Blow-up of the solution of a nonlinear Schrödinger equation system with periodic boundary conditions
On 21 October, technical maintenance will be carried out to. During this time, the platforms zurnalai.vu.lt and journals.vu.lt may be temporarily unavailable between 09:00 and 17:00.
Articles
Feliksas Ivanauskas
Vilnius University, Lithuania
Gintaras Puriuškis
Vilnius University, Lithuania
Published 2013-01-25
https://doi.org/10.15388/NA.18.1.14031
PDF

Keywords

Schrödinger equations
blow-up
periodic boundary condition

How to Cite

Ivanauskas, F. and Puriuškis, G. (2013) “Blow-up of the solution of a nonlinear Schrödinger equation system with periodic boundary conditions”, Nonlinear Analysis: Modelling and Control, 18(1), pp. 53–65. doi:10.15388/NA.18.1.14031.

Abstract

We consider a system of nonlinear Schrödinger equations with periodic boundary conditions of the form
∂uj/∂t + D2uj = −fj (u, ū),    t ≥ 0,  x ∈ (−2,2),
uj (0, x) = uj0(x),    x ∈ (−2,2),
Dkuj (t, −2) = Dkuj (t, 2),     t ≥ 0,   k = 0, 1,
where D = /∂x,  j = 1,..., m,  fj (u, ū) = ∂g(u, ū)/∂ū, and ∂g/∂ujf j for some homogenous function g(u, ū) such that g(λu, λū) = λ6g(u, ū). We obtain sufficient conditions for blow-up of solutions of this system in C1([0,t0);H2(−2,2)).

PDF

Downloads

Download data is not yet available.

Most read articles by the same author(s)