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Abstract. Premium estimation is a key concept in insurance mathematics. Estimation of the mean and
variance of a total claim amount of a portfolio can be considered as necessary prerequisites for this. In
turn, dividing the portfolio into homogeneous subportfolios can be considered as a first step towards find-
ing those estimates. We consider the problem of estimating the claim intensity and propose a regression
trees based approach for clustering the portfolio into homogeneous subportfolios in a situation where the
durations of the policies differ and overdispersion is present. Several other generalizations are discussed.
A case study involving Estonian casco insurance is included.
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1. Introduction

Premium calculation is one of the fundamental issues in insurance mathematics with several
proposed methods and models. In this article we focus on one of the classical ideas, namely
claim distribution modelling. Modelling claim distributions allows us to use certain risk models
and to divide the expected claims proportionally between risks (policies). It also connects two
important problems in insurance mathematics: estimation of the total claim amount and finding
the insurance premium. Also, applying a distribution based model allows us to describe the
behaviour of the claims process with a reasonably small number of parameters. It is possible
to model the total claim amount either directly or through the distributions of the number of
claims and individual claim amounts (see, e.g., Klugman et al., 2004). We choose the latter
model because it has several well-known advantages like the possibility to take into account
the influence of inflation, deductibles, reinsurance and more. The weakest point of this setup is
obtaining a homogeneous risk portfolio, which is a rare case in practice, but one can certainly use
some clustering techniques to group similar risks. The number of different clustering algorithms
is extensive (see, e.g., Hastie et al., 2009). In this paper we choose classification and regression
trees (C&RT) clustering because of its easy applicability and a straightforward connection to
the compound Poisson model, which is of special interest to us.

The problem of (pure) premium estimation can be divided into two main tasks: estimation of
individual claim sizes and estimation of the number of claims. The first issue, i.e. analyzing
models suitable for describing individual claims, has been of interest in some recent studies
(see, e.g., Käärik & Umbleja, 2010, 2011; Käärik & Kadarik, 2012; Käärik & Žegulova, 2012).
The current paper can be seen as a follow-up to these studies with the main emphasis on the
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claim number distribution. More precisely, we utilize the classical (compound) Poisson model
and analyze the effect of the following two common factors on this model:

• difference of durations of insurance periods,

• overdispersion in portfolio.

The (compound) Poisson model is a preferred choice because of its convenient additive properties
(the sum of independent Poisson-distributed random variables is also Poisson-distributed, similar
properties carry over to the compound Poisson distribution). The latter property is of importance
when moving from the individual risk level to a class or portfolio level. With the compound
Poisson model the estimation of each individual risk in homogeneous classes gives immediately an
estimate for the distribution of the total claim amount as well. So it is clearly an appealing choice,
but obviously the nature of the Poisson distribution involves a restriction that the expectation
and variance of the claim number are approximately equal. If there is considerable overdispersion,
one has to take this into account in order to get an acceptable model. Another aspect of interest
is the duration of insurance policies: in most classical models the duration is assumed to be
constant for simplicity, but in practice this is rarely the case, thus we are looking for a model
that takes the different lengths of insurance periods into account as well.

The paper is organized as follows. In Section 2. we recall the properties of the classical collective
risk model and the basics of the C&RT clustering method. In section 3. we turn our attention
to the problem of potentially different durations of insurance periods. The question of allowing
overdispersion in the proposed model is addressed in section 4., where the quasi-likelihood frame-
work leads us to an overdispersed Poisson model. In section 5. we offer possible generalizations
to handle overdispersion. A practical application is described in section 6. and final comments
and conclusions are given in section 7..

2. Preliminaries

2.1. Classical collective risk model

Let us start with the classical collective risk model (see, e.g., Kaas et al., 2009; Klugman et al.,
2004). The total claim amount S is given in the form

S =

N∗∑
j=1

Zj ,

where N∗ is the frequency (number of claims) in a given period (say, in a year) and Zj are
severities (individual claim sizes). We assume also that the individual claims Z1, Z2, . . . are
independent and also independent from the number of claims N∗ (i.e. the claim count does not
depend on the claim size).

