This paper investigates the stability and dynamical behavior of soliton solutions in generalized nonlinear Klein–Gordon equations defined on higher-dimensional manifolds. We establish the existence of stable multisoliton configurations using variational methods and demonstrate their stability under small perturbations through energy estimates and topological considerations. Furthermore, we explore topological invariants (particularly, the topological charge) in preventing certain types of instabilities and ensuring the long-term persistence of solitons.
This work is licensed under a Creative Commons Attribution 4.0 International License.