortality data in order to obtain the most precise forecast.
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1. Introduction

Mortality is not constant over time; moreover, it changes differently in different age groups. Therefore,
it is important to identify the mortality trend and be able to predict mortality rates accurately. From
an economic perspective, inaccurate forecast can make a negative influence on life insurance companies
and the pension system (both the state social insurance system and private pension funds).

There are several ways of forecasting mortality. In recent years, the Lee–Carter model has been
the most widely used one. This model was originally applied in 1992 to US data and later to mortality
data of many other countries such as Canada (Nault, 1993), Austria (Carter and Prkawetz, 2001),
Italy (Giacometti, Bertocchi, Rachev, Fabozzi, 2012). Moreover, the majority of new attempts to
forecast mortality refer to the Lee–Carter model; therefore, it has many modifications (see Renshaw
and Haberman, 2003; Debon, Montes and Puig, 2007).

To our knowledge, Lithuanian mortality has not been predicted; therefore, the objective of this
paper is to apply the Lee–Carter model to Lithuanian mortality data and identify the best fitting
modification. The paper also compares the applicability of the model to populations with different
mortality profiles. For this purpose, besides Lithuania, France and Belarus were chosen.

2. Lee–Carter model

Suppose that mx,t is the death rate for age x in year t, i.e. the ratio between the total number of deaths
in the population of age x in year t and the total population of age x in year t (Nx,t):

mx,t =
Dx,t

Nx,t
,

and µx,t = ln(mx,t) – empirical force of mortality. Lee and Carter [5] suggested a linear form for the
force of mortality µx,t :

µx,t = ln(mx,t) = αx +βxkt +εx,t , x = 1, ...,A; t = 1, ...,T, (2.1)

where αx,βx are age-specific parameters, kt – time-specific parameter, and εx,t – independent identically
distributed Gaussian errors N(0,σ2). Parameters αx show the general rate of mortality for a certain
age, and parameters kt – the general rate of mortality for a certain time. It can be easily proved that
the expression (2.1) of the force of mortality µx,t is invariant with respect to the transformations:

(βx,kt)� (cβx,kt/c); (αx,kt)� (αx− cβx,kt + c) for some c ∈ R\{0}.
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So we can require the parameters βx,kt to satisfy these conditions:

A

∑
x=1
βx = 1;

T

∑
t=1

kt = 0. (2.2)

These conditions ensure the unambiguousness of parameters βx and kt .

Given the restriction of
T
∑

t=1
kt = 0, parameters αx, x = 1, ...,A, are estimated by averages of the force

of mortality over a time period, i.e.

α̃x =
1
T

T

∑
t=1
µx,t , for all x = 1, ...,A. (2.3)

Then random variables µx,t − α̃x = βxkt + εx,t , x = 1, ...,A; t = 1, ...,T , are Gaussian N(βxkt ,σ
2).

According to [1] and [5], the optimal method to find the estimators of parameters βx and kt is SVD
(singular value decomposition) of the matrix of variables zx,t = µx,t − α̃x, x = 1, ...,A; t = 1, ...,T .

Given the matrix Z=(zx,t)x=1,...,A; t=1,...,T , we can compute normalized eigenvectors u1 =(u1,1, ...,u1,T )
T

and v1 = (v1,1, ...,v1,A)
T of the matrices ZT Z and ZZT , which correspond to the largest eigenvalue λ1.

Then the estimators of βx, x= 1, ...,A, which satisfy the conditions (2.2) and estimators of kt , t = 1, ...,T ,
are:

β̂=
(
β̂1, ..., β̂A

)T
= V1

A
∑
j=1

v1, j

, k̃ =
(
k̃1, ..., k̃T

)T
= λ1

(
A
∑
j=1

v1, j

)
u1. (2.4)

For the two values - the number of deaths estimated by the model and the real number of deaths
- to be equal, we need another clarification of parameters kt , t = 1, ...,T . Estimators ¯̄kt can be found
from equations:

Dt =
A

∑
x=1

Nx,t exp
(
α̃x + β̂x

¯̄kt

)
, t = 1, ...,T, (2.5)

where Dt is the total number of deaths in year t and Nx,t has been defined earlier.
We need one more transformation for estimators of αx and kt to satisfy conditions (2.2). We define

k̂t =
¯̄kt − 1

T

T
∑

t=1

¯̄kt , for all t = 1, ...,T, α̂x = α̃x + β̂x
1
T

T
∑

t=1

¯̄kt , for all x = 1, ...,A. (2.6)

In order to forecast the force of mortality, Lee and Carter [5] assume that parameters αx and βx

are constant over time and kt is a stochastic process. In the same article, they suggest using random
walk with a drift for kt , i.e.

k̂t = k̂t−1 +θ+ξt , t ≥ 2, (2.7)

where ξt are independent zero-mean Gaussian with variance σ2
rw. The maximum likelihood estimates

of θ and σ2
rw are

θ̂=
k̂T − k̂1

T −1
; σ̂2

rw =
1

T −1

T−1

∑
t=1

(k̂t+1− k̂t − θ̂)2. (2.8)

We get that k̂T+∆t = k̂T +(∆t)θ̂+
√
∆tξ̃, where ξ̃ are Gaussian N(0,σ2

rw). The forecast of force of
mortality in year T +∆t can be approximated as follows:

µ̂x,T+∆t = α̂x + β̂x
(
k̂T +(∆t)θ̂

)
= α̂x + β̂x

(
k̂T +∆t

k̂T − k̂1

T −1

)
. (2.9)
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3. Empirical data analysis

Mortality data, population size and the number of deaths in Lithuania, France and Belarus are taken
from the Berkeley Human Mortality Database, University of California (www.mortality.org). Lithua-
nian data is available for the period from 1959 to 2010, for ages 0 to 110 years, for men and women
separately and together.
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Figure 3.1: Empirical force of mortality of the Lithuanian population.

We use the data from 1970 for our cal-
culations because the data until 1970
might be unreliable. From Figure 3.1,
where the empirical force of mortality
of the Lithuanian population is shown,
we can see that the optimal age interval
for modelling is 20 to 90 years. Anal-
ogous surfaces are similar for France
and Belarus, therefore, for these coun-
tries, we use the same time and age
intervals. Later, the two data subsets
will be taken for men and women sep-
arately:

• Subset 1: 1970 to 2005, 20 to 90
years,

• Subset 2: 2006 to 2010 (2009 for
France), 20 to 90 years.

From the first subset, the parameters of
the model are estimated. From the sec-
ond subset, we can compare the mod-
els and the estimates of the force of
mortality with the empirical data.
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Figure 3.2: Average empirical force of mortality.

Figure 3.2 plots the average empirical force of mortality µ̄t , t = 1970, ...,2005,
(
µ̄t =

1
71

90
∑

x=20
µx,t

)
for

France, Belarus and Lithuania for the period 1970 to 2005. The mortality of the French population
is characterised by a significant dawnward trend; the average empirical force of mortality of Belarus
increases over time, but with some fluctuations. Meanwhile, the average empirical force of mortality
of Lithuania fluctuates without any visible trend.
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4. µx,t forecast for France

From equations (2.2)–(2.8), we calculate α̂x, β̂x, x = 20, ...,90, and k̂t , t = 1970, ...,2005, for the French
data. The results are shown in Figure 4.1. We assume that k̂t , t = 1971, ...,2005, modelled for the
French data, is a first-order autoregressive process, i.e.

k̂t = θk̂t−1 +θ0 +ξt , t = 1971, ...,2005,

with independent Gaussian errors ξt ∼ N(0,σ2
rw).

Using the augmented Dickey–Fuller (ADF) test, we test the hypothesis:

H0: process has a unit root, or H0 : θ= 1,
H1: process does not have a unit root. H1 : θ 6= 1.