The main idea of premium calculation using the collective risk model is the following:

• cluster the portfolio into homogeneous subportfolios,

• estimate the frequency and severity in each subportfolio,

• using the collective model, estimate the total claim amount in each subportfolio and divide
the expected claim amount (proportionally) between policies.
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Naturally there are several different clustering techniques that can be used and the choice of
method depends on the particular problem and on personal preferences. In this paper we choose
the method of classification and regression trees (C&RT), see next subsection for more details.

Assume now that our (total) portfolio is divided into homogeneous subportfolios, i.e., in each
subportfolio we have risks with i.i.d. frequencies and i.i.d. severities. Consider an arbitrary
homogeneous subportfolio. In order to not complicate the notation, let us denote the total claim
amount for that subportfolio by S and apply the same model for all subportfolios. Let there
be n policies in that subportfolio and let Ni and Yi denote the frequency and the total claim
amount corresponding to risk (policy) i (i = 1, . . . , n), respectively, and let Zij denote the claim
size corresponding to j-th claim from i-th policy (j = 1, . . . , Ni). Depending on the level of
generalization we may omit some indices, i.e. write N instead of Ni, Y instead of Yi and Zj or
Z instead of Zij if the particular indices are not relevant.

Then the total claim amount in each subportfolio is given by S =
∑N∗

j=1 Zj and the following
equalities hold

ES = EN∗ · EZ, (1)

V arS = EN∗ · V arZ + (EZ)2 · V arN∗. (2)

If we move to the individual policy level, the claim amount for i-th policy is given by

Yi =

Ni∑
j=1

Zij

and from (1) and (2) the expectation and variance of i-th policy are:

EYi = ENiEZ, (3)

V arYi = ENiV arZ + (EZ)2V arNi. (4)

Since N∗ =
∑n

i=1Ni, we also have EN∗ = nEN and V arN∗ = nV arN , i.e. the expectation and
variance of the frequency N∗ for a (sub)portfolio are proportionally divided between individual
policies.

In conclusion, given that the portfolio can be divided into homogeneous subclasses and for each
class we can find the estimate for the total claim amount, the individual pure premium is found
as the pure premium for the class divided by the number of policies in that class.

Remark. We recall that in previous discussion we assumed that all the policies have same
duration. In practice this is rarely the case, therefore we need to take the durations into account
in order to find a more realistic model. This is one of the key aspects we are focusing on in this
study.

There are three classical choices for the frequency distribution: binomial, Poisson and negative
binomial. While each of them has its benefits, the Poisson model is clearly the most common,
because of its applicability and extendibility. It is known that the Poisson model fits well if
EN ≈ V arN , while EN > V arN supports the binomial and EN < V arN the negative
binomial. As in practice overdispersion is the more common problem to handle, we are more
interested in the latter.
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2.2. C&RT clustering

C&RT (classification and regression trees) methodology allows us to produce an ”if-then” type
set of conditions based on auxiliary variables (one can think of them as risk factors so possible
candidates could be variables related to the object insured, like its value, but could also be
related to the owner of the insured object, like the data of previous insurance contracts). As
with all clustering algorithms the amount and the quality of the auxiliary data determines the
clustering result.

Because of the differing length of policies it is easier to think that the subportfolios are more
homogeneous if two policies belonging to the same class have as similar claim intensities as
possible. The easiest way to produce subclasses is to divide the policies into two classes (leaves)
using some auxiliary variable. Then we can proceed with the new subclasses and divide them
(using perhaps some other auxiliary variable). Technically it would be possible to continue until
each subclass contains only a single policy but usually it is beneficial to stop earlier. In the
following we describe the algorithm based on Therneau and Atkinson (1997).

Suppose we have defined the deviance of a model allowing us to compare models pairwise (see
Section 3. for precise definition). Let D(T ) stand for the deviance of model T . Let us also assume
that the number of auxiliary variables available is m.

Then we proceed stepwise. At each step we choose a risk factor Xj , j ∈ {1, . . . ,m} so that when
distributing the observations into two subclasses (according to that risk factor) the deviance is
decreased the most. Thus there are two choices at each step: choose a subclass and a risk factor
with the discrimination rule. At the i-th step there are i candidates for a class and m candidates
for a risk factor. The number of possible splitting rules for a particular combination of risk factor
and class depends on the set of values that the risk factor has in that class. If the risk factor
is continuous and has k distinct values then the amount of possible splits is k − 1. If the risk
factor is categorical and has k distinct values then the amount of possible splits is 2k−1−1. This
also means that categorical risk factors with many levels are likely to be selected because of the
large number of possible splits.

