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Abstract. In this paper we had made an attempt to incorporate the results from the theory of square Gaussian random variables in
order to construct the goodness of fits test for random sequences (time series). We considered two versions of such tests. The first one
was designed for testing the adequacy of the hypotheses on expectation and covariance function of univariate non-centered sequence,
the other one was constructed for testing the hypotheses on covariance of the multivariate centered sequence. The simulation results
illustrate the behavior of these tests in some particular cases.
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1. Introduction

The task of investigating the properties of a random sequence is very important for its application. Very often some
phenomena can be observed only at certain points in time. In some cases the values of continuous quantities, such as
temperature and voltage, can be written only at discrete moments of time. And even if the observations can be recorded
continuously we can only use discrete data for computational purposes. That is why we usually deal with random se-
quences or time series in practice. The latter term is used more frequently but we prefer to use the former one designating
the connection to random processes.

There is much literature devoted to this topic, in particular the classic books on the statistical analysis of time series
written by Anderson [1], Box and Jenkins [2], and Brockwell and Davis [4].

To date, many goodness-of-fit tests in time series are residual-based. For example, the classic portmanteau test of
Box and Pierce [3] and its improvement by Ljung and Box [15] are based on the sample autocorrelations of the residuals.
In the context of goodness of fit of nonlinear time series models, the McLeod and Li [16] test is based on the sample
autocorrelations of the squared residuals. Based on a spectral approach of the residuals, Chen and Deo [6] proposed some
new diagnostic tests. More recently, perhaps influenced by the empirical distribution function approach in the goodness-
of-fit test for independent observations, substantial developments for time series data have taken place in the form of tests
based on empirical processes marked by certain residuals, see for instance Chen and Härdle [7] and Escanciano [8]. For
more information and details see the references within the literature proposed.

In the model-based approach to time series analysis, estimated residuals are computed once a fitted model has been
obtained from the data, and these are then tested for “whiteness”, i. e. it is determined whether they behave like white
noise. Tests for residual whiteness generally postulate whiteness of the residuals as the Null Hypothesis, so that significant
rejections indicate model inadequacy. These tests require the computation of residuals from the fitted model, which can be
quite tedious when the model does not have a finite order autoregressive representation. Also, in such cases, the residuals
are not uniquely defined.

In this paper we use another approach gained from the theory of square Gaussian random variables. This theory
was developed in works by Kozachenko et al. [11], [12], [13], for the investigation of stochastic processes. In the book
by Buldygin and Kozachenko [5] the properties of the space of square Gaussian random variables were studied and the
connection with Orlicz spaces of random variables was established. We use this theory for the construction goodness
of fit tests on the expectation and covariance function for the non-centered univariate stationary Gaussian sequence and
covariance function for the centered but multivariate stationary random sequence. Our tests do not require the computation
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6 Some Goodness of Fit Tests for Random Sequences

of residuals and can be applied to infinite order representations. This paper is the continuation of the work started in [14],
which was devoted to testing the centered univariate random sequence.

The paper consists of 5 sections and 2 annexes. The second section is devoted to the theory of square Gaussian
random variables and contains the main definitions and results. In particular, we found the estimate for the distribution
of the maximum of the quadratic form of the square Gaussian random variables. Sections 3 and 4 apply the estimator
obtained in section 2 to construct different aggregate tests.

The test in section 3 was constructed for testing the aggregated hypothesis on the expectation and covariance function
of the non-centered stationary Gaussian sequence. It is based on the approach used in stochastic process L2 theory. Within
this inference the process identification is made on the basis of the two main characteristics: mathematical expectation
and covariance function.

In the section 4 we consider multivariate sequences. The approach analyzing the residuals dominates in the multi-
variate case too. See, for example, papers by Hosking [9], [10], Mahdi and McLeod [17] and the references therein. The
goodness of fit test we have constructed for the centered Gaussian multivariate stationary sequence is based on fitting the
covariance function.

The power properties of our tests were studied through simulations. Section 5 draws some conclusions. Some neces-
sary mathematical calculations are relegated to the annexes at the end.

2. Square Gaussian random variables

Let Ξ = {γi, i ∈ I} be a family of joint Gaussian random variables for which Eγi = 0 for all i ∈ I.

