Modeling the Dirichlet distribution using multiplicative functions
On 21 October, technical maintenance will be carried out to. During this time, the platforms zurnalai.vu.lt and journals.vu.lt may be temporarily unavailable between 09:00 and 17:00.
Articles
Gintautas Bareikis
Vilnius University
https://orcid.org/0000-0003-3870-5885
Algirdas Mačiulis
Vilnius University
https://orcid.org/0000-0003-4510-2767
Published 2020-03-02
https://doi.org/10.15388/namc.2020.25.16518
PDF

Keywords

natural divisor
multiplicative function
Dirichlet distribution

How to Cite

Bareikis, G. and Mačiulis, A. (2020) “Modeling the Dirichlet distribution using multiplicative functions”, Nonlinear Analysis: Modelling and Control, 25(2), pp. 282–300. doi:10.15388/namc.2020.25.16518.

Abstract

For q,m,n,d ∈ N and some multiplicative function f > 0, we denote by T3(n) the sum of f(d) over the ordered triples (q,m,d) with qmd = n. We prove that Cesaro mean of distribution functions defined by means of T3 uniformly converges to the one-parameter Dirichlet distribution function. The parameter of the limit distribution depends on the values of f on primes. The remainder term is estimated as well. 

PDF

Downloads

Download data is not yet available.