More precisely, suppose i− 1 steps have been completed, i ∈ {1, 2, 3, . . .} and the current model
(tree) is Ti−1. This tree has i leaves or, equivalently, the model has i classes. Let Ij be the set of
indices (of the policies) belonging to the j-th class, j ∈ {1, . . . , i}. Suppose that class j has more
than one policy and for every risk factor Xk, k ∈ {1, . . . ,m} the possible values are indexed by

Jjk. Possible splits are denoted by θjks (class j, risk factor Xk and rule s), where

s ∈

{
1, . . . , 2|Jjk|−1 − 1, if Xk is categorical,

1, . . . , |Jjk| − 1, if Xk is continuous.

By applying the splitting rule θjks to the current tree Ti−1, we get a new tree that has one more

leaf. Denote the deviance of the new tree by D(T θ
jk
s
i ). The goal is to find the splitting rule θjks ,

which minimizes the deviance D(T θ
jk
s
i ). We call this (not necessarily unique) split optimal. After

finding the optimal split we have completed i steps and we can continue with a tree Ti that has
i+ 1 leaves.

Usually we demand that each split would decrease the deviance by at least some fixed amount.
If we can’t find such a splitting rule then we stop. We can express this idea as the ”price of a
leaf” and redefine the deviance as

Dα(T ) = D(T ) + α|T |, (5)
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where α ≥ 0 is the penalization parameter and |T | is the number of leaves of tree T . In reality
this means that ”adding an additional leaf to the tree costs α units”. Now the goal is to minimize
the function (5) for a fixed α over the set of all subtrees1 of the maximal tree T∞ . Thus we
want to find the subtree with minimal deviance Dα(T ). We call this tree optimal. The optimal
tree depends on α: if α = 0, the addition of leaves is ”for free” and the optimal tree will be T∞.
On the other hand when we increase α, the number of leaves on an optimal tree decreases. The
optimal tree may not be unique but it is known that if for some α there exist trees T a and T b

such that both are subtrees of T∞ and Dα(T a) = Dα(T b), then one of them is a subtree of the
other and we choose the one with fewer leaves as the optimal one (Breiman et al., 1984). It also
holds that when we increase the penalization parameter then the optimal tree will either be the
same or a subtree of it. This means that we can always find the optimal tree by pruning the tree
T∞. Cross-validation is used for determining a reasonable value for α. If needed, a minimum
limit can be set for subclasses – this makes sure that we will have enough data at the subportfolio
level for estimation.

From the practical point of view an important aspect is that C&RT methodology is also able to
handle missing data by defining surrogate splits – that is, in addition to the best primary split,
every tree node may also be split on one or more other variables with nearly the same results.

3. C&RT/Poisson model with different insurance periods

Let us now extend the classical model to the case where the insurance periods have different
lengths. Let ni denote the number of claims of i-th policy, ti the corresponding insurance period,
and let nij denote the number of claims of policy i in time unit j (e.g., day or year, depending
on model2). In that case we can express ni as follows: ni =

∑ti
j=1 nij .

We define the deviance of the model T as

D(T ) =
n∑
i=1

(
λ[i]ti − ni log(λ[i]ti)

)
, (6)

where λ[i] is the average number of claims (in a time unit) in the class containing the i-th policy
(as this value minimizes the deviance). Thus we have

λ[i1] = λ[i2] = . . . = λ[in] =

∑n
j=1 nij∑n
j=1 tij

(7)

if policies i1, i2, . . ., in (and no others) belong to the class in question.