We get that the p-value is 0.0951 for men and 0.0148 for women. Therefore, we cannot reject the
null hypothesis that there is a unit root in men’s k̂t , when the significance level is less than 0.0951,
and in women’s k̂t , when the significance level is less than 0.0148. Though for women we should reject
H0, when the significance level is more than 0.0148, from Figure 4.1 we can see that the plots of k̂t are
very similar for men and women, and we do not reject H0 for men’s k̂t . Therefore, for both men and
women, we model k̂t as a random walk with a drift. The maximum likelihood estimate of the drift
θ̂=−1.3615 for women and θ̂=−1.130 for men.

We notice that errors ξt are substantially Gaussian for both men and women (the p-values of the
Kolmogorov–Smirnov test are 0.6654 for men and 0.1193 for women, the p-values of the χ2 test are,
respectively, 0.7685 for men and 0.1046 for women). The means of errors ξt are 0, σ̂rw = 1.1872 for
men and σ̂rw = 1.7452 for women. Having the values of α̂x, β̂x and k̂t , using the expression (2.9), we
calculate µ̂x,t , t = 2006, ...,2009. The results are shown in figures 4.2 and 4.3.
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Figure 4.1: α̂x, β̂x, k̂t for men (top) and women (bottom)
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Figure 4.2: µ̂x,t

Women
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Figure 4.3: µ̂x,t

5. µx,t forecast for Belarus

In the same way as for France, we calculate α̂x, β̂x, x = 20, ...,90, and k̂t , t = 1970, ...,2005, for Belarus.
The results are shown in Figure 5.3. The p-values of the ADF test are 0.5794 for men and 0.297 for
women.

Since we do not reject the null hypothesis that there is a unit root, we model k̂t as a random walk
with a drift. The maximum likelihood estimate of the drift is θ̂ = 0.411 for women and θ̂ = 0.8802
for men. The errors ξt are substantially Gaussian for both men and women (the p-values of the
Kolmogorov–Smirnov test are 0.4144 for men and 0.1984 for women, the p-values of the χ2 test are,
respectively, 0.4361 for men and 0.24232 for women). The means of errors ξt are 0, σ̂rw = 2.6276 for
men and σ̂rw = 2.4816 for women. Having α̂x, β̂x, k̂t , using (2.9), we calculate µ̂x,t , t = 2006, ...,2010.
The results are shown in figures 5.1 and 5.2.
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Figure 5.1: µ̂x,t

Women
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Figure 5.3: α̂x, β̂x, k̂t for men (top) and women (bottom)

6. µx,t forecast for Lithuania

6.1. Classical model

We calculate α̂x, β̂x, x = 20, ...,90, and k̂t , t = 1970, ...,2005, for Lithuanian data. The estimates are
shown in Figure 6.1.1. The p-values of the ADF test are 0.4711 for men and 0.4377 for women.

Hence we model k̂t as a random walk with a drift. The maximum likelihood estimate of the drift is
θ̂=−0.3792 for women and θ̂= 0.3889 for men. The errors k̂t are substantially Gaussian for both men
and women (means are 0, σ̂rw = 3.6219 for women and σ̂rw = 3.1181 for men, the p-values of normality
tests are 0.5959 for women and 0.4333 for men of the Kolmogorov–Smirnov test and 0.9614 for women
and 0.1480 for men of the χ2 test).

6.2. k̂t with one and two lags

Let us consider that k̂t is a random process with one lag, i.e. a second-order autoregressive process
with a drift:

k̂t = θk̂t−1 +θ0 +θ1
(
k̂t−1− k̂t−2

)
+ξt , t = 1971, ...,2005,

with independent Gaussian errors ξt ∼ N(0,σ2
rw). Having applied the ADF test, we do not reject the

null hypothesis that there is a unit root (p-values are 0.2426 for men and 0.4328 for women); therefore,
we assume that θ = 1 while modelling k̂t . Least squares estimates are θ0 =−0.2113, θ1 =−0.0827 for
women and θ0 = 0.4743, θ1 = 0.1317 for men. The errors ξt are substantially Gaussian for both men
and women (means are 0, σ̂rw = 3.4463 for women and σ̂rw = 3.052 for men, the p-values of normality
tests are 0.5959 for women and 0.8608 for men of the Kolmogorov–Smirnov test and 0.9614 for women
and 0.1062 for men of the χ2 test).
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Figure 6.1.1: α̂x, β̂x ir k̂t for men (top) and women (bottom)