Definition 1. [13] The space SGΞ(Ω) is the space of square Gaussian random variables if any element ξ ∈ SGΞ(Ω) can
be presented as

ξ =−→γ TA−→γ −E−→γ TA−→γ , (1)

where −→γ T = (γ1, ...,γr), γi ∈ Ξ, i = 1,r, A is a real-valued matrix; or the element ξ ∈ SGΞ(Ω) is the square mean limit of
the sequence {ξn,n≥ 1} of the form (1)

ξ = l. i.mn→∞ ξn.

It was proved by Buldygin & Kozachenko in [5] that SGΞ(Ω) is a linear space.
For the square Gaussian random variables the following results hold true.

Theorem 1. [11] Let~ξT = (ξ1,ξ2, ...,ξd) be a random vector such that ξi ∈ SGΞ(Ω) and B be a symmetric semi-definite
matrix. Then for all 0 < s < 1√

2
the following inequality is true

Ecosh


√√√√s2

~ξTB~ξ
E~ξTB~ξ

≤ R(
√

2s), (2)

where R(y) = 1√
1−y exp

{
− y

2

}
, 0 < y < 1.

Theorem 2. Let {ηm,1≤ m≤M} be a sequence of random variables that can be presented as quadratic form of square
Gaussian random variables (that is, η =~ξTB~ξ, where B is a symmetric semi-definite matrix). Then, for any x≥ 0

P

{
max

1≤m≤M

ηm

Eηm
> x
}
≤M ·W (x), (3)

where W (x) =
R
( √

2x
1+
√

2x

)
cosh

(
x

1+
√

2x

) and the function R is defined in Theorem 1.

Proof. For all 0 < s < 1/
√

2 and x > 0

P

{
max

1≤m≤M

ηm

Eηm
> x
}
≤ M max

1≤m≤M
P

{
ηm

Eηm
> x
}
≤

≤ M max
1≤m≤M

Ecosh
√

s2 ηm
Eηm

cosh
√

s2x
≤M

R(s
√

2)
cosh(s

√
x)
.
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Putting s =
√

x
1+
√

2x
, which is approximately the minimal point, we obtain (3) and

P

{
max

1≤m≤M

ηm

Eηm
> x
}
≤ M

(1−
√

2s)−1/2 exp{−s/
√

2}
cosh(s

√
x)

≤

≤ Me−1/2
exp
{

1
2(1+

√
2x)

}√
1+
√

2x

cosh
(

x
1+
√

2x

) =

= O(x1/4e−
√

x) as x→ ∞.

The theorem is proved.

3. Testing a hypotheses on the expectation and covariance function of a univariate sequence

Using the inequality (3) it is possible to test a hypothesis on the expectation and covariance function of the non-
centered univariate stationary Gaussian sequence. Hereinafter we will consider stationarity in a strict sense.

Let us consider the stationary sequence {γ(n),n ≥ 1} for which Eγ(n) = a and E(γ(n)− a)(γ(n+m)− a) = B(m),
m≥ 0 is its covariance function. We assume that we have N +M consecutive observations of this random sequence. Let
us choose the estimators in the following way:

for the expectation

âm =
1
N

N

∑
n=1

γ(n+m), 0≤ m≤M;

for the covariance function

B̂(m) =
1
N

N

∑
n=1

(γ(n)− â0)(γ(n+m)− âm), 0≤ m≤M.

We denote

Ea := E(âm−a)2 =
1

N2

N

∑
n=1

N

∑
k=1

B(n− k) =
1
N

B(0)+
2

N2

N−1

∑
i=1

(N− i)B(i);

EB(m) := E B̂(m) = B(m)− 1
N2

N

∑
n=1

N

∑
k=1

B(n− k−m) =

=

(
1− 1

N

)
B(m)− 2

N2

N−1

∑
i=1

(N− i)B(i−m), 0≤ m≤M,

and introduce the random variables:

ηa(m) := (âm−a)2−Ea, 0≤ m≤M;

and
ηB(m) := B̂(m)−EB(m), 0≤ m≤M.