Let us assume that we are dealing with a homogeneous subportfolio, i.e. the claim numbers
(per time unit) nij are independent realizations of the random variable Nij (or simply N[i] if
the exact time j is not relevant), for all i = 1, . . . , n and j = 1, . . . , ti. Then each quantity ni
is an independent realization of the random variable Ni =

∑ti
j=1Nij . Applying this model to

Formulae (3) and (4) we get the following estimates for the expectation and variance of the
claim amount for risk i (i = 1, . . . , n):

EYi = tiEN[i]EZ, (8)

V arYi = tiEN[i]V arZ + ti(EZ)2V arN[i]. (9)

1Subtrees of tree T are all those trees that we can form by pruning T , i.e. omitting leaves (and nodes that
have turned into leaves).

2In mathematical models it is convenient to use as small a time unit as possible, which in practice usually
means that daily numbers are considered. For illustrative purposes, though, it is better to use some larger time
interval (e.g., a year) to achieve intuitively more understandable quantities.
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For the aforementioned three distributions, the following relations between Nij and Ni hold:

• if Nij ∼ Po(λ), then Ni ∼ Po(λti);
• if Nij ∼ NBin(α, p), then Ni ∼ NBin(αti, p);

• if Nij ∼ Bin(n, p), then Ni ∼ Bin(nti, p).

Let us now assume that the frequency in time unit Nij in a given (sub)portfolio is Poisson-
distributed with parameter λ. Then the frequency Ni (during the insurance period for i-th
policy) is Poisson-distributed with parameter λti, where ti is the length of the corresponding
insurance period (basically one can think of Poisson process model with intensity λ). Thus the
formula for the score function is given by

s(λ) =
1

λ

n∑
i=1

ni −
n∑
i=1

ti. (10)

and the maximum likelihood estimate for parameter λ is found from

λ̂ =

∑n
i=1 ni∑n
i=1 ti

. (11)

Notice that the maximum likelihood estimate is the same that is used for clustering by the
C&RT method (see Formula (7)).

4. C&RT/overdispersed Poisson model

There are different options to handle overdispersion. One can choose a certain mixed Poisson
model (e.g. negative binomial), apply some regression-type model, or use the so-called overdis-
persed Poisson model. In the latter case, an actual distribution is not fixed, only the variance-
mean relationship is determined through an overdispersion parameter ϕ by V arN = ϕEN . This
allows us to use the classical Poisson model, with the exception that the parameter estimation
is done using the so-called quasi-likelihood framework. The properties of the quasi-likelihood
function are similar to those of the regular log-likelihood function, the only difference is that the
value of the quasi-likelihood function is not a log-likelihood of any actual probability distribu-
tion (see e.g. Wedderburn (1974) or McCullagh (1983) for more details). Besides this technical
difference (from the perspective of our setup) we can apply the same ideas that we used for
Poisson model in previous section.

In general, the score function s(λ) for such a construction can be given as follows:

s(λ) =

n∑
i=1

∂λi
∂λ

ni − λi
ϕλi

, (12)

where the relation between the individual parameters λi and the theoretical global parameter λ
is determined by a particular model.

Let us now assume that the parameters λi are defined by a general rate parameter λ and by the
length of the period ti as follows: λi = λti. Then the formula for the score function is an obvious
generalization of Formula (10),
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s(λ) =
n∑
i=1

ti
ni − λti
ϕλti

=
1

ϕλ

n∑
i=1

(ni − λti) (13)

and the maximum likelihood estimate for λ is still given by (11). Thus the C&RT methodology
is feasible when overdispersion is present, as well. The practical implication is that the cross-
validation estimate of the penalization parameter α (see Formula (5)) will typically be larger as
we cannot estimate the homogenuous subportfolios as precisely and this causes larger classes in
the optimal tree (i.e. tree has fewer leaves).

The estimate for the overdispersion parameter ϕ is found from

ϕ̂ =
1

n− 1

n∑
i=1

(ni − λ̂i)
λ̂i

, (14)

where the estimate of λi is assumed to be found using (12) or directly from (11) depending on
the setup (see Wedderburn (1974) for more details).

Remark. Small amounts of overdispersion (if ϕ̂ is close to one) are usually of little concern.
The question of when is ϕ̂ so large that an overdispersed model must be used depends on many
factors, but clearly one must consider an overdispersed model if ϕ̂ > 2. See also Hilbe (2007),
Cameron, Trivedi (2008) and Tutz (2012) for more details.