Now let us consider that k̂t is a random process with two lags, i.e. a third-order autoregressive
process with a drift:

k̂t = θk̂t−1 +θ0 +θ1
(
k̂t−1− k̂t−2

)
+θ2

(
k̂t−2− k̂t−3

)
+ξt , t = 1971, ...,2005,

with independent Gaussian errors ξt ∼ N(0,σ2
rw) and θ = 1 (p-values of the ADF test are 0.2774 for

men and 0.6371 for women). Least squares estimates are θ0 = 0.3602, θ1 =−0.0165, θ2 =−0.1976 for
women and θ0 = 0.4743, θ1 = 0.1973, θ2 =−0.0882 for men. The errors ξt are substantially Gaussian
for both men and women (means are 0, σ̂rw = 3.3087 for women and σ̂rw = 3.0078 for men, the p-
values of normality tests are 0.9083 for women and 0.8335 for men of the Kolmogorov–Smirnov test
and 0.9022 for women and 0.7739 for men of the χ2 test).

6.3. Adjusted Lee–Carter model

According to [4], we modify Lee–Carter model:

µx,t = αx +β1xk1t +β2xk2t +εx,t , x = 20, ...,90; t = 1970, ...,2005,

where εx,t ∼ N(0,σ2) are Gaussian errors. For the estimation of parameters β1x,k1t ,β2x,k2t , we also
use the SVD method, but in the decomposition of the matrix zx,t = µx,t − α̃x we take two singular
values and get:

β̂1 =
(
β̂11, ..., β̂1A

)T
= v1

A
∑
j=1

v1, j

, k̃1 =
(
k̃11, ..., k̃1T

)T
= λ1

(
A
∑
j=1

v1, j

)
u1,

β̂2 =
(
β̂21, ..., β̂2A

)T
= v2

A
∑
j=1

v2, j

, ¯̄k2 =
(

¯̄k21, ...,
¯̄k2T

)T
= λ2

(
A
∑

j=1
v2,j

)
u2.

28 Lee-Carter mortality forecasting 
 



As in the classical model, the estimated and empirical number of deaths must be equal; therefore,
we find the estimates ¯̄k1t from the equations:

Dt =
A

∑
x=1

Nx,t exp
(
α̃x + β̂1x

¯̄k1t + β̂2x
¯̄k2t

)
, t = 1, ...,T.

Since the parameters k1t and k2t must satisfy the constraints

T
∑

t=1
k1t = 0,

T
∑

t=1
k2t = 0,

an additional transformation is made:

k̂1t =
¯̄k1t − 1

T

T
∑

t=1

¯̄k1t , k̂2t =
¯̄k2t − 1

T

T
∑

t=1

¯̄k2t , α̂x = α̃x + β̂1x
1
T

T
∑

t=1

¯̄k1t + β̂2x
1
T

T
∑

t=1

¯̄k2t .

The estimates k̂1t , k̂2t and β̂1t , β̂2t are shown in Figure 6.3.3. We do not reject the unit root
hypothesis for both k̂1t and k̂2t . The p-values of the ADF test for k̂1t are 0.5333 for men and 0.3898
for women; for k̂2t : 0.6132 for men and 0.3087 for women. Hence we model k̂1t and k̂2t as random
walks with a drift. For men, θ̂= 0.3747 for the process k̂1t and θ̂=−0.0398 for the process k̂2t . For
women, θ̂ = −0.422 for the process k̂1t and θ̂ = 0.0648 for the process k̂2t . The errors of the process
k̂1t are substantially Gaussian for both men and women, while for the process k̂2t we should reject the
normality hypothesis when the significance level is more than 0.0415 for men and more than 0.0351
for women. The means of errors are 0, σ̂rw and the p-values of the Kolmogorov–Smirnov and the χ2

tests are given in Table 6.3.1. µ̂x,t , t = 2006, ...,2010 are shown in figures 6.3.1 and 6.3.2.