It is easy to prove that these random variables are square Gausssian.
Let us define~η(m)T = (ηa(m),ηB(m)), 0≤m≤M. So, for any semi-definite matrix Bm = (bi j(m))i, j=1,2 the random

variable η(m) :=~η(m)T Bm~η(m) is actually the quadratic form of a square Gaussian random variable.

Remark 1. If bi j =

{
1, i = j;
0, i 6= j.

(that is, B is the identity matrix of order 2), then η(m) = η2
a(m)+η2

B(m) and Eη(m) =

Eη2
a(m)+Eη2

B(m). All the necessary calculations for the terms of Eη(m) are included to the Annex to this section.

Remark 2. If for every m Bm = C−1(m) is the inverse of matrix C(m), whose components are the covariances between
the vector~η(m) items then Eη(m) = const for all m. But, in this case one should be careful since the matrices C(m) have
to be invertible.

Criterion 1. Let the null hypothesis H0 state that a and B(m), m ≥ 0 are the expectation and covariance function of the
non-centered Gaussian stationary sequence {γ(n),n≥ 1} and the alternative Ha implies the opposite statement.
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If for significance level α and corresponding critical value εα which can be found from the equation MW (εα) = α

max
0≤m≤M

~ηT (m)Bm~η(m)

E(~ηT (m)Bm~η(m))
> εα,

then the hypothesis H0 should be rejected and accepted otherwise.

Remark 3. The probability of a type I error for Criterion 1 is less than or equal to α.

Example 1. Let us consider the non-centered Gaussian sequence {γ(n),n≥ 1}whose elements can be presented according
to the expression

γ(n) = a+
∞

∑
j=0

β( j)ζn− j, n≥ 1 (4)

where β( j) = e−λ j, j≥ 0, λ > 0 and {ζk,k ∈Z} is a sequence of independent random variables such that for all k Eζk = 0,
Eζ2

k = 1. In this case Eγ(n) = a for all n and

B(m) = E(γ(n) − a)(γ(n + m) − a) =
∞

∑
j=0

β( j)β( j + m) =
∞

∑
j=0

e−λ je−λ( j+m) =
e−λ|m|

1− e−2λ
,m ∈ Z. (5)

Using the simulation study we investigated how the Criterion 1 works. We made 10 000 Monte Carlo simulations of
the non-centered Gaussian stationary sequence γ(n), with a = Eγ(n) and covariance function defined by (5) with fixed
parameter λ. For our needs we used the the simulation methods developed in paper [18].

For the symmetric semi-definite matrix Bm we choose the identity matrix of order 2 – I2. Then η(m)=~ηT(m)Bm~η(m)=

η2
a(m)+η2

B(m).

1. Let us check the null hypothesis (H0) that states that the stationary Gaussian sequence γ(n) has expectation a = 1 and
covariance function defined by the formula (5) with parameter λ = 1 versus the alternative hypothesis (Ha) implying that
the stationary Gaussian sequence γ(n) has expectation a = 1 and covariance function defined by the formula (5) with
parameter λ = 0.5.

We simulated 10 000 realizations of the sequences defined by (4) with parameters a = 1 & λ = 1 and a = 1 & λ = 0.5.

Let us define the necessary constants: the significance level α = 0.1, M = 10, N = 1000 (M+N = 1010). In this case
the critical value εα = 87.82.

For the simulated sequences we obtained an estimate of the probability of a type I error α̂ = 0 and the estimate for the
probability of a type II error β̂ = 0.23.

2. Let us now check the null hypothesis (H0) that states that the stationary Gaussian sequence γ(n) has expectation a = 1
and covariance function defined by the formula (5) with parameter λ = 1 versus the alternative hypothesis (Ha) implying
that the stationary Gaussian sequence γ(n) has expectation a = 0 and covariance function defined by the formula (5) with
parameter λ = 1.

We used again the simulated 10 000 realizations of the sequence defined by (4) with parameters a = 1 & λ = 1 and
another sequence with parameters a = 0.25 & λ = 1.

The required constants are the same as previously. In this case we obtained an estimate for the probability of a type I
error α̂ = 0 and the estimate for the probability of a type II error β̂ = 0.0055.