In the case of the overdispersed Poisson model, Formulae (8) and (9) for the expectation and
variance of the severity of the risk i are the following:

EYi = λtiEZ, (15)

V arYi = λtiV arZ + λϕti(EZ)2 = λti(V arZ + ϕ(EZ)2). (16)

Let us now assume that the individual frequencies in our subportfolios are Poisson distributed
and apply the overdispersed Poisson model. A natural question is what model does the total
claim number for the sum of claims for those two subportfolios follow. The following Lemma
shows that if the overdispersion in the frequency data does not influence the distribution of
severities (which is quite a natural assumption), the compound overdispersed Poisson model
retains the closedness properties of the Poisson model.

Lemma 1. Let us assume that the random variables N1, . . . , Nk follow the overdispersed Poisson
model, i.e. ENi = λi and V arNi = ϕiENi, for i = 1, . . . , k. Then the sum N∗ =

∑k
i=1Ni

follows the same model with Poisson parameter λ∗ =
∑k

i=1 λi and overdispersion parameter

ϕ∗ = 1
λ∗

∑k
i=1 λiϕi. In the case when ϕi = ϕ for i = 1, . . . , k, we have ϕ∗ = ϕ.

The proof is straightforward, details are omitted.

5. Handling overdispersion in a more general framework

Although the C&RT/overdispersed Poisson model proposed in Section 4. is simple and easily
applicable, it is not always sufficient to handle the overdispersion, especially in cases where
the overdispersion is considerably large (see, e.g., Hilbe, 2007). This motivates us to seek for
more possible generalizations of the claim number process to solve the issue of overdispersion.
As previously, we still would like the model to retain certain closedness properties the Poisson
model has.
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5.1. Mixed Poisson model

Assume that the frequency Ni is a Poisson distributed random variable with a parameter Λi,
which is also a random variable. Assume also that the corresponding expectation is known,
EΛi = λi. Obviously, taking Λi ≡ λi reduces to regular Poisson model. The random variable
Λi is called a mixing variable and we say the frequency Ni follows a certain mixed Poisson
distribution. Clearly, a proper mixing can take care of the overdispersion. But our question of
main interest is does such a model retain the nice properties that the Poisson model has, i.e.
if and under what conditions is the sum of mixed Poisson distributions again a mixed Poisson
distribution. A similar question can be asked about the compound process.

To answer these questions, we recall the multiplicative mixed Poisson model as described by
Daykin et al. (1994). Here the mixing variable Λi is given through two components: the expected
value λi and a properly scaled mixing value Qi such that EQi = 1. Then the conditional
distribution of Ni is (Ni|Qi = qi) ∼ Po(λiqi). We can first establish that indeed

ENi = E(E(Ni|Qi)) = E(λiQi) = λi (17)

and

V arNi = E(V ar(Ni|Qi)) + V ar(E(Ni|Qi)) = E(λiQi) + V ar(λiQi)

= λi + λ2iV ar(Qi), (18)

showing that this is a suitable model to handle overdispersion. As previously, the expectation
and variance of the severity for the i-th policy are found simply by substituting the outcome of
Formulae (17) and (18) into Formulae (3) and (4).

Now, it has been proved that under such a construction the sum of mixed Poisson variables
Ni, i = 1, . . . , k (where k is arbitrary) is a mixed Poisson-distributed if the summands Ni are
either mutually independent or depend on each other only through their mixing variables Qi.
The generalization to the compound mixed Poisson case is not that straightforward. It turns
out that the sum of independent compound mixed Poisson random variables is not in general a
compound mixed Poisson variable. Still, the sum of compound mixed Poisson random variables
all having same mixing variable Q, but otherwise independent summands, is again a mixed
Poisson random variable with mixing variable Q. For more details see Daykin et al. (1994).

Another problem is interpretability. We can imagine that the data generation algorithm consists
of generating the (unobserved) realization of Λi and then generating the realization of a Poisson
random variable (which is observed) with parameter equal to the (unobserved) realization gen-
erated previously. With this algorithm it is of course reasonable to think that the parameters
of the mixing distribution are determined by the auxiliary variables. While the realizations of
the mixing distribution are unobserved we can follow the idea proposed by Karlis (2005) that
employs the EM algorithm. This allows us to calculate the conditional means of the mixing
variable given the data which then could be used as data from the mixing distribution.