Table 6.3.1: The characteristics of the errors.
σ̂rw p-value of K–S test p-value of χ2 test

Men
k̂1t 3.0952 0.3743 0.3851
k̂2t 0.6068 0.02 0.0415

Women
k̂1t 3.1739 0.1655 0.5438
k̂2t 0.7497 0.0074 0.0351
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Figure 6.3.1: µ̂x,t

Women

2030405060708090

2006

2007

2008

2009

2010

−6

−5

−4

−3

−2

Fo
rc

e 
of

 m
or

ta
lit

y

−6

−5

−4

−3

−2

Figure 6.3.2: µ̂x,t
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Figure 6.3.3: β̂1x, β̂2x, k̂1t and k̂2t for men (top) and women (bottom)

6.4. Comparison of the models

We will use a square root of a mean square error to compare which model is the most suitable for
Lithuanian data and most accurately predicts µx,t :

√
MSE =

√
1

71

90

∑
x=20

(µ̂x,t −µx,t)2,

where t = 1970, ...,2005 for model errors and t = 2006, ...,2010 for forecast errors.
The average

√
MSE of a classical model is 0.1052 for men and 0.1578 for women, the average

√
MSE

of adjusted model is 0.105 for men and 0.1566 for women.
√

MSE of forecast is reported in Table 6.4.1.
It is evident that we do not reduce or even increase

√
MSE by adding lags to the prediction of k̂t and

therefore do not make the prediction more accurate. However, the adjustment of the model reduces
the
√

MSE of both model and the forecast and this means that the adjusted model is the most suitable
for Lithuanian data and most accurately predicts µx,t .

Table 6.4.1 shows that the accuracy of a longer-term (4–5 years) forecast for women is only slightly
smaller than that of a short-term (1–2 years). The accuracy of a short-term forecast for men is much
better than for women; however, with an increase in the period, the accuracy decreases much faster,
and longer-term forecasts for men are less accurate than for women.
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Table 6.4.1:
√

MSE of a forecast
Men

√
MSE Women

√
MSE

Model/year 2006 2007 2008 2009 2010 2006 2007 2008 2009 2010
Classical 0.123 0.1154 0.1515 0.2595 0.3055 0.1793 0.1759 0.1775 0.1512 0.1811

1 lag 0.1236 0.1134 0.1598 0.2738 0.3206 0.1798 0.1753 0.1765 0.1543 0.1879
2 lags 0.124 0.1136 0.1561 0.2667 0.3124 0.1803 0.1802 0.1805 0.1483 0.1761

Adjusted 0.1047 0.1056 0.1305 0.2325 0.2762 0.1755 0.1572 0.1618 0.1518 0.1795

7. Comparison of the countries

We calculate
√

MSE (from 1970 to 2005) of the Belarusian and French models and compare them
with the

√
MSE of the Lithuanian adjusted model. On average, the French

√
MSE are the smallest

and the Lithuanian – the biggest. We also calculate the
√

MSE of the forecast (from 2006 to 2010 for
Belarus and to 2009 – for France). Comparing them with analogous

√
MSE of the Lithuanian adjusted

model forecast, Figure 7.1 shows that a short-term (1–2 years) Lithuanian forecast for men is more
accurate than the corresponding Belarusian and French forecasts. However, the Lithuanian forecast
for men becomes less accurate with an increase in the period. Meanwhile, the Lithuanian forecast for
women is less accurate than forecasts for Belarus and France (except for a 5-year forecast, which is
more accurate than Belarusian). Hence the Lee–Carter model most accurately describes and predicts
mortality in France. This is what might have been expected because from Figure 3.2 it is obvious that
French mortality varies over time the least.

Figure 7.2 shows the forecast of the force of mortality for the year 2011. The forecast is obtained
by taking data from 1970 to 2010 (to 2009 for France), because if we take data only until the year
2005, we get a less accurate forecast. Female mortality remains lower than the male one in younger
age, while in older age female and male mortality becomes similar.

In Figure 7.3, forecasts for the force of mortality for the years 2011 and 2060 are compared. It is
seen that the forecasted mortality of French women and men will significantly decrease over 50 years.
The forecasted mortality of Belarusian women will slightly, that of Belarusian men – quite significantly
increase. Meanwhile, the mortality of Lithuanian women, especially of younger ones, will decrease.
The mortality of younger Lithuanian men will decrease, while that of older men – increase.

Table 7.1:
√

MSE of model
Country France Belarus Lithuania

Sex Men Women Men Women Men Women
Average 0.0664 0.0623 0.0762 0.1005 0.105 0.1566
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Figure 7.1:
√

MSE of forecast for men (on the left) and for women (on the right)
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Figure 7.2: µ̂x,2011 for men (on the left) and for women (on the right)
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Figure 7.3: µ̂x,2011 and µ̂x,2060 for men (on the left) and for women (on the right)
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8. The average number of years of life remaining

Suppose k px,t is the probability that an individual who is x years old in year t will survive at least
k years, qx,t – the probability that the individual will die during the next year. We estimate the
probability qx,t with the mortality rate mx,t = eµ̂x,t . It is easy to see that

k px,t =1 px,t ·1 px+1,t+1 · ... ·1 px+k−1,t+k−1, for all k,x, t.

Moreover, 1 px,t = 1−qx,t , for all x and t.
For the calculation of the average number of years of life remaining for an individual who is x years

old (ex), we will use the formula:

ex =
∞

∑
k=1

k px,t .

The derivation of this formula is shown in [2].
We forecast the force of mortality for ages x = 20, ...,90; therefore, we assume that the probability

for an individual to survive more than 91 years is very small. Hence ex, x = 20, ...,90, are estimated as
follows:

êx =
91−x
∑

k=1
k px,2012, or êx =

91−x
∑

k=1

k−1
∏
l=0

(1− eµ̂x+l,2012+l ).

In Table 8.1, ex, x= 20, ...,80, for Belarusian, French and Lithuanian men and women are presented.

Table 8.1: Average number of years of life remaining for the year 2012
France Belarus Lithuania France Belarus Lithuania

Age Men Women Men Women Men Women Age Men Women Men Women Men Women
20 63.6 67.6 39.5 54.9 46.7 60.3 51 31.2 35.5 17.7 26.5 20.9 29.7
21 62.5 66.6 38.7 54 45.8 59.2 52 30.2 34.5 17.1 25.6 20.2 28.8
22 61.5 65.5 37.9 53 44.9 58.2 53 29.3 33.5 16.5 24.8 19.5 27.9
23 60.4 64.5 37.1 52.1 43.9 57.2 54 28.3 32.5 16 24 18.9 27
24 59.3 63.4 36.4 51.1 43 56.2 55 27.4 31.5 15.4 23.1 18.2 26.1
25 58.3 62.4 35.6 50.2 42.1 55.1 56 26.5 30.6 14.9 22.3 17.6 25.3
26 57.2 61.3 34.9 49.2 41.2 54.1 57 25.6 29.6 14.3 21.5 17 24.4
27 56.1 60.3 34.1 48.3 40.3 53.1 58 24.6 28.6 13.8 20.7 16.3 23.5
28 55.1 59.3 33.4 47.3 39.4 52.1 59 23.7 27.6 13.3 19.9 15.8 22.7
29 54 58.2 32.6 46.4 38.6 51.1 60 22.8 26.6 12.8 19.1 15.2 21.9
30 52.9 57.2 31.9 45.5 37.7 50 61 21.9 25.6 12.3 18.3 14.6 21
31 51.9 56.1 31.1 44.5 36.8 49 62 21 24.7 11.8 17.5 14 20.2
32 50.8 55.1 30.4 43.6 35.9 48 63 20.2 23.7 11.4 16.8 13.5 19.4
33 49.7 54 29.7 42.7 35.1 47 64 19.3 22.7 10.9 16 12.9 18.5
34 48.7 53 29 41.7 34.2 46 65 18.4 21.8 10.5 15.3 12.4 17.7
35 47.6 51.9 28.2 40.8 33.3 45 66 17.6 20.8 10 14.5 11.9 16.9
36 46.5 50.9 27.5 39.9 32.5 44 67 16.7 19.9 9.6 13.8 11.4 16
37 45.5 49.8 26.8 39 31.7 43 68 15.9 18.9 9.1 13.1 10.9 15.2
38 44.4 48.8 26.1 38 30.8 42 69 15.1 18 8.7 12.4 10.4 14.4
39 43.4 47.8 25.4 37.1 30 41 70 14.3 17.1 8.3 11.7 9.9 13.6
40 42.3 46.7 24.7 36.2 29.2 40.1 71 13.5 16.1 7.8 11.1 9.4 12.8
41 41.3 45.7 24 35.3 28.4 39.1 72 12.7 15.2 7.4 10.4 8.8 12.1
42 40.2 44.7 23.3 34.4 27.6 38.1 73 11.9 14.3 7 9.8 8.3 11.3
43 39.2 43.6 22.7 33.5 26.8 37.2 74 11.2 13.4 6.7 9.2 7.9 10.5
44 38.2 42.6 22 32.6 26 36.2 75 10.4 12.5 6.3 8.6 7.4 9.8
45 37.2 41.6 21.4 31.7 25.2 35.3 76 9.7 11.7 5.9 8 6.9 9.1
46 36.1 40.6 20.7 30.8 24.5 34.3 77 9 10.8 5.5 7.5 6.5 8.4
47 35.1 39.6 20.1 29.9 23.7 33.4 78 8.3 10 5.2 6.9 6 7.7
48 34.1 38.5 19.5 29.1 23 32.4 79 7.6 9.2 4.8 6.4 5.6 7
49 33.2 37.5 18.9 28.2 22.3 31.5 80 7 8.3 4.5 5.9 5.1 6.4
50 32.2 36.5 18.3 27.3 21.6 30.6
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9. Conclusions

While comparing the suitability of the Lee–Carter model for different countries, we have obtained that
the model most accurately describes and predicts mortality for France. Only short-term (1–2 years)
forecasts for the Belarusian and Lithuanian mortality are accurate, while the accuracy of longer-term
(4–5 years) forecasts is lower, especially for men. The accuracy of forecast for France does not decrease
with an increase in the period, while for women it even increases.

From these results, we can conclude that the Lee–Carter method is most suitable for populations
with a clear upward or downward mortality trend over time. It is incorrect to assume that the
force of mortality has a linear form if mortality varies considerably over time and linearity is the key
assumption of the model.

We have not obtained an accurate forecast using the classical Lee–Carter model because Lithua-
nian mortality has varied significantly in recent decades. Modified models can be applied when the
assumption of linearity is not satisfied. One of such modifications is the adjusted model. We have
obtained more accurate results by applying it to Lithuanian data.

The Lee–Carter model is based on the assumption that the model errors are independent identi-
cally distributed Gaussian random variables. This assumption is not only difficult to verify but also
unrealistic in many cases. This problem may be solved by modelling the dependence of residuals or
choosing other random variables to model the errors and modifying the model in this way.
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MIRTINGUMO PROGNOZAVIMAS LEE-CARTER’IO METODU

Eglė Ignatavičiūtė, Rasa Mikalauskaitė-Arminienė, Jonas Šiaulys

Santrauka. Darbe nagrinėjamas Lee–Carter’io metodas mirtingumui prognozuoti. Analizuojamos modelio
liekanos bei mirtingumo tendencijos. Pateikiamos ir palyginamos mirtingumo galios prognozės Prancūzijai,
Baltarusijai ir Lietuvai. Siekiant gauti tiksliausią prognozę Lietuvos mirtingumo duomenims taikomos kelios
metodo modifikacijos.

Reikšminiai žodžiai: mirtingumo prognozavimas, Lee–Carter’io metodas
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