Remark 4. It is evident that the more observations we have the more sensitive the criterion is. Finding the number N for
which the null and alternative hypotheses can be distinguished is the subject of our continuing investigation.
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4. Testing a hypotheses on the covariance function of a centered multivariate sequence

The inequality (3) can also be useful for testing a hypothesis on the covariance function of a centered multivariate
random sequence.

Let us assume that the components of the multivariate random sequence −→γ (n), n≥ 1 are jointly Gaussian, stationary
(in the strict sense) sequences {γk(n),n≥ 1,k = 1,K} for which Eγk(n) = 0 and Eγk(n)γl(n+m) = Bkl(m), m≥ 0 is the
covariance function of these sequences. It is worth mentioning that for k = l Bkk is the ordinary autocovariance function
of the k-th component and when k 6= l Bkl are the joint covariances or sometimes called cross-covariances. Hereinafter we
shell use the term covariance function of the sequence −→γ (n).

We suppose that the sequence−→γ (n) is observed at points 1,2, ...,N+M (N,M > 1). As an estimator of the covariance
function Bkl(m) we choose

B̂kl(m) =
1
N

N

∑
n=1

γk(n)γl(n+m), N ≥ 1, m = 0,M.

The estimator B̂kl(m) is unbiased:

E B̂kl(m) =
1
N

N

∑
n=1

Eγk(n)γl(n+m) = Bkl(m).

The random variables ∆kl(m) = B̂kl(m) − Bkl(m) are square Gaussian since B̂kl(m) can be presented as
(γk(1), ...,γk(N))T A(γl(m+1), ...,γl(N +m)), where the matrix

A =


1
N · · · 0
...

. . .
...

0 · · · 1
N

 .

Let~∆(m) be a vector with components ∆kl(m).

Criterion 2. Let the null hypothesis H0 state that Bkl(m), m ≥ 0 is the covariance function of the centered Gaussian
stationary sequence −→γ (n) = {γk(n),n≥ 1}k=1,K and the alternative Ha state the opposite.

If for significance level α and corresponding critical value εα, which can be found from the equation MW (εα) = α,

max
0≤m≤M

~∆T (m)Bm~∆(m)

E(~∆T (m)Bm~∆(m))
> εα,

then the hypothesis H0 should be rejected and accepted otherwise.

Remark 5. The probability of a type I error for the Criterion 2 is less or equal to α.

Remark 6. The simplest way is to choose the matrix Bm to be identical.
If for every m the matrix Bm = C−1(m) is inverse to C(m) which consists of the covariances of the vector ~∆(m)

components, then E(~∆T (m)B~∆(m)) = const for all m. But in this case we should pay attention to the invertibility of the
matrices C(m).

Let’s illustrate how this criterion works on the example.

Example 2. We consider the K = 2 – component stationary centered Gaussian sequence −→γ (n) = {γk(n),n≥ 1,k = 1,2}.
We assume that each component can be presented as moving average

γk(n) =
∞

∑
j=0

βk( j)ξn− j, n≥ 1,

with coefficients βk( j) = e−λk j, λk > 0, k = 1,2, j ≥ 0 and the random variables ξ j are independent with zero mean and
variance equal to 1.

If the components of −→γ (n) are not independent then the covariance function of this sequence has a form:

Bkl(m) =


e−λl m

1−e−(λk+λl )
, m≥ 0;

e−λk |m|

1−e−(λk+λl )
, m < 0,

k, l = 1,2. (6)
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In the case when k = l we obtain the covariance function of the k-th component:

Bkk(m) =
e−λk|m|

1− e−2λk
, m ∈ Z, k = 1,2. (7)

Let~∆T(m) = (∆11(m),∆12(m),∆21(m),∆22(m)) and matrix B = I4 is the identity matrix of 4-th order. Then