5.2. Negative binomial model

As already mentioned, the negative binomial model is a valid model if the variance exceeds the
expectation and it is one of the classical choices to describe the claim number in a (sub)portfolio.
Consider now the aspect of our main interest, i.e. if and when then the sum of negative binomials
or compound negative binomials is also a negative binomial or compound negative binomial,
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respectively. Unfortunately the negative binomial distribution does not have this property in
general. The sum of two independent negative binomial random variables Ni ∼ NBin(αi, pi),
i = 1, . . . , k (for some k) is again negative binomial if all parameters pi are equal, pi ≡ p. The
same holds if we apply the model with different insurance periods. Still, if we would like to apply
this model for the whole portfolio, we should assume that in all subportfolios the frequency N
follows a negative binomial distribution with fixed parameter p, which is obviously a very strong
restriction.

Since the negative binomial distribution can be represented as a Poisson mixture with a Gamma
mixing distribution, all the properties from the previous section carry over to negative binomial
distribution as well. More precisely, it is a known fact that mixing the Poisson distribution
with mixing variable Λi ∼ Γ(αi,

αi
λi

) (or, equivalently, with the ”normalized” mixing variable

Qi ∼ Γ(αi, αi)) results in a negative binomial random variable, Ni ∼ NBin(αi,
λi

αi+λi
), see, e.g.,

Johnson et al. (1994). Straightforward calculations (either using Formulae (17) and (18) or the
properties of the negative binomial distribution) yield that in this case

ENi = λi

and

V arNi = λi +
λ2i
αi
.

Still, the interpretability of the parameters is an issue for the negative binomial case as well as
for all mixed Poisson cases. One way to overcome this problem is to apply the ideas proposed by
Karlis (2005) for the negative binomial case. Using this approach we can formulate the following
two-step algorithm. In first step we find the conditional means of the variates from the Gamma
distribution and in second step we use these as data and divide the portfolio into subportfolios
making use of the auxiliary variables.

Recall also that the negative binomial distribution can be formulated as a compound Poisson
distribution with the summands having a logarithmic distribution. Such a model is appealing
since there are simple explicit maximum likelihood estimates for both Poisson and logarithmic
distributions, unfortunately in our setup there is no clear interpretation of the parameters of
such a model, especially for C&RT clustering.

5.3. Poisson regression in subportfolios

In case the subportfolios obtained by clustering do not have homogeneous structure or the
homogeneous subportfolios turn out to be too small to form a basis of any statistical analysis,
one may also apply certain regression models to take care of the heterogeneity. Note that our
previous constructions can be seen as regression with an empty (intercept only) model.

Consider the following Poisson regression model in a chosen subportfolio

λi = exp(xTi β), (19)

where β = (β0, β1, . . . , βk) is the vector of coefficients and xi is the i-th row of the auxiliary
data matrix. The same formula holds for the overdispersed Poisson model.

Now, the score functions of the two models we are interested in have the following forms (see,
e.g., Tutz, 2012, McCullagh et al. 1989):
for the Poisson model we get

s(β) =

n∑
i=1

xi
∂λi
∂β

ni − λi
λi

(20)
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and for the overdispersed Poisson model the formula is

s(β) =
n∑
i=1

xi
∂λi
∂β

ni − λi
ϕλi

. (21)

The estimate for the overdispersion parameter ϕ is found from

ϕ̂ =
1

n− k − 1

n∑
i=1

ni − λ̂i
λ̂i

,

where the estimate λ̂i = exp(xTi β̂) is assumed to be found using (21). See also Tutz (2012) for
more details.

In conclusion, the estimate of the severity for the i-th risk (Ni) is given by

ÊN i = λ̂i

in both the Poisson model and the overdispersed Poisson model case. Similarly, the estimate for
the variance is

V̂ arN i = λ̂i or V̂ arN i = ϕ̂λ̂i

in the Poisson and the overdispersed Poisson cases, respectively.

Remark. Note that assuming the intercept only model, i.e. k = 0, we have xi = 1 and Formula
(19) simplifies to λi = exp(β0). Taking also λ = λti, it can be seen that Formulae (10) and (13)
follow immediately from Formulae (20) and (21).

6. Case study: Estonian casco insurance

The proposed methodology was used for premium calculation in an Estonian insurance company.
Different risks like glass breakage risk, traffic accident risk, theft risk and more were considered.
The data covered 7 years and several important characteristics about the vehicle like the value,
type, make, model and year of manufacture were available. Several characteristics about the
owner of the vehicle (including sex, age and more) were also typically available.

We utilized the following simple algorithm for finding the premium through the estimation of
claim distributions:

1. Divide the original portfolio into homogeneous subportfolios using C&RT clustering.

2. In each subportfolio estimate the claim frequency:

(a) choose the suitable model or models to be fitted (Poisson, overdispersed Poisson,
mixed Poisson, etc.);

(b) find the maximum likelihood estimates for the parameters of the chosen model (see
Formulae (11), (14));

(c) if the sample expectation and variance can be considered equal, use the Poisson model
(see Section 3.), if there is overdispersion apply the overdispersed Poisson model (see
Section 4.) or more complex models depending on the nature of the particular problem
(see Section 5.);

3. Estimate the claim severity in each subportfolio:
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(a) choose the suitable class of distributions to be fitted;

(b) for each distribution find the maximum likelihood estimates for the parameter(s) and
choose the distribution that fits best;

4. Find the pure premium for each policy using Formulae (8) and (9).

5. Apply the risk loading corresponding to the chosen premium calculation principle.

By C&RT clustering the most relevant variables that divided the risks into classes were the
value and the type of the vehicle together with the year of manufacture (or age of the vehicle)
when dealing with severities. Lognormal, Pareto, Gamma and Weibull distributions were used as
theoretical candidates. For traffic accident damage the most suitable distribution was lognormal,
for glass damage we got the best results with the lognormal distribution in some classes and
with the Gamma distribution in other classes.

When dealing with the claim frequencies, the age and the year of manufacture of a vehicle were
the most important variables. Also, the sample mean and variance were of a similar size is most
classes (subportfolios) with the variance usually slightly larger, but not large enough to reject
the Poisson model.

To give a better illustration of the method used but to keep it brief, we present an arbitrary
subbranch of the glass breakage risk model obtained by the C&RT clustering (see Figure 1).
Keep in mind that (due to confidentiality of the data) the given subbranch does not include all
the clustering conditions, only the last two splits are shown. In other words, the policies assigned
to this subbranch are already separated from other policies using some other (and potentially
more relevant) criteria based on the auxiliary variables. The chosen subbranch has 3 leaves
corresponding to 3 subportfolios, each leaf has the estimated claim intensity (per year) attached
to it together with the actual number of claims observed in the respective subportfolio and the
total number of policies (with possibly different durations) assigned to that subportfolio. One
can see that there is considerable difference between the obtained estimate for intensity and the
ratio which does not take the lengths insurance periods into account.

Age of the owner < 31 years

Age of vehicle > 1 year
0.151

0.0930.238

1545/13496

21/267345/1982

Figure 1: Example of a C&RT (sub)branch

From Figure 1 we can also see that in the given branch the factors determining the clustering
criteria are the age of the owner and the age of the vehicle. The classical principle for decision
trees is that items meeting the condition are moved to the left and others to the right. Thus in
the presented figure the left-most leaf (with a claim intensity of 0.238 claims per year) consists
of policies of which the owner is less than 31 years of age and the vehicle is more than one year
old.
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Let us now study the subportfolio determined by this left-most leaf of the C&RT branch in more
detail. The fit of the proposed Poisson distribution to the claim number in this subportfolio can
be seen in Figure 2. The bars represent the frequencies of claim numbers in given sample and
the dots are the corresponding values from the proposed Poisson distribution.
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Figure 2: Fitting a Poisson distribution to the number of claims per risk

Fitting the empirical distribution of severity (individual claim size) by the theoretical candidate
distributions is shown in Figure 3. From the proposed candidate distributions, the lognormal
distribution has the best fit with the sample histogram, Gamma distribution is performing
slightly worse. The results of GOF-tests support this conclusion.
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Figure 3: Fitting distributions to individual claim size

When the amount of data is large but the premium calculation should include arriving data as
soon as possible (i.e. be dynamic) then it is possible to perform Step 1 of the given algorithm
(defining the rules for clustering into subportfolios) less often while the fast operations (recalcu-
lating the mean and variance estimates) could be carried out whenever new policies are added
to the subportfolios (if necessary).

Most models and calculations in this case study were made using R statistical software packages
actuar and rpart (Dutang et al., 2008, Therneau et al., 2010, R Development Core Team, 2012).

 Meelis Käärik, Ants Kaasik 47 
 



7. Conclusions

The estimation of certain claim distributions and making decisions based on these estimates is
an old but pressing topic in actuarial mathematics and raises various different problems and
questions. In this study we followed a simple algorithm for finding the premium through the
estimation of claim distributions (see Section 6.), with the main emphasis on the clustering of the
original portfolio into homogeneous subportfolios using the C&RT method, and the estimation
of the claim frequency.

While being complicated non-linear models in practice, C&RT models have very good inter-
pretability and are in general very fast to fit which might be crucial with large data-sets. The
speed is gained due to the greedy algorithm employed. On the flip-side this means that the
solution might not be the global optimum. Minimal assumptions and good prediction accuracy
are also strong points of the methodology while a practical problem from an insurance point of
view is the fact that the nature of the model means that two neighbouring observations with
very close values of the auxiliary variables may have radically different predictions (should they
end up in different subportfolios).

The collective risk model is a classical model and provided that the clustering to homogeneous
subportfolios is achievable, several problems like the estimation of the total claim amount dis-
tribution and the calculation of the pure premium for each risk are easily solved. Here the main
attention is obviously on the case when the claim number process is a Poisson process, which
has especially nice properties in regard of the sums of distributions and compound distributions
belonging to the same class as the summands. These properties hold also in cases with different
insurance periods, the generalization being straightforward, the changes in estimation mostly
technical. The main problem related to the Poisson model is that it has only one parameter
and therefore lacks the dynamics to handle possible overdispersion. There are various alterna-
tives available, but most generalizations either lose some of the key properties of the Poisson
model or raise other issues (e.g. the interpretation of parameters in the mixed Poisson case). In
this sense the C&RT/overdispersed Poisson is the best choice as it takes into account possible
overdispersion while retaining the good properties of Poisson model.

The proposed methodology was applied to a real-life problem from casco insurance and the
obtained estimates were reasonably good, especially considering the simplicity of the model
used.
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[8] Käärik, M., and Kadarik, H. 2012: Statistical inference with the limited expected value
function. In: Multivariate Statistics with Applications: Proceedings of IX Tartu Conference
on Multivariate Statistics & XX International Workshop on Matrices and Statistics.[to
appear]
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I̧MOKU̧ VERTINIMAS TAIKANT C&RT/PUASONO MODELI̧ IR JO
APIBENDRINIMAS

Meelis Käärik, Ants Kaasik

Santrauka. I̧moku̧ vertinimas yra pagrindinis draudimo matematikos objektas. Portfelio žalu̧ sumos
vidurkio ir dispersijos i̧verčiai gali būti pasitelkiami siekiant apskaičiuoti draudimo i̧moka̧. Savo ruožtu
draudimo portfelio ǐsskaidymas i̧ homogeninius subportfelius galėtu̧ būti pirmas žingsnis norint i̧vertinti
žalu̧ sumos vidurki̧ ir dispersija̧. Straipsnyje nagrinėjamas žalu̧ intensyvumo parametro vertinimo už-
davinys, kuriam sprȩsti pasiūlomas regresijos medžiais paremtas portfelio padalijimui i̧ homogeninius
subportfelius metodas, kai draudimo liudijimu̧ trukmė yra skirtinga ir susiduriama su didelės dispersijos
problema. Taip pat pristatoma keletas modelio apibendrinimu̧. Straipsnio pabaigoje pateikiamas praktinis
modelio panaudojimo pavyzdys Estijos transporto priemoniu̧ (KASKO) draudimo produktui.

Reikšminiai žodžiai: aktuarinė matematika, kolektyvinės rizikos modelis, i̧moku̧ apskaičiavimas,

klasifikavimo ir regresijos medžiai (C&RT), didelės dispersijos problema
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