E(~∆T (m)B~∆(m)) =
2

∑
k=1

2

∑
l=1

E∆
2
kl(m), (8)

where

E∆
2
kl(m) =

1
N

[
1

(1− e−2λk)(1− e−2λl )
+

e−2λlm

(1− e−(λk+λl))2

]
+

+
2
N

m

∑
t=1

(
1− t

N

)[ e−(λk+λl)t

(1− e−2λk)(1− e−2λl )
+

e−2λlm

(1− e−(λk+λl))2

]
+

+
2
N

N−1

∑
t=m+1

(
1− t

N

)[ e−(λk+λl)t

(1− e−2λk)(1− e−2λl )
+

e−(λk+λl)t−(λl−λk)m

(1− e−(λk+λl))2

]
=

= O
(

1
N

)
, as N→ ∞. (9)

Using simulations we investigated how the Criterion 2 works. We had made 10 000 Monte Carlo simulations of two
sequences with covariance function defined by (6) and (7). For the simulations we used the methods described in the
paper by Vasylyk et al. [18].

1. Let the null hypothesis (H0) state that the two components of the multivariate sequence −→γ (n) are two jointly Gaussian,
centered stationary sequences γ1(n) and γ2(n) with covariance function defined by (6) and (7) with parameters λ1 = 1 and
λ2 = 0.1, respectively, and the alternative hypothesis (Ha) state that λ1 = 0.3 and λ2 = 3.

We define the constants as α = 0.1, M = 10, N = 1000 (M +N = 1010). Under these definitions the critical value
εα = 87.82.

We simulated 10 000 realizations of the two bivaiate sequences with parameters λ1 = 1 & λ2 = 0.1 and λ1 = 0.1 &
λ2 = 1. We obtained an estimate for the probability of a type I error α̂ = 0 and an estimate for the probability of a type II
error β̂ = 0.9616.

2. Let the null hypothesis (H0) state that the components of the multivariate sequence −→γ (n) are two jointly Gaussian,
centered stationary sequences γ1(n) and γ2(n) with covariance function defined by (6) and (7) with parameters λ1 = 1 and
λ2 = 0.1, respectively, and the alternative hypothesis (Ha) state that λ1 = 0.05 and λ2 = 5.

We used again simulated 10 000 realizations of the two bivariate sequences with parameters λ1 = 1 & λ2 = 0.1 and
λ1 = 0.05 & λ2 = 5 and defined the constants as previously.

In this case we obtained an estimate for the probability of a type I error α̂ = 0 and the estimate for the probability of a
type II error β̂ = 0.0104.

Remark 7. It is evident that the more observations we have the more sensitive the test is.

5. Conclusions

In this paper we estimated the distribution of the maximum of a random sequence which can be presented as a
quadratic form of square Gaussian random variables. This result made it possible to build the criterion for testing a
hypothesis on the expectation and covariance function of a non-centered univariate stationary Gaussian sequence and a
hypothesis on the covariance function of a centered multivariate stationary Gaussian sequence. The simulation studies
were also incorporated.

The inequality obtained in the section 2 can also be useful for testing the similar hypotheses for non-centered mul-
tivariate random sequences. Our test statistics are quite easy to compute and do not require the calculation of residuals
from the fitted model. This is especially advantageous when the fitted model is not a finite order autoregressive model.

There is of course, a lot of room for improvement of the tests. Comparison with other tests and finding the number N
for which the null and alternative hypotheses can be distinguishable are also very important issues for further investiga-
tion.
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7. Annex to section 3

This Annex includes the requirements for the section 3 calculations for Eη2
a(m) and Eη2

B(m).

Eη
2
a(m) = E((âm−a)2−Ea)

2 = E(âm−a)4− (Ea)
2

Using the Isserlis’ formula for the centered Gaussian random variables γ̃(n) := γ(n)−a we obtain

E(âm−a)4 =
1

N4

N

∑
n=1

N

∑
k=1

N

∑
t=1

N

∑
s=1

E γ̃(n+m)̃γ(k+m)̃γ(t +m)̃γ(s+m) =

=
1

N4

N

∑
n=1

N

∑
k=1

N

∑
t=1

N

∑
s=1

[B(k−n)B(s− t)+B(t−n)B(s− k)+B(s−n)B(t− k)] =

=
3

N4

(
N

∑
n=1

N

∑
k=1

B(k−n)

)2

. (10)

Then

Eη
2
a(m) =

3
N4

(
N

∑
n=1

N

∑
k=1

B(k−n)

)2

−

(
1

N2

N

∑
n=1

N

∑
k=1

B(k−n)

)2

=
2

N4

(
N

∑
n=1

N

∑
k=1

B(k−n)

)2

. (11)

Let us make the required calculation for Eη2
B(m).

Eη
2
B(m) = E(B̂(m)−EB(m))2 = E(B̂(m))2− (EB(m))2.

E(B̂(m))2 =
1

N2

N

∑
n=1

N

∑
k=1

E(γ(n)− â0)(γ(n+m)− âm)(γ(k)− â0)(γ(k+m)− âm).

Using the Isserlis’ formula we obtain that

Eη
2
B(m) = S0−2S1 +S2− (EB(m))2, (12)

where

S0 =
1

N2

(
N2B2(m)+

N

∑
n=1

N

∑
k=1

[B2(k−n)+B(k−n+m)B(k−n−m)]

)
;

S1 =
1

N2 B(m)
N

∑
n=1

N

∑
k=1

B(k−n+m)+

+
1

N3

N

∑
n=1

( N

∑
k=1

B(k−n)

)2

+

(
N

∑
k=1

B(k−n+m)

)(
N

∑
l=1

B(l−n−m)

) ;

S2 =
1

N4

( N

∑
n=1

N

∑
k=1

B(k−n)

)2

+2

(
N

∑
n=1

N

∑
k=1

B(k−n+m)

)2
 .

8. Annex to section 4

In chapter 4 we need to find the expectation of ∆2
kl(m) in order to calculate the value of E(~∆T (m)B~∆(m)) (see

formula (8)). Let us do it.

E∆
2
kl(m) = E(B̂kl(m)−Bkl(m))2 = E

[
1
N

N

∑
n=1

(γk(n)γl(n+m)−Bkl(m))

]2

=

=
1

N2 E

[
N

∑
n=1

N

∑
i=1

(γk(n)γl(n+m)−Bkl(m))(γk(i)γl(i+m)−Bkl(m))

]
=

=
1

N2

N

∑
n=1

N

∑
i=1

Eγk(n)γl(n+m)γk(i)γl(i+m)−B2
kl(m).
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Using again the Isserlis’ formula for the centered Gaussian random variables we obtain

Eγk(n)γl(n+m)γk(i)γl(i+m) = Eγk(n)γl(n+m)Eγk(i)γl(i+m)+

+ Eγk(n)γk(i)Eγl(n+m)γl(i+m)+

+ Eγk(n)γl(i+m)Eγl(n+m)γk(i) =

= B2
kl(m)+Bkk(i−n)Bll(i−n)+Bkl(i−n+m)Blk(i−n−m).

Then

E∆
2
kl(m) =

1
N2

N

∑
n=1

N

∑
i=1

[Bkk(i−n)Bll(i−n)+Bkl(i−n+m)Blk(i−n−m)] =

=
1
N
[Bkk(0)Bll(0)+B2

kl(m)]+

+
2
N

N−1

∑
t=1

(
1− t

N

)
[Bkk(t)Bll(t)+Bkl(t +m)Blk(t−m)]

Putting the covariance function defined by (6) into the last formula we get (9).
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KAI KURIŲ ATSITIKTINIŲ SEKŲ SUDERINAMUMO KRITERIJAI

Yuriy Kozachenko, Tetiana Ianevych

Santrauka. Kvadratinių Gauso atsitiktinių dydžių teorijos rezultatai pritaikyti atsitiktinių sekų (laiko eilučių) su-
derinamumo kriterijams sudaryti. Nagrinėjami du tokių kriterijų atvejai. Pirmasis kritetijus skirtas tikrinti hipotezei
apie vienmatės necentruotos sekos vidurkį ir kovariacinę funkcijąs; antrasis kriterijus skirtas tikrinti hipotezei apie dau-
giamatės centruotos sekos kovariacinę funkciją. Modeliavimo rezultatai iliustruoja šių kriterijų elgesį kai kuriais atskirais
atvejais.

Reikšminiai žodžiai: suderinamumo kriterijus, daugiamatė atsitiktinė seka, laiko eilutė, kvadratinis Gauso atsi-
tiktinis dydis